Research Highlights

person
Prof. Dr. Miltos Tsiantis, Director at the Max Planck Institute for Plant Breeding Research and head of the Department of Comparative Development and Genetics, receives an Advanced Grant from the European Research Council (ERC). The prestigious funding will support his project CLONAL, aimed at advancing our understanding of clonal reproduction by root sucker formation. [more]
Octoploid genome decoded

Octoploid genome decoded

January 17, 2025
MPIPZ research groups collaborate to produce a fully phased, chromosome-scale genome assembly of Cardamine chenopodiifolia [more]
Buried treasure: a plant that makes flowers and fruits underground
Researchers describe the unusual trait of amphicarpy, where two types of fruit develop on the same plant: one above- and the other below-ground. [more]
Switching leaf shapes

Switching leaf shapes

June 24, 2024
Researchers discover a genetic switch in plants that can turn simple spoon-shaped leaves into complex leaves with leaflets [more]
How a common weed builds up explosive force<br /> 
Hairy bittercress has explosive fruit that fire seeds in all directions. MPI researchers discover how these seed pods power their own explosion. [more]
Timing leaf growth<br /> 

Timing leaf growth
 

February 07, 2024
Leaf heteroblasty is the fascinating natural phenomenon by which plants produce different leaves as they grow and mature. This requires a complex interplay between cellular growth and time, and allows a single plant to manifest a diverse range of leaf shapes and sizes over its lifespan. In a recent paper in the journal Current Biology, scientists from the Max Planck Institute for Plant Breeding Research in Cologne have now shed light on how this intricate process occurs during leaf development of the small mustard plant Arabidopsis thaliana. By studying the development of juvenile and adult leaves, they identified key differences in their cellular growth patterns, which they found were controlled by a SPL9-CYCD3 transcriptional module. These findings provide us with a deeper understanding of how the passing of time is encoded into organ growth and morphogenesis, and demonstrate the intricate tempo of plant growth and development. [more]
Show more
Go to Editor View