Recent press releases

A stiff polymer called lignin (stained red) is deposited in a precise pattern in the cell walls of exploding seed pods. Researchers identified three laccase enzymes required to form this lignin. No lignin forms in the cell wall when all three genes are knocked out by CRISPR/Cas9 gene editing
Researchers identify the genes controlling the mechanical structure of exploding seed pods [more]
A two-step adaptive walk in the wild<br /> 
New research in plants that colonized the base of an active stratovolcano reveals that two simple molecular steps rewired nutrient transport, enabling adaptation.
  [more]
Roots stiffen up to stop growth
The plant hormone cytokinin inhibits root cell growth [more]
barley floret
The study, published in Current Biology, shows a direct link of auxin to pollen fertility. [more]
An island model - uncovering adaption
Wild populations of the model plant Arabidopsis thaliana from the Cape Verde Islands reveal the mechanisms of adaptation after abrupt environmental change.
  [more]
Potato genome decoded

Potato genome decoded

March 03, 2022
The complete sequencing of the genetic material facilitates the breeding of new varieties [more]
Differentiating friends from foes in the fungal root microbiome
A collaborative project between researchers has shed light on the fungal genetic determinants that explain why some fungi from the root microbiome can colonize roots and cause disease more efficiently than others.
  [more]
Host and resident bacteria join forces to control fungi in plant roots<br /> 
Researchers from the Max Planck Institute for Plant Breeding Research (MPIPZ) have discovered that diverse root-colonizing fungi can benefit plants, but only when they are kept in check by the host innate immune system and the bacteria residing in roots. [more]
Flowering of annual and perennial plants is delayed by changes in the position and number of <em>MADS</em>-box genes<br /> 
New study highlights the value of using genetic crosses and genomic comparisons between closely-related plant species. [more]
Accurate method for determining active genes<br /> 
The total DNA of an organism is significantly more extensive than the actual genome used. A consortium of German and U.S. researchers involving the Max Planck Institute for Plant Breeding Research in Cologne (MPIPZ) and the Heinrich Heine University Düsseldorf (HHU) developed a method in order to determine all regions of the active genome in a single analysis. They present their results using the crop plant maize in the current issue of the journal PLoS Genetics.
  [more]
Show more
Go to Editor View