Research Highlights

A stiff polymer called lignin (stained red) is deposited in a precise pattern in the cell walls of exploding seed pods. Researchers identified three laccase enzymes required to form this lignin. No lignin forms in the cell wall when all three genes are knocked out by CRISPR/Cas9 gene editing
Researchers identify the genes controlling the mechanical structure of exploding seed pods [more]
Roots stiffen up to stop growth
The plant hormone cytokinin inhibits root cell growth [more]
Plant homeodomain proteins promote synthesis of the hormone auxin to help leaves grow wide
Recent findings presented by Dr. Zhongjuan Zhang, Dr. Miltos Tsiantis and their colleagues offer important advances in our understanding of morphological diversity using plant leaves as an example [more]
Self-restrained genes enable evolutionary novelty
Evolution can promote novelty by keeping gene expression in check [more]
New leaf shapes for thale cress
Max Planck researchers equip the plant with pinnate leaves [more]
New paper on the phylogeny of the Brassicaceae
A recent study from the Max Planck Institute for Plant Breeding Research in Cologne, published in the New Phytologist, helps resolve these issues by reporting new insights into the relationships among Brassicaceae species. [more]
Genome-wide association with structural variants
Genome-wide association is a powerful tool to identify the molecular causes of trait diversity within species. In most association studies, genotyping single nucleotide polymorphism (SNPs) is regarded as sufficient. [more]
Show more
Go to Editor View