Recent press releases

<p>For plant and animal immune systems the similarities go beyond sensing</p>
Max Planck Institute for Plant Breeding Research (MPIPZ) and University of Cologne researcher Takaki Maekawa and colleagues have discovered that plants have independently evolved a family of immune proteins that are strikingly similar to animals. [more]
<p>Hungry plants rely on their associated bacteria to mobilise unavailable iron</p>
Researchers from the Max Planck Institute for Plant Breeding Research have found that, faced with limiting iron, plants direct their microbiota to mobilise this essential nutrient for optimal growth. [more]
Unpacking the two layers of bacterial gene regulation during plant infection
By analysing the different layers of bacterial gene expression during pathogen infection of a plant host, Kenichi Tsuda and colleagues from the Max Planck Institute for Plant Breeding Research in Cologne, Germany and Huazhong Agricultural University in Wuhan, China have revealed new insights into bacterial gene regulation as well as the strategies employed by plants to target key bacterial processes. [more]
<p>Plants from diverse European habitats associate with the same small group of highly abundant microorganisms</p>
A continental-scale census and analysis of root-inhabiting microorganisms reveals that plants across Europe consistently harbour a small group of unexpectedly abundant ‘core’ microorganisms, irrespective of soil conditions and climate. [more]
Self-restrained genes enable evolutionary novelty
Evolution can promote novelty by keeping gene expression in check [more]
New leaf shapes for thale cress
Max Planck researchers equip the plant with pinnate leaves [more]
Ready, Steady, Go

Ready, Steady, Go

April 05, 2019
Cryo-electron microscopy reveals the molecular steps in plant immune receptor activation [more]
New paper on the phylogeny of the Brassicaceae
A recent study from the Max Planck Institute for Plant Breeding Research in Cologne, published in the New Phytologist, helps resolve these issues by reporting new insights into the relationships among Brassicaceae species. [more]
Shedding light on a shadow: two transcriptional enhancers control florigen’s response to photoperiod
In many plant species, flowering is controlled by day length through the transcriptional regulation of a key gene called FLOWERING LOCUS T (FT) in the model plant Thale cress (Arabidopsis thaliana). The Turck group at the Max Planck Institute for Plant Breeding Research (Cologne, Germany) has used an epigenetic approach to systematically probe regions surrounding the FT locus for a regulatory role in FT expression. As they now report in Nature Plants (doi 10.1038/s41477-019-0375-2), FT’s response to long days requires the presence of both, a previously characterized distal enhancer located in the promoter and the support of its “shadow” enhancer located downstream of the gene. [more]
Plants can skip the middlemen to directly recognize disease-causing fungi
Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have revealed that direct physical associations between plant immune proteins and fungal molecules are widespread during attempted infection. [more]
Linking sensing to signaling during plant immunity
A new study by researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has revealed that a previously unappreciated structural feature underlies the ability of the plant immune molecule EDS1 to provide a timely defense boost against pathogens. [more]
Researchers reveal how the age of a plant determines its sensitivity to winter cold [more]
Go to Editor View