A two-step adaptive walk in the wild<br /> 
New research in plants that colonized the base of an active stratovolcano reveals that two simple molecular steps rewired nutrient transport, enabling adaptation.
  [more]
Roots stiffen up to stop growth
The plant hormone cytokinin inhibits root cell growth [more]
barley floret
The study, published in Current Biology, shows a direct link of auxin to pollen fertility. [more]
An island model - uncovering adaption
Wild populations of the model plant Arabidopsis thaliana from the Cape Verde Islands reveal the mechanisms of adaptation after abrupt environmental change.
  [more]
Potato genome decoded

Potato genome decoded

March 03, 2022
The complete sequencing of the genetic material facilitates the breeding of new varieties [more]
Differentiating friends from foes in the fungal root microbiome
A collaborative project between researchers has shed light on the fungal genetic determinants that explain why some fungi from the root microbiome can colonize roots and cause disease more efficiently than others.
  [more]
Host and resident bacteria join forces to control fungi in plant roots<br /> 
Researchers from the Max Planck Institute for Plant Breeding Research (MPIPZ) have discovered that diverse root-colonizing fungi can benefit plants, but only when they are kept in check by the host innate immune system and the bacteria residing in roots. [more]
Flowering of annual and perennial plants is delayed by changes in the position and number of <em>MADS</em>-box genes<br /> 
New study highlights the value of using genetic crosses and genomic comparisons between closely-related plant species. [more]
Accurate method for determining active genes<br /> 
The total DNA of an organism is significantly more extensive than the actual genome used. A consortium of German and U.S. researchers involving the Max Planck Institute for Plant Breeding Research in Cologne (MPIPZ) and the Heinrich Heine University Düsseldorf (HHU) developed a method in order to determine all regions of the active genome in a single analysis. They present their results using the crop plant maize in the current issue of the journal PLoS Genetics.
  [more]
Of oil, wine and friends, the oldest is the best: root-associated bacteria preferentially colonize their native host-plant roots
An international team of researchers from the Max Planck Institute for Plant Breeding Research and the University of Åarhus in Denmark have discovered that bacteria from the plant microbiota are adapted to their host species. In a newly published study, they show how root-associated bacteria have a competitive advantage when colonizing their native host, which allows them to invade an already established microbiota. [more]
Belowground microbial solutions to aboveground plant problems
Researchers from the Max Planck Institute for Plant Breeding Research (MPIPZ) have discovered that signalling occurring from the response of plant leaves to light, and plant roots to microbes, is integrated along a microbiota-root-shoot axis to boost plant growth when light conditions are suboptimal. [more]
Identity of an induced protein complex linking pathogen-activated immune receptors to rapid mobilization of immunity
Scientists from MPIPZ in collaboration with the Sainsbury Laboratory (UK) find a long sought after complex between two conserved plant-specific protein families that connect pathogen-activated immune complexes to defence outputs. [more]
Plant-microbe homeostasis: a delicate balancing act
Scientists from the Max Planck Institute for Plant Breeding Research in Cologne, and the University of North Carolina at Chapel Hill, have shown that the presence of both immune-suppressive and non-suppressive bacteria in the plant root microbiota is crucial to strike a balance between plant growth and plant defence. [more]
<p>The synaptonemal complex limits meiotic crossover and  imposes crossover interference</p>
A team in the department of Chromosome Biology at MPIPZ in collaboration with INRAE of Versailles France, explored the function of the synaptonemal complex. [more]
<em>MICRORNA</em> genes that promote flowering of Arabidopsis
Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have shown how individual members of the MIR172 gene family promote flowering.

[more]
Plant homeodomain proteins promote synthesis of the hormone auxin to help leaves grow wide
Recent findings presented by Dr. Zhongjuan Zhang, Dr. Miltos Tsiantis and their colleagues offer important advances in our understanding of morphological diversity using plant leaves as an example [more]
A plant immune receptor: it takes four to tango
A collaborative study on a plant intracellular immune receptor from researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) also reveals some common operational principles with immunity proteins from humans. [more]
<p>For plant and animal immune systems the similarities go beyond sensing</p>
Max Planck Institute for Plant Breeding Research (MPIPZ) and University of Cologne researcher Takaki Maekawa and colleagues have discovered that plants have independently evolved a family of immune proteins that are strikingly similar to animals. [more]
<p>Hungry plants rely on their associated bacteria to mobilise unavailable iron</p>
Researchers from the Max Planck Institute for Plant Breeding Research have found that, faced with limiting iron, plants direct their microbiota to mobilise this essential nutrient for optimal growth. [more]
Unpacking the two layers of bacterial gene regulation during plant infection
By analysing the different layers of bacterial gene expression during pathogen infection of a plant host, Kenichi Tsuda and colleagues from the Max Planck Institute for Plant Breeding Research in Cologne, Germany and Huazhong Agricultural University in Wuhan, China have revealed new insights into bacterial gene regulation as well as the strategies employed by plants to target key bacterial processes. [more]
<p>Plants from diverse European habitats associate with the same small group of highly abundant microorganisms</p>
A continental-scale census and analysis of root-inhabiting microorganisms reveals that plants across Europe consistently harbour a small group of unexpectedly abundant ‘core’ microorganisms, irrespective of soil conditions and climate. [more]
Self-restrained genes enable evolutionary novelty
Evolution can promote novelty by keeping gene expression in check [more]
New leaf shapes for thale cress
Max Planck researchers equip the plant with pinnate leaves [more]
Ready, Steady, Go

Ready, Steady, Go

April 05, 2019
Cryo-electron microscopy reveals the molecular steps in plant immune receptor activation [more]
New paper on the phylogeny of the Brassicaceae
A recent study from the Max Planck Institute for Plant Breeding Research in Cologne, published in the New Phytologist, helps resolve these issues by reporting new insights into the relationships among Brassicaceae species. [more]
Shedding light on a shadow: two transcriptional enhancers control florigen’s response to photoperiod
In many plant species, flowering is controlled by day length through the transcriptional regulation of a key gene called FLOWERING LOCUS T (FT) in the model plant Thale cress (Arabidopsis thaliana). The Turck group at the Max Planck Institute for Plant Breeding Research (Cologne, Germany) has used an epigenetic approach to systematically probe regions surrounding the FT locus for a regulatory role in FT expression. As they now report in Nature Plants (doi 10.1038/s41477-019-0375-2), FT’s response to long days requires the presence of both, a previously characterized distal enhancer located in the promoter and the support of its “shadow” enhancer located downstream of the gene. [more]
Plants can skip the middlemen to directly recognize disease-causing fungi
Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have revealed that direct physical associations between plant immune proteins and fungal molecules are widespread during attempted infection. [more]
Linking sensing to signaling during plant immunity
A new study by researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has revealed that a previously unappreciated structural feature underlies the ability of the plant immune molecule EDS1 to provide a timely defense boost against pathogens. [more]
Researchers reveal how the age of a plant determines its sensitivity to winter cold [more]
Leaf age determines the division of labor in plant stress responses
A new study from researchers at the Max Planck Institute for Plant Breeding Research published in the journal PNAS shows that the crosstalk between plant responses to physical and biological stresses varies between young and old leaves to enable optimal plant performance when the two kinds of stress are encountered simultaneously. [more]
Go to Editor View