Research Highlights

A plant immune receptor: it takes four to tango
A collaborative study on a plant intracellular immune receptor from researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) not only shows how an important resistance protein is activated during pathogen infection but also reveals some common operational principles with immunity proteins from humans. [more]
<p>For plant and animal immune systems the similarities go beyond sensing</p>
Max Planck Institute for Plant Breeding Research (MPIPZ) and University of Cologne researcher Takaki Maekawa and colleagues have discovered that plants have independently evolved a family of immune proteins that are strikingly similar to animals. [more]
<p>Hungry plants rely on their associated bacteria to mobilise unavailable iron</p>
Researchers from the Max Planck Institute for Plant Breeding Research have found that, faced with limiting iron, plants direct their microbiota to mobilise this essential nutrient for optimal growth. [more]
Unpacking the two layers of bacterial gene regulation during plant infection
By analysing the different layers of bacterial gene expression during pathogen infection of a plant host, Kenichi Tsuda and colleagues from the Max Planck Institute for Plant Breeding Research in Cologne, Germany and Huazhong Agricultural University in Wuhan, China have revealed new insights into bacterial gene regulation as well as the strategies employed by plants to target key bacterial processes. [more]
<p>Plants from diverse European habitats associate with the same small group of highly abundant microorganisms</p>
A continental-scale census and analysis of root-inhabiting microorganisms reveals that plants across Europe consistently harbour a small group of unexpectedly abundant ‘core’ microorganisms, irrespective of soil conditions and climate. [more]
Plants can skip the middlemen to directly recognize disease-causing fungi
Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have revealed that direct physical associations between plant immune proteins and fungal molecules are widespread during attempted infection. [more]
Linking sensing to signaling during plant immunity
A new study by researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has revealed that a previously unappreciated structural feature underlies the ability of the plant immune molecule EDS1 to provide a timely defense boost against pathogens. [more]
Go to Editor View