Research Highlights

<p>Plants from diverse European habitats associate with the same small group of highly abundant microorganisms</p>
A continental-scale census and analysis of root-inhabiting microorganisms reveals that plants across Europe consistently harbour a small group of unexpectedly abundant ‘core’ microorganisms, irrespective of soil conditions and climate. [more]
Plants can skip the middlemen to directly recognize disease-causing fungi
Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have revealed that direct physical associations between plant immune proteins and fungal molecules are widespread during attempted infection. [more]
Linking sensing to signaling during plant immunity
A new study by researchers at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne has revealed that a previously unappreciated structural feature underlies the ability of the plant immune molecule EDS1 to provide a timely defense boost against pathogens. [more]
Leaf age determines the division of labor in plant stress responses

A new study from researchers at the Max Planck Institute for Plant Breeding Research published in the journal PNAS shows that the crosstalk between plant responses to physical and biological stresses varies between young and old leaves to enable optimal plant performance when the two kinds of stress are encountered simultaneously.

[more]
With a little help from their friends: plants rely on their resident bacteria to protect them from harmful microbes
Conclusions of a study published in the journal CELL that was led by Stephane Hacquard and Paul Schulze-Lefert at the Max Planck Institute for Plant Breeding Research in Cologne, Germany. [more]
Nitrogen-fixing bacteria and their plant hosts: old friends that go way back
The relationship between so-called rhizobia, nitrogen-fixing bacteria that are mostly from the order Rhizobiales, and leguminous plants is one of the best-characterized beneficial plant-microbe interactions in all of nature. [more]
<p>Revealing the intricacy of plant-bacteria interactions</p>
A team of researchers from Germany and the US led by Kenichi Tsuda at the Max Planck Institute for Plant Breeding Research (MPIPZ) in Cologne have now developed a method that can be used to probe the complexity of plant-bacteria interactions. [more]
Go to Editor View