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Abstract 

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant 
development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four 
conserved domains throughout their length: three at the N-terminus (C1–C3) and a phosphorylatable C-terminal SAP 
motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling 
during seed germination or stress responses. Later, a sub-clade of group A bZIPs, including FD, was found to play 
important roles in floral induction by interacting with the florigen FLOWERING LOCUS T (FT) at the shoot apical mer-
istem. Recent research has expanded our understanding of these transcription factors by identifying intriguing paral-
lels between those involved in ABA signaling and those promoting floral induction, and revealing dynamic interactions 
with FT and other phosphatidylethanolamine-binding proteins (PEBPs) such as TERMINAL FLOWER 1. Studies in crop 
plants and non-model species demonstrate broader roles, functions, and molecular targets of group A bZIPs. This 
review highlights common features of group A bZIPs and their post-translational regulation in enabling the activation 
of gene regulatory networks with important functions in plant development and stress responses.

Keywords:  ABA, bZIPs, development, FD, FLORIGEN ACTIVATION COMPLEX, flowering, group A bZIPs, PEBPs, seed 
germination.

Introduction

In the model species Arabidopsis thaliana (Arabidopsis), 78 
basic leucine zipper (bZIP) transcription factors (TFs) have 
been classified into 13 different groups (A–K, plus M and S) 
based on homology of the bZIP domain and other conserved 
motifs (Jakoby et al., 2002; Dröge-Laser et al., 2018). The group 
A bZIP subfamily of Arabidopsis consists of 13 TFs playing 
roles in abscisic acid (ABA) signaling, germination, and flow-
ering. Structurally, the eponymous bZIP domain contains an 
N-terminal basic region comprising the DNA-binding site 

followed by the C-terminal leucine zipper dimerization do-
main (Jakoby et al., 2002). In group A bZIPs, the basic region 
is highly conserved and contains two unique M/K-I-K and 
Q-A-Y/Q motifs (Fig. 1A). These motifs also identify group 
A bZIPs in other plant species (Tylewicz et al., 2015; Parajuli 
et al., 2024; Yin et al., 2024). In addition, there are four highly 
conserved domains named C1–C4 (Fig. 1B). Phosphorylation 
motifs present within these domains suggest dynamic post-
translational regulatory mechanisms (Bensmihen et al., 2002).
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Fig. 1. Functional classification of Arabidopsis group A bZIPs (Jakoby et al., 2002; Tsuji et al., 2013; Dröge-Laser et al., 2018). (A) Protein logo of the 
bZIP domain. The unique M/K-I-K and Q-A-Y/Q residues are boxed (Bensmihen et al., 2002; Jakoby et al., 2002). With the exception of subgroup II 
AREB3, EEL, and DPBF2, all the other proteins have an extra -x6-L/I/M leucine repeat at the C-terminus of the bZIP domain. Protein sequence logos 
were designed with WebLogo 3 (Crooks et al., 2004). (B) A phylogenetic Neighbor–Joining tree was produced with Geneious Prime Tree Builder (Blosum 
80 align) using the whole protein sequences, with GBF3 as an outgroup. Blue boxes within the phylogenetic tree: subgroups I–IV (Bensmihen et al., 
2002). Dotted boxes represent the protein scheme. The color boxes on top of the protein scheme identify the conserved motifs C1–C4 (Bensmihen 
et al., 2002), the central bZIP-leucine zipper domain, and, for subgroup I (plus EEL from subgroup II), the polyQ motif (Dröge-Laser et al., 2018). Open 
boxes represent C1–C3 domains of subgroup III and IV to reflect their partial conservation. Above the protein diagram, the numbered motifs highlighted 
in lime green correspond to those identified by Dröge-Laser et al. (2018). Above the subgroup IV protein scheme, highlighted in magenta, are the A motif 
(corresponding to the C-terminal region of the C2 motif) and the LSL motif (Tsuji et al., 2013; Dutta et al., 2021). This might serve as disambiguation in 
nomenclature. The C-terminal C4 motif comprises the later identified SAP motif (Taoka et al., 2011).
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Phosphorylation of the C1–C3 N-terminal domains occurs 
in response to ABA in the group A bZIPs involved in ABA 
signaling (Furihata et al., 2006; Umezawa et al., 2013; Y. Wang 
et al., 2013). The phosphorylation site of the C4 domain, 
located at the very C-terminus of the protein, is present in all 
Arabidopsis group A bZIPs. In seven of these proteins, the C4 
domain presents a conserved sequence called the SAP motif 
(L-x-R-x-x-S/T-A/G-P, with x representing any amino acid; 
Fig. 1B), whereas the remaining six have a divergent but func-
tionally similar sequence. SAP motif integrity and its capacity 
to be phosphorylated at the serine (S) or threonine (T) resi-
dues are key for the participation of the bZIPs in multi-protein 
complexes, and this motif is conserved in group A bZIPs from 
monocotyledonous (Taoka et al., 2011) and dicotyledonous 
(Park et al., 2014; Collani et al., 2019) plant species.

A study of the role of the group A bZIP OsFD in floral tran-
sition of rice proposed that it functioned within a hexameric 
complex named the florigen activation complex (FAC). In this 

complex, a homodimer of the group A bZIP OsFD1 is assembled 
with a homodimer of the 14-3-3 protein GF14b and two copies 
of the rice florigen Heading date 3a (Hd3a), such that 14-3-3 
interacts with the rice florigen Hd3a and OsFD1 simultaneously 
and independently (Fig. 2A; Taoka et al., 2011, 2013). OsFD1 is 
the rice bZIP homolog of the Arabidopsis FD, identified as the 
molecular partner of the florigen phosphatidylethanolamine-
binding protein (PEBP) FLOWERING LOCUS T (FT) (Abe 
et al., 2005; Wigge et al., 2005), of which Hd3a is the closest 
rice homolog. OsFD1 binds directly to DNA on a GACGTC 
C-box element found in the Arabidopsis promoter of the floral 
identity gene APETALA1 (AP1) and its homolog OsMADS15 
(Taoka et al., 2011; Collani et al., 2019). This result is consistent 
with bZIPs binding DNA as dimers, targeting sequences with 
an ACGT core, flanked by different residues that specify dif-
ferent bZIP target preferences (Hurst, 1995). For group A bZIPs, 
the G-box (CACGTG), C-box, and the ABA RESPONSIVE 
ELEMENT (ABRE, ACGTGT/GC) are the most represented 

Fig. 2. Group A bZIP transcription factors and PEBPs in plant development and stress. (A) Representation of group A bZIP roles and function in FAC-like 
complexes in developmental processes. SAP phosphorylation requirement for 14-3-3 interaction is highlighted in the box. (B) Representation of group A 
bZIP functions in stress and ABA responses. As the involvement of a complete FAC-like complex is still under debate, it has been represented in faded 
colors. Phosphorylation in these processes happens at different S/T residues distributed along the whole protein sequence (orange bracket). Created in 
BioRender. Martignago D. (2024) https://BioRender.com/f36f242.
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cis-elements detected in vivo (Izawa et al., 1993; Menkens et al., 
1995; Song et al., 2016; Collani et al., 2019; Romera-Branchat et 
al., 2020; Zhu et al., 2020).

Here, we summarize the role of group A bZIP TFs in 
plant development, tissue and organ differentiation, and stress 
responses. We examine their conservation and their biological 
functions across various plant species, emphasizing key special-
izations. Additionally, we explore reports of the formation of 
FAC or FAC-like complexes in different contexts. We discuss 
the current understanding of bZIP homo- and heterodimer-
ization, as well as post-translational modifications—particularly 
phosphorylation—and how these factors affect bZIP activity 
or their DNA binding properties. We will explore recent 
advances in understanding Arabidopsis group A bZIP TFs, and 
the main insight from the study of their homologs in crops and 
non-model species.

Functional classification of group A bZIP 
transcription factors

Group A bZIP TFs have been classified into four subgroups, 
named I–IV (Fig. 1B) (Bensmihen et al., 2002). Subgroup I com-
prises the four ABA-RESPONSIVE ELEMENT BINDING 
FACTORs (ABF1–ABF4, also known as AtbZIP35, 36, 37, and 
38, respectively), plus the uncharacterized bZIP15. Subgroup 
II includes ABA INSENSITIVE 5 (ABI5, otherwise known as 
Dc3 promoter-binding factor 1, DPBF1, AtbZIP39), DPBF2 
(AtbZIP67), and the two highly similar ABA-RESPONSIVE 
ELEMENT BINDING PROTEIN 3 (AREB3, also known 
as DPBF3, AtbZIP66) and ENHANCED EM LEVEL (EEL, 
also known as DPBF4, AtbZIP12). In monocot studies, this 
subgroup is sometimes further divided into an ABI5 sub-
family (ABI5 and DPBF2 homologs) and a DBPF subfamily 
(AREB3 and EEL homologs) (Tsuji et al., 2013; Zhou et al., 
2017; Utsugi et al., 2020). Subgroups I and II contain con-
served C1–C4 domains (Bensmihen et al., 2002). In addition, 
subgroup I and EEL from subgroup II have a polyglutamine 
(polyQ) repeat (Dröge-Laser et al., 2018) that is associated with 
protein–protein interactions (Barbosa Pereira et al., 2023) and 
might confer thermal responsiveness to the protein structure 
(Jung et al., 2020). Subgroup III contains the uncharacter-
ized proteins bZIP13 and G-BOX-BINDING FACTOR 4 
(GBF4, also known as AtbZIP40). In members of subgroup 
III, the C1 domain is poorly conserved, while C2 and C3 are 
conserved only in the C-terminal part. The C4 domain has a 
divergent L-x-R-x-x-S-L-E-W motif instead of the canonical 
SAP motif (Fig. 1B). Subgroup IV contains the flowering time 
regulators FD (AtbZIP14) and FDP (FD PARALOG, also 
known as AtbZIP27). FD and FDP proteins feature a short-
ened N-terminal region, which lacks the C1 domain and is 
missing the N-terminal portion of the C2 (referred to as motif 
A, Fig. 1) and C3 domains. In grasses (Poaceae), FD homologs 
exhibit a unique N-terminal motif, known as Motif 1, in place 

of the partial C2 domain (Fig. 1B) found in dicots and non-
Poaceae monocots, such as bananas, palms, and orchids (Tsuji 
et al., 2013; Dutta et al., 2021). Between the partial C3 and 
the bZIP domain there is an LSL motif (T-A/V-L-S-L-N, Fig. 
1B), which is highly conserved in orthologs from other plant 
species (Tsuji et al., 2013; Dutta et al., 2021). The C4 domain 
of ABF1–ABF4, AREB3, and subgroup IV bZIPs contains a 
functionally characterized SAP motif (R-x-x-S/T-A/G-P/Q, 
Taoka et al., 2013; Park et al., 2014), with the flowering-related 
version (R-x-x-S/T-A-P) fully conserved only in subfamily 
IV and in AREB3, along with their homologs in other species 
(Tsuji et al., 2013; Utsugi et al., 2020; Kaur et al., 2021).

Many phosphorylation events on S/T residues in the C1–
C4 domains have been experimentally validated (Furihata et 
al., 2006). However, phosphorylation can also occur at residues 
outside of these conserved domains. For example, subgroup 
III GBF4 lacks a conserved C1 domain with a recognizable 
phosphorylation consensus, yet phosphorylation at N-terminal 
serine residues has been experimentally observed (Wang et al., 
2018). Similarly, AREB3 and EEL exhibit a conserved SQS15 
amino acid triplet preceding the C1 domain, where both the S 
residues are phosphorylated (Al-Momani et al., 2018).

The functional classification presented here generally reflects 
the biological roles of the subgroup members, frequently high-
lighting gene redundancy within each subgroup. Subgroup I 
ABFs were initially characterized for their redundant role in 
ABA responses, and subgroup II ABI5 and EEL for their con-
trol of embryogenesis and germination (Collin et al., 2021). 
While subgroup III remains poorly investigated, subgroup 
IV FD and FDP have long been known to be involved in 
flowering (Abe et al., 2005; Wigge et al., 2005; Jaeger et al., 
2013). However, more recent studies revealed significant re-
dundancy among group A bZIPs in different subclasses. For 
example, AREB3 assigned to ABA signaling acts partially re-
dundantly with FD and FDP in promoting the floral transition 
(Martignago et al., 2023), whereas mutants for FD and FDP 
show reduced ABA sensitivity during seed germination as well 
as flowering (Martignago et al., 2020; Romera-Branchat et al., 
2020).

Group A bZIPs mediate ABA responses 
and control seed traits and bud dormancy

Seed germination is the first developmental transition in the 
growth of flowering plants and is precisely timed by seasonal 
and environmental cues. Seed germination can be prevented 
by dormancy, which occurs when environmental conditions 
are unsuitable for seedling survival. A central endogenous 
pathway regulating germination involves a balance between 
ABA and gibberellin (GA), with ABA preventing premature 
germination in harsh environmental conditions. In addition, 
other phytohormones such as brassinosteroids, cytokinins, 
and jasmonate, as well as the circadian clock, stress responses 
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(Collin et al., 2021), and light stimuli converge on the group 
A bZIP ABI5 to regulate germination (Zhao et al., 2022). The 
abi5 mutant was identified because it was able to germinate in 
the presence of high concentrations of ABA (Finkelstein, 1994; 
Finkelstein and Lynch, 2000). ABA induces ABI5 transcrip-
tion and regulates ABI5 accumulation by preventing its degra-
dation (Lopez-Molina et al., 2001). ABA-activated ABI5 binds 
to ABRE sequences in its target genes (Carles et al., 2002), 
ultimately arresting seedling growth in unfavorable condi-
tions (Lopez-Molina et al., 2001, 2002; Xi et al., 2010). ABI5 
is subject to different types of post-translational modifications 
(which have been extensively reviewed), including ABA-
triggered phosphorylation (Lopez-Molina et al., 2002; Yu et 
al., 2015), which is required for ABI5 activity and its ability 
to regulate gene expression (Y. Wang et al., 2013). To con-
trol seed dormancy, ABI5 interacts genetically with the PEBP 
MOTHER OF FT AND TFL1 (MFT) in a negative feed-
back loop involved in ABA signaling. ABI5 binds to the MFT 
promoter, increasing its transcription in Arabidopsis embryos, 
which is also promoted by ABA. In turn, MFT represses ABI5 
expression and ABA signaling in a pathway which has yet to 
be fully elucidated (Xi et al., 2010), involving GA, light sig-
nals, and circadian clock genes (Xi et al., 2010; Footitt et al., 
2017; Vaistij et al., 2018). In the early stages of seed devel-
opment, ABI5 interacts with a second PEBP, TERMINAL 
FLOWER 1 (TFL1), which stabilizes ABI5 and regulates 
endosperm cellularization (Zhang et al., 2020). In rice, the 
ABA-inducible ABI5 homolog OsABI5/OREB1/OsbZIP10 
(Zou et al., 2008) forms a FAC-like complex with the MFT 
homolog MFT2 and the monocot-specific 14-3-3 protein 
GF14h (Yoshida et al., 2022). The transcriptional activity of 
OsABI5 depends on the recruitment of GF14h–OsMFT2 
to the nucleus to form a trimeric complex that attenuates 
seed germination, whereas GF14h suppresses ABA signaling 
by reducing OsABI5 transcriptional activity in the absence of 
OsMFT2 (Yoshida et al., 2022). Other subgroup I rice homo-
logs, such as OsbZIP23, OsbZIP66/TRAB1, and OsbZIP72, 
also interacted with OsMFT2, highlighting redundancy 
in ABA-dependent repression of seed germination in rice 
(Song et al., 2020). In wheat, at least three ABI5 homologs are 
expressed in seeds or seedlings: TaABF1 (Johnson et al., 2002), 
the drought- and ABA-inducible Wabi5 (Kobayashi et al., 
2008), and TaABI5 (Zhou et al., 2017), with the latter increas-
ing ABA sensitivity and inhibiting germination when heter-
ologously overexpressed in Arabidopsis (Utsugi et al., 2020). A 
wheat seed-specific MFT homolog is involved in seed dor-
mancy and germination, but the association with bZIPs was 
not investigated (Nakamura et al., 2011). These observations 
suggest that FAC-like complexes formed by ABI5 and PEBPs 
have important roles in seed germination.

Similar to seed dormancy, bud dormancy—an adap-
tive process that allows perennial trees to survive harsh 
winter conditions—is antagonistically regulated by the hor-
mones ABA and GA (Ding et al., 2024; Sato and Yamane, 

2024; Zhao and Wang, 2024). The levels of ABA roughly 
correlate with the different phases of bud dormancy, with  
dormancy-inducing conditions triggering the accumulation 
of ABA, followed by a decline towards the release of dor-
mancy. As expected, the expression and function of genes 
related to ABA biosynthesis and signaling were also found 
to be differentially regulated during bud dormancy in many 
perennial species. A complex feedback circuit occurs between 
ABA–ABFs and the central bud dormancy regulators called 
DORMANCY-ASSOCIATED MADS-BOX (DAM) (Sato 
and Yamane, 2024; Falavigna et al., 2019). Several ABF-like 
TFs have been proposed to regulate the expression of DAM 
genes during different dormancy phases. In pear, PpyABF3 
induces PpyDAM3 and PpyDAM4 expression after dormancy 
establishment, whereas PpyABF2 can repress PpyDAM1 close 
to budbreak (Tuan et al., 2017; Yang et al., 2020, 2023). In 
addition, a heterodimer between PpyABF2 and PpyABF3 
is formed at the end of bud dormancy to inhibit PpyABF3 
binding to the PpyDAM3 promoter (Yang et al., 2020). The 
peach homolog of PpyABF2 also regulates the expression of 
DAM genes (Wang et al., 2020). Outside subgroup I bZIPs, 
FDL proteins regulate dormancy in response to photoperiod. 
In aspen, FDL1 has distinct functions, with a complex con-
sisting of FT and FDL1 mediating photoperiodic control of 
seasonal growth and an FT-independent module controlling 
adaptive responses through interaction with the homolog of 
ABI3 (Tylewicz et al., 2015; Sheng et al., 2022).

In Arabidopsis, several group A bZIPs also mediate ABA 
responses in vegetative tissues. Quadruple mutants of ABF1–
ABF4 show increased sensitivity to water deficit as a result 
of impaired expression of ABA-activated transcripts, many 
involved in osmotic stress response and tolerance (Yoshida et 
al., 2010, 2015). ABF3 mRNA peaks in the morning but also 
shows another peak of induction by ABA at midday. This pat-
tern is regulated by the circadian clock, suggesting a tight diel 
regulation of ABA transcriptional responses mediated by ABF3 
(Liang et al., 2024). In addition, EEL regulates the diurnal 
transcriptional activation of 9-cis-epoxycarotenoid dioxygenases 3 
(NCED3), encoding a rate-limiting step in ABA biosynthesis. 
EEL binds to an ABRE cis-element in the promoter of NCED3 
to increase its transcription (Baek et al., 2020). Notably, EEL 
also physically associates with GIGANTEA (GI), which is a 
plant-specific circadian clock-regulated protein involved in 
multiple environmental pathways, and GI shows binding at the 
NCED3 promoter, favoring its activation (Baek et al., 2020). 
While the precise role of GI in this transcriptional mechanism 
is still unclear, ChIP-seq meta-analyses indicate that GI and 
several ABFs significantly co-localize at promoters of genes 
that are regulated by ABA and water deficit (Siemiatkowska et 
al., 2022), suggesting that GI might be an additional factor reg-
ulating bZIP functions at specific promoters. Thus, the accu-
mulation pattern of different bZIPs could provide plants with 
ABA transcriptional responsiveness according to diel variation 
in water availability.
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Plants primarily lose water through transpiration, a process 
regulated by guard cell movements that control the opening 
and closing of stomata. ABA-induced stomatal closure is driven 
by the osmotic expansion of guard cells, which results from the 
accumulation of K+ ions transported by blue-light-responsive  
membrane H+-ATPases (Kinoshita and Shimazaki, 1999). 
Additionally, an ABA-independent, photoperiod-dependent 
module involving FT, 14-3-3 proteins, and H+-ATPases also 
plays a role in regulating stomatal movement (Kinoshita et 
al., 2011). Other photoperiodic genes acting upstream of FT, 
notably GI and CONSTANS, are also involved in stomatal 
regulation (Ando et al., 2013). Expression of FD, TFL1, and 
TWIN SISTER OF FT (TSF) has been detected in guard cells, 
leading to the hypothesis that FT induces stomatal opening via 
a pathway similar to floral induction (Kinoshita et al., 2011). 
Supporting this proposal, expression of several floral targets of 
FT/FD normally activated at the shoot apex was detected in 
guard cells (Kinoshita et al., 2011; Kimura et al., 2015; Aoki et 
al., 2019). However, the role of the FT/FD complex in regulat-
ing stomatal movement is still unclear. Beyond FD, subgroup 
I bZIPs (ABF1–ABF4) and subgroup II AREB3 and EEL are 
also expressed in leaves (Qian et al., 2019). However, no alter-
ations in stomatal opening were observed in abf2-3-4 triple 
mutants, abf1–abf4 quadruple mutants (Yoshida et al., 2015), or 
ABF2-overexpressing plants (Fujita et al., 2005). AREB3 pro-
motes the expression of Actin-depolymerizing factor 5 (ADF5), a 
cytoskeleton remodeling factor whose mutants have impaired 
ABA-induced stomatal closure (Qian et al., 2019). Still, single 
areb3-1 and double areb3-1 eel mutants do not present this phe-
notype, possibly due to redundancy with other group A bZIPs 
that can also regulate ADF5 (Qian et al., 2019), or because of 
the residual expression of the areb3-1 insertional mutant (Qian 
et al., 2019; Martignago et al., 2023). Interestingly, eel mutants 
display increased stomatal aperture under water deficit condi-
tions, suggesting that the contribution of bZIP TFs to regulate 
stomatal movement could be stress specific (Baek et al., 2020).

Molecular insights derived from ABA-
regulated bZIPs

Much of our knowledge about the molecular functions of 
group A bZIPs derives from studying subgroup I and their 
role in relaying ABA/osmotic stress-dependent transcrip-
tional reprogramming. In seedlings, water deficit/salt stress 
conditions promote the transcriptional activation of these 
bZIPs, particularly ABI5, ABF2, ABF3, and ABF4 (Fujita et 
al., 2005). Importantly, ABA triggers post-transcriptional ac-
tivation through phosphorylation at several conserved R-x-x-
S/T sites in AREB/ABFs by SNF1-related kinase 2 (SnRK2) 
protein kinases (Uno et al., 2000; Furihata et al., 2006; Fujii et 
al., 2007). These phosphorylation events have been described 
independently through MS approaches in vivo (Lopez-Molina 
et al., 2002; Furihata et al., 2006; Kline et al., 2010; P. Wang et 

al., 2013; Minkoff et al., 2015) and in vitro (Furihata et al., 2006; 
Nakashima et al., 2009; P. Wang et al., 2013).

The significance of phosphorylation on the functions of sub-
group I bZIPs was studied in protoplast transactivation assays, 
using wild-type or mutated versions of ABF2 in combination 
with a GUS (β-glucuronidase) reporter gene fused to the 77 bp 
fragment containing two ABRE motifs (Furihata et al., 2006). 
Most amino acid substitutions at various phosphorylation sites 
reduced the expression of the reporter, particularly when the 
four T/S phosphorylation sites in the C1–C4 regions were 
replaced with alanine. Conversely, substituting these sites with 
aspartate, which mimics the phosphorylated state, led to con-
stitutive GUS expression, regardless of ABA treatment. These 
results broadly point to a key role for ABA-mediated phospho-
rylation in promoting ABF2 function, although phosphoryla-
tion events at the C1–C4 domains may control distinct aspects 
of bZIP functions, including protein stability and transactiva-
tion ability.

The stabilization of bZIP proteins has been reported to re-
sult from ABA treatment, and to possibly play a major role in 
recruitment of the bZIP TFs to chromatin (Song et al., 2016; 
Liang et al., 2024). Protein stabilization is dependent on specific 
phosphorylation events at the C4 domain. Mutants of ABF1 and 
ABF3 at their C-terminus (thus depleted of their phosphoryla-
tion site located in the C4 domain) are unstable and cannot ac-
cumulate to wild-type levels in plant cells (Linden et al., 2021). 
This result was similar to the reduced stability observed in the 
yellow fluorescent protein (YFP)–abf3T451A point mutant of 
ABF3 in vivo (Sirichandra et al., 2010). In contrast, the abf3S126A 
mutant protein, lacking an ABA-regulated phosphorylation 
site in the N-terminal region, is still phosphorylated at the C4 
domain and accumulates in plant nuclei. Moreover, unlike the 
wild-type YFP–ABF3 protein, the mutant YFP–abf3T451A pro-
tein was not stabilized upon ABA treatment. Its detection and 
immunoprecipitation were only possible after application of 
MG132, a proteasome inhibitor. This suggests that phospho-
rylation at the C4 domain is important for the ABA-mediated 
stabilization of ABF3. Phosphorylation at T451 of ABF3 pro-
motes its interaction with 14-3-3 proteins, which could play a 
role in stabilizing ABF3 and/or regulating its global function. 
Accordingly, analysis of the immunoprecipitated mutant ver-
sion of YFP–abf3T451A did not reveal additional phosphoryla-
tion events at other sites in response to ABA. Considering that 
the abf3S126A mutant is still significantly phosphorylated in re-
sponse to ABA, one possibility is that phosphorylation of T451 
can prime the subsequent phosphorylation of other sites, thus 
affecting ABF3 function.

It remains unclear whether the role of C4 phosphorylation 
in mediating ABF1/2/3 protein stability applies to all group A 
bZIPs, as other regulatory mechanisms may be involved. For 
instance, the abi5ΔC4 mutant was degraded more slowly than 
the full-length ABI5, suggesting that the role of the C-terminal 
region in protein stabilization is not conserved (Liu and 
Stone, 2013). Interestingly, the formation of the TFL1–ABI5 
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complex plays a crucial role in promoting ABI5 stability, par-
ticularly in regulating endosperm cellularization (Zhang et al., 
2020). Moreover, while generally unstable, overexpression of 
abf1ΔC4 could still cause delayed germination. This effect was 
less pronounced compared with the wild type, suggesting that 
ABF1 retains partial activity without its C-terminal phos-
phorylatable residues (Linden et al., 2021). This observation 
could also explain why the mutant abf2S413A can transactivate 
the ABRE-regulated reporter in protoplast assays similarly to 
the wild-type ABF2 (Furihata et al., 2006). Conversely, when 
expressed under native promoter conditions, AREB3 mutant 
proteins lacking the SAP motif were not active in promoting 
flowering (Martignago et al., 2023), supporting a key role for 
the C4 region—and possibly for the phosphorylatable amino 
acid encoded in its SAP motif. At least qualitatively, areb3ΔSAP 
proteins were still detectable in plant nuclei, unlike abf3T451A. 
However, a direct comparison to assess stability would require 
more investigations.

Protein destabilization is unlikely to account for the reduced 
transactivation assays of other phosphonull mutants of ABF2 in 
the N-terminal portion of the proteins (Furihata et al., 2006). 
Moreover, a deletion of 60 amino acids (referred to as region 
P) from the N-terminus decreased GUS expression with or 
without exogenous ABA. This region possibly confers transac-
tivation potential to ABF2, a finding also supported by recent 
efforts aimed to systematically map Arabidopsis TF transac-
tivation domains, including most group A bZIPs (Morffy et 
al., 2024). Moreover, overexpression of a chimeric version of 
ABF2 (referred to as areb1ΔQT, consisting of the N-terminal 
transactivation domain and the C-terminal DNA-binding 
and C4 domains of ABF2) showed constitutive activation of 
ABF2 targets normally activated by ABA (Fujita et al., 2005). 
Because the areb1ΔQT phenotype and activity are still enhanced 
by water deficit and ABA applications, ABA could still influ-
ence other aspects of this protein’s functions. While much re-
search has focused on the molecular aspects of the function 
and stability of bZIPs in relation to DNA binding, the reg-
ulation of transcription itself remains less clearly understood. 
Some insights come from the natural diversity observed in the 
ABF2 N-terminal domain (Des Marais et al., 2015). Among 
238 Arabidopsis accessions sampled from diverse geographic 
regions, two predominant haplotypes of the ABF2 gene were 
identified: the reference Col-0 type and the Wassilewskija (Ws) 
type. The Ws-type allele contains small insertions and poly-
morphisms causing extra amino acid additions or changes in 
the N-terminal domain protein sequence which could alter 
its transcriptional activity. Complementation of abf2 loss-
of-function mutants with either the Col-0- or Ws-derived 
alleles, followed by RNA-seq analysis, revealed distinct allelic 
effects on genome-wide expression levels under well-watered 
but not under water deficit conditions. Thus, the Ws-derived 
ABF2 allele could play a role in environmental adaptation, by 
shaping specific gene expression patterns in water-abundant 
environments.

Group A bZIPs involved in flowering and 
differentiation

Flowering time in plants must align with the most favorable 
season for reproductive success, which is partly achieved by 
sensing changes in day length (photoperiod). These changes 
are detected in the leaves, triggering the production of a sys-
temic signal known as florigen, which induces flowering at the 
shoot apical meristem (SAM). PEBPs have been identified as 
the main components of the florigen signal. Florigen signaling 
occurs in three stages: photoperiodic and environmental reg-
ulation of its production in the leaf vasculature (Takagi et al., 
2023); its transport to the SAM (Liu et al., 2020); and its role 
in regulating gene expression to promote flowering. The first 
two stages have been extensively reviewed (Liu et al., 2013; 
Putterill and Varkonyi-Gasic, 2016; Colleoni et al., 2024; Maple 
et al., 2024). This discussion will focus on the role of group A 
bZIPs. These proteins, together with PEBPs, initiate the tran-
scriptional changes that trigger floral transition and may also 
regulate other developmental transitions.

The contribution of FD to florigen signaling was high-
lighted in multiple studies employing genetics and suppressor 
screens (Koornneef et al., 1991; Abe et al., 2005) or yeast-based 
assays for PEBP interactors (Wigge et al., 2005). Collectively, 
these studies in Arabidopsis revealed that FD function was lim-
iting for FT signaling at the shoot apex. In one possible model, 
the expression of FD at the SAM could offer FT a spatial coor-
dinate for the activation of floral genes (Wigge et al., 2005; Abe 
et al., 2019). Indeed, ChIP-seq confirmed FD binding to floral 
integrators such as SUPPRESSOR OF OVEREXPRESSION 
OF CONSTANS 1 (SOC1) and FRUITFULL (FUL), as well 
as floral meristem identity genes such as AP1 and LEAFY 
(LFY) (Collani et al., 2019; Romera-Branchat et al., 2020; Zhu 
et al., 2021). Interestingly, FDP seems to be more specialized 
in binding to genes involved in ABA responses, some of which 
are also bound by FD. However, while fdp single mutants 
weakly regulate flowering, the pyramiding of fdp, areb3, and fd 
aggravates the late-flowering phenotype of fd single mutants 
(Jaeger et al., 2013; Romera-Branchat et al., 2020; Martignago 
et al., 2023). In tomato, SUPPRESSOR OF SELF-PRUNING 
(SSP), a homolog of FD, is a regulator of flowering and mer-
istem determinacy (Park et al., 2014), and its paralog SSP2 has 
partially redundant roles (Glaus et al., 2025). Notably, a delete-
rious mutation in SSP2 was prevalent in domesticated germ-
plasm, and genome editing was used to repair this mutation, 
which resulted in desirable traits such as compact growth and 
early fruit yield (Glaus et al., 2025). However, in rice, no re-
dundancy was observed between OsFD1 and OsFD4, because 
osfd1 or osfd4 single mutants showed delayed flowering, but no 
further delay in flowering was observed in osfd1 osfd4 double 
mutants (Taoka et al., 2011; Cerise et al., 2021). Nevertheless, 
OsbZIP65/OsFD7 is an AREB3 homolog that can interact 
with PEBPs and 14-3-3s, and is also involved in floral transi-
tion (Kaur et al., 2021), which suggests an intricate network 
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of group A bZIP TFs capable of transducing florigen signals at 
the rice SAM. Thus, although different subgroups of group A 
bZIPs have developed distinct functional and molecular pref-
erences, their selectivity for physiological processes is likely 
to be more nuanced. In some cases, compensatory expression 
mechanisms among related bZIPs may enhance the activation 
of specific bZIPs at higher levels or in different tissues when a 
homolog is mutated. AREB3 levels are significantly increased 
at the shoot of fd mutants, possibly reducing the severity of 
their late-flowering phenotype (Martignago et al., 2023). Thus, 
compensatory regulation may complicate our understanding 
of the contribution of individual bZIPs to particular develop-
mental processes. In most cases, however, the regulatory role of 
flowering time bZIPs in flowering-unrelated molecular pro-
cesses cannot be explained in terms of formation of a specific 
FAC. For example, FD and FDP are also involved in ABA-
regulated seed germination (Romera-Branchat et al., 2020), 
whereas stress-related bZIPs are also flowering time regulators 
in leaves under drought stress (Hwang et al., 2019).

Independent evidence from Arabidopsis and rice demon-
strates that the key florigen proteins, FT and Hd3a, respectively, 
regulate flowering by driving transcriptional reorganization 
(Taoka et al., 2011; Abe et al., 2019). Notably, another set of 
PEBPs has evolved anti-florigenic functions, antagonizing flo-
rigens at the same regulated targets (Goretti et al., 2020; Zhu et 
al., 2020). The best-characterized anti-florigenic PEBP gene in 
Arabidopsis is TFL1 (Bradley et al., 1997). FT and TFL1 share 
a high degree of sequence homology, and specific mutations 
are sufficient to convert FT into a TFL1 mimic (Hanzawa et 
al., 2005; Ho and Weigel, 2014). This result strongly suggests 
that the mode of action of TFL1 might require the forma-
tion of a complex with FD, in a similar manner to that of the 
FAC. Genetic interaction studies showed that fd is largely ep-
istatic to tfl1 mutations (Hanano and Goto, 2011; Jaeger et al., 
2013; Cerise et al., 2023). TFL1 co-localizes with FD below 
the meristem during vegetative development, and at the tip of 
the meristem after floral transition (Cerise et al., 2023). This 
dynamic accumulation of TFL1 during development might be 
related to its dual regulatory role in repression of floral tran-
sition and maintenance of inflorescence meristem indetermi-
nacy. In agreement with this, TFL1 can counteract florigen 
signals in the nucleus (Hanano and Goto, 2011; Goretti et al., 
2020; Zhu et al., 2020), influencing SAM fate via short-range 
cell-to-cell movement (Conti and Bradley, 2007; Goretti et al., 
2020). A general model thus emerged where florigenic (e.g. 
FT) or anti-florigenic (e.g. TFL1) proteins are recruited into 
transcriptional complexes at target genes by the 14-3-3 protein 
bound to the C-terminus of a group A bZIP and, depending 
on which PEBPs are incorporated, different regulatory out-
comes occur (Taoka et al., 2013; Lifschitz et al., 2014; Zhu et al., 
2021). Consistent with this idea, mutations in these bZIPs lead 
to reduced/impaired florigen/anti-florigen-mediated tran-
scriptional reprogramming, highlighting their key role in the 
signaling process (Jaeger et al., 2013; Cerise et al., 2023).

Potato (Solanum tuberosum) provides an interesting orga-
nogenesis model, where flowering is induced by the FT-like 
florigen SELF-PRUNING 3D (StSP3D) in the shoot apex 
whereas tuberization is promoted by its paralog StSP6A in 
stolons (Navarro et al., 2011). The closest FD homolog in po-
tato, StFD-like 1 (StFDL1), is encoded by two homoeologous 
genes in the tetraploid potato genome and has been studied 
mainly in the context of tuberization. StFDL1 is expressed 
in roots and developing stolons (Teo et al., 2017). StFDL1a 
and b interact with 14-3-3 proteins through their SAP motif 
and form a FAC-like complex called the tuberization activa-
tion complex (TAC) with StSP6A. RNAi StFDL1-impaired 
plants show delayed tuberization. Another FD homolog, StFD, 
is mainly expressed in stems and it is probably not involved in 
this process (Teo et al., 2017). However, as seen in flowering in 
Arabidopsis, other potato group A bZIPs act redundantly with 
StFDL1. The ABI5 potato homolog StABI5-like 1 (StABL1) 
can bind StSP3D and StSP6A via 14-3-3 to promote flow-
ering and tuberization (Jing et al., 2022). StABL1 is probably a 
GA/ABA integrator in both pathways (Sun et al., 2024), while 
StABL2, carrying an R-S/T-X-T/S-G-P C-terminal motif 
like Arabidopsis ABF1–ABF4, has not been characterized yet 
(Jing et al., 2022). A recent review (Mathura et al., 2024) covers 
in detail the molecular and morphological aspects of tuberiza-
tion. In onion, FT homologs control bulb formation, but the 
involvement of 14-3-3, bZIPs, or a FAC-like complex has only 
been proposed (Lee et al., 2013).

In summary, despite the evolutionary conservation and em-
pirical validation across various plant species, significant gaps 
persist in our understanding of the absolute necessity of bZIPs 
in all aspects of florigen signaling, their role in mediating di-
verse signals, and their specificity in recognizing different DNA 
motifs.

How do bZIP TFs and PEBPs interact?

FD-like proteins (subgroup IV) from various species require 
phosphorylation at a specific residue in their SAP motif for 
proper function (Fig. 1B; Table 1). Genetic, molecular, and 
biochemical studies have demonstrated the significance of 
the SAP motif in facilitating the formation of higher order 
complexes with PEBPs and 14-3-3 proteins (Table 1). In 
Arabidopsis, the PEBP family can be divided into floral 
inducers such as FT and TSF, floral repressors such as TFL1, 
Arabidopsis CENTRORADIALIS (ATC), and BROTHER 
OF FT AND TFL1 (BFT), and seed germination regulators 
such as MFT (Moraes et al., 2019). 14-3-3 proteins belong to 
a group of phosphoamino acid-binding proteins that regulate 
the activity of their client proteins in diverse ways, mostly by 
exerting chaperone-like functions (Huang et al., 2022).

Among these interactions, the FT–14-3-3–FD complex is 
the most extensively characterized. This interaction occurs 
in the corpus region of the SAM, as shown by improved 
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bimolecular fluorescence complementation (BiFC) using 
transgenic Arabidopsis plants expressing FT from a heat-shock 
promoter (Abe et al., 2019). Yeast two-hybrid (Y2H) assays and 
EMSAs suggested that a conserved phosphoamino acid site of 
FD (T282) in the SAP motif mediates the FD–FT interac-
tion (Abe et al., 2005; Wigge et al., 2005). Two SAM-expressed  
calcium-dependent protein kinases (CDPKs), CPK6 and 
CPK33, were proposed to phosphorylate FD at T282 
(Kawamoto et al., 2015). In agreement, a non-phosphorylatable 
version of the FD protein (fdT282A, threonine-to-alanine sub-
stitution) did not rescue the late-flowering phenotype of fd 
mutants (Collani et al., 2019). A study in rice using several in 
vitro and in planta assays shed light on the mechanistic basis of 
the importance of phosphorylation for the interaction between 
FD and FT (Taoka et al., 2011). Non-phosphorylatable SAP 
motif versions of OsFD1 (Osfd1S192A) failed to interact with 

Hd3a and with GF14c, a 14-3-3 protein. Notably, heterolo-
gous assays indicated widespread interactions between 14-3-
3s and several OsFD-like TFs as well as other group A bZIPs 
(Table 1; Tsuji et al., 2013; Cerise et al., 2021; Kaur et al., 2021; 
He et al., 2022; Yoshida et al., 2022). Protein crystallization of 
the complete 14-3-3 protein, a truncated Hd3a protein lacking 
its C-terminus, and nine amino acids of the C-terminus of 
OsFD1 revealed a hexameric complex that was named FAC 
(Taoka et al., 2011). In this model, two Hd3a monomers bind 
to the C-terminus of dimeric GF14c, forming two positively 
charged pockets to which two OsFD1 TFs phosphorylated at 
their C-terminus bind (Fig. 2A). The FAC exerts its function 
in the nucleus, despite the results of tobacco BiFC assays indi-
cating that the initial interaction between Hd3a and 14-3-3 
might occur in the cytoplasm. In tomato, mutant alleles of an 
FD-like gene disrupting the C4-encoded domain failed to 

Table 1.  List of experimentally determined interactions between putative FAC components

Group A bZIP PEBP 14-3-3 Species Method Reference

FD FT – Arabidopsis thaliana Y2H, in vitro pull-down, BiFC Abe et al. (2005)
FD, FDP FT, TFL1 – Y2H
FD, FDP FT, TFL1 – Arabidopsis thaliana Y2H Wigge et al. (2005)
FD, FDP FT, TSF – Arabidopsis thaliana Y2H Jang et al. (2009)
ABF3 – GRF4 Arabidopsis thaliana In vitro pull-down Sirichandra et al. (2010)
OsFD1 Hd3a GF14b Oryza sativa Y2H, in vitro pull-down, 

EMSA, BiFC
Taoka et al. (2011)

FD, FDP FT, TFL1 – Arabidopsis thaliana BiFC Hanano and Goto 
(2011)

OsFD1, OsFD2, OsFD3 Hd3a GF14b Oryza sativa Y2H, BiFC Tsuji et al. (2013)
FD FT, BFT – Arabidopsis thaliana Y2H, BiFC, in vitro pull-down Ryu et al. (2014)
FD – GRF3, GRF4 Arabidopsis thaliana Y2H Kawamoto et al. (2015)
OsFD1 Hd3a, RFT1, RCN1, 

RCN2
– Oryza sativa Y2H Jang et al. (2017)

OsFD3 – GF14c Oryza sativa Y2H Brambilla et al. (2017)
OsFD1 RCN3 GF14b Oryza sativa BiFC, in vitro pull-down Kaneko-Suzuki et al. 

(2018)
FD FT – Arabidopsis thaliana Improved BiFC Abe et al. (2019)
FD FT, TFL1 GRF7 Arabidopsis thaliana EMSA Collani et al. (2019)
OsFD1 Hd3a, RFT1 GF14a, GF14b, GF14c, 

GF14d, GF14e, GF14f
Oryza sativa Y2H Cerise et al. (2021)

OsFD3 Hd3a, RFT1 – Y2H
OsFD4 RFT1 GF14a, GF14b, GF14c, 

GF14d, GF14e, GF14f
Y2H, BiFC

OsbZIP23, OsbZIP66/
TRAB1, OsbZIP72

OsMFT2 – Oryza sativa Y2H, in vitro pull-down, BiFC Song et al. (2020)

ABI5/DPBF1 TFL1 – Arabidopsis thaliana In vivo Co-IP, in vitro pull-
down

Zhang et al. (2020)

OsbZIP66/TRAB1 OsMFT1 – Oryza sativa In vivo Co-IP, Y2H, in vitro 
pull-down, BiFC

Chen et al. (2021)

OsFD7 Hd3a, RFT1, OsFTL1 GF14b, GF14c, GF14d Oryza sativa Y2H, in vitro pull-down, FLIM-
FRET

Kaur et al. (2021)

OsFD1 RFT1 GF14c Oryza sativa In vitro pull-down Peng et al. (2021)
OsABI5/OREB1 OsMFT2 GF14h Oryza sativa Y2H, BiFC, in vivo Co-IP Yoshida et al. (2022)
OsbZIP66/TRAB1 – GF14h Y2H
OsFD2 – GF14f Oryza sativa Y2H, BiFC He et al. (2022)
All group A bZIPs FT, TFL1 – Arabidopsis thaliana Y2H Martignago et al. (2023)
FD, AREB3/DPBF3 FT, TFL1 – Arabidopsis thaliana Y2H, tobacco Co-IP, BiFC
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stably retain the FAC in the nucleus, as these FD-like mutated 
proteins could not interact with 14-3-3s (Park et al., 2014). 
However, in vitro experiments showed that Arabidopsis FD and 
rice FD-like proteins can interact with florigen proteins inde-
pendently of 14-3-3 proteins (Abe et al., 2005; Brambilla et al., 
2017). Similarly, fdT282A can be immunoprecipitated with FT 
in tobacco assays (Martignago et al., 2023). The discrepancies 
between these experiments may be explained by their heterol-
ogous nature. Nevertheless, FAC activity depends on FD-like 
proteins for the recognition of DNA-binding sites, and it is the 
recruitment of FT-like proteins that results in the activation of 
gene transcription.

FT and TFL1 have been proposed to antagonistically regu-
late floral transition and meristem determinacy of the SAM. 
A Y2H screen in tomato was the first study to identify inter-
actions between FD-like and TFL1-like proteins (Pnueli et 
al., 2001). Similarly, Arabidopsis FD and FDP interacted with 
TFL1 in Y2H and tobacco BiFC experiments (Abe et al., 2005; 
Wigge et al., 2005; Jang et al., 2009; Hanano and Goto, 2011; 
Martignago et al., 2023). It was hypothesized that the dual role 
of FD as an activator or repressor of gene expression is re-
lated to its interaction with FT or TFL1, respectively (Jaeger et 
al., 2013; Ho and Weigel, 2014). ChIP-seq assays demonstrated 
that the TFL1–FD interaction is required for TFL1 recruitment 
to DNA, and that expression of FT from a steroid-inducible 
promoter resulted in the encoded FT competing with TFL1 
from FD for binding to common target loci (Zhu et al., 2020). 
A similar mechanism has been proposed for the regulation of 
flowering under high salinity, in which BFT delays flowering 
by competing with FT for FD binding to regulate the ex-
pression of AP1 (Yoo et al., 2010; Ryu et al., 2014). In rice, 
the TFL1-like proteins RICE CENTRORADIALIS (RCN) 
were shown to antagonize florigen activity and to regulate in-
florescence development by competing with Hd3a for 14-3-3 
binding, thereby leading to gene repression (Kaneko-Suzuki et 
al., 2018). The RCN–14-3-3–OsFD1 interaction was named 
florigen repression complex (FRC), and the balance between 
FAC and FRC formation is believed to be a general mechanism 
regulating plant reproductive development. In agreement with 
this, the formation of similar flowering activation or repression 
complexes has been observed in many species (Lifschitz et al., 
2014). Moreover, the occurrence of natural genetic variation 
in the florigen pathway resulted in advantageous traits during 
crop domestication (Eshed and Lippman, 2019). However, the 
in vivo formation of such complexes, particularly in their native 
expression domain, remains to be demonstrated.

All Arabidopsis group A bZIP TFs have the potential to in-
teract with FT and TFL1 based on Y2H assays (Martignago 
et al., 2023). The remarkable conservation of PEBP binding 
ability across structurally similar but evolutionarily divergent 
bZIPs suggests the existence of a shared, yet adaptable, bZIP–
PEBP molecular framework that may be involved in regulating 
diverse biological processes. TFL1 interacts in vivo and stabi-
lizes ABI5 (Zhang et al., 2020). A SAP-related motif is present 

in the C-terminus of ABI5 (Fig. 1), which could mediate 
the interaction with TFL1 in a similar manner to the FRC. 
However, it is unclear whether this interaction is facilitated by 
14-3-3 proteins or by ABI5 phosphorylation. In rice, interac-
tion studies [Y2H, BiFC, and co-immunoprecipitation (Co-
IP)] supported a model in which the transcriptional activity 
of OsABI5 depends on the recruitment of GF14h–OsMFT2 
to the nucleus (Yoshida et al., 2022). Non-phosphorylatable 
SAP motif versions of OsABI5 (Osabi5S385A) weakened these 
protein–protein interactions and the relocation of the complex 
to the nucleus. OsbZIP66 was shown to interact in vivo with 
OsMFT1 in rice leaves, with this complex regulating DNA 
binding affinity on drought-related genes and thereby enhanc-
ing drought resistance (Chen et al., 2021). FAC-like complexes 
appear to be conserved in other monocots: in barley, four 
subgroup I bZIP TFs named HvABF1, HvABF2, HvABF3, 
and the seed-specific HvABI5 interacted with barley 14-3-3 
proteins in Y2H and in vitro far-western assays. SAP mutated/
truncated versions of HvABI5 showed reduced trans-activation 
activity on a synthetic promoter (Schoonheim et al., 2007).

bZIP–DNA interactions

The bZIP TFs bind to DNA as homo- or heterodimers (Fig. 
2), providing enormous regulatory flexibility in target site se-
lection. The N-terminal half of the bZIP domain contains an 
α-helix that contacts DNA, whereas its C-terminal half is re-
sponsible for dimerization and contains periodic repetitions 
of leucine residues that form a parallel coiled-coil structure—
hence the leucine zipper name (Landschulz et al., 1988). The 
leucine zipper is formed by a repeated series of seven amino 
acids (heptad) forming a helical turn, with the leucine usually 
in the fourth position of the heptad (Moitra et al., 1997). The 
dimerization specificity is determined by the composition of 
this heptad (Deppmann et al., 2004). In animal systems, bZIP 
heterodimers target DNA-binding motifs that are not bound 
by either of the interacting partners (Rodríguez-Martínez et 
al., 2017). In Arabidopsis, the effects of heterodimerization in 
altering DNA binding profiles have been extensively studied 
for group C/S1 using in vitro techniques (Mair et al., 2015; 
Pedrotti et al., 2018; Li et al., 2023), but the epigenetic and bio-
logical context in which the heterodimers might form and thus 
bind to DNA is not currently addressed by these techniques. 
Despite the potential role of homo- versus heterodimerization 
in affecting DNA recognition properties and repressive/acti-
vating regulatory functions, little information is available for 
group A bZIPs in plants.

Heterodimerization of group A bZIPs was mainly explored 
using in vitro assays or heterologous systems. In a Y2H assay, 
subgroup I ABF1 and ABF3 could heterodimerize with ABF1–
ABF4, and ABF1 also bound to ABI5 and DPBF2 (Lynch 
et al., 2012). EMSAs using ABA-regulated DNA sequences 
showed that ABI5, AREB3, and EEL can all heterodimerize 
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(Bensmihen et al., 2002; Kim et al., 2002), while no DNA 
binding was found for the ABI5–DPBF2 heterodimer (Kim 
et al., 2002). In the most widely accepted FAC model, OsFD1 
operates as a homodimer at the plant SAM. However, only the 
last nine C-terminal amino acids, comprising the SAP motif, 
were used for crystal structure analysis, with no direct infor-
mation about the leucine zipper motif (Taoka et al., 2011). 
OsFD1 and subgroup II AREB3/EEL homologs OsbZIP42/
HBF1 and OsbZIP9/HBF2 co-localize during development 
and can interact with PEBPs and 14-3-3 proteins, but het-
erodimerization among these bZIPs was not detected by Y2H 
assays (Brambilla et al., 2017). Y2H and BiFC assays showed 
that OsFD1 cannot heterodimerize with OsbZIP24–OsFD3 
and OsbZIP69–OsFD4 (Brambilla et al., 2017; Cerise et al., 
2021). However, DNA affinity purification-sequencing (DAP-
seq) of OsFD1 and OsFD4 identified hundreds of putative tar-
gets shared by both bZIPs, in addition to many independently 
bound genes (Cerise et al., 2021). Despite sharing identical 
core DNA-binding sites, the spacing between tandem motifs 
was different for each TF, which suggests distinct and specific 
binding syntaxes. Moreover, OsFD4 and OsFD3 can form 
homo- and heterodimers (Brambilla et al., 2017; Cerise et al., 
2021), and their combinatorial arrangement might define dif-
ferent modes of gene regulation. Similarly, OsbZIP65–OsFD7 
homodimerization was detected using different assays (Kaur et 
al., 2021). It is possible that all Arabidopsis group A bZIPs can 
homodimerize, even if DNA binding might be required to 
stabilize the dimeric structure due to a relatively short leucine 
zipper domain (Deppmann et al., 2004). Group A bZIPs can 
also heterodimerize in vivo, and many of the group A bZIPs 
have redundant functions and partly overlapping expression 
domains. For instance, FD, FDP, and AREB3 are all expressed 
at the SAM during floral transition (Romera-Branchat et al., 
2020; Martignago et al., 2023). ChIP-seq analyses found FD 
and FDP sharing several DNA-binding sites, which might in-
dicate some degree of heterodimerization, but genetic interac-
tions suggested otherwise (Romera-Branchat et al., 2020). In 
tomato, DAP-seq of SSP, the ancestral SSP2, and the domesti-
cated SSP2 showed that SSP and the ancestral SSP2 share most 
of their putative target genes, while the domesticated variant is 
impaired in its ability to bind these targets (Glaus et al., 2025). 
Phylogenetic analyses indicate that paralogs of SSP and FD 
appeared independently after the divergence of the Solanaceae 
and Brassicaceae lineages, with the domesticated SSP2 impair-
ing the genetic redundancy between SSP and SSP2. Thus, de-
spite the growing information about the genetic interaction of 
group A bZIPs in plants, the effect on DNA binding specificity 
and the molecular significance of heterodimerization are cur-
rently unclear. Applying methods such as sequential DAP-seq 
or double DAP-seq, which maps heterodimer binding sites on 
endogenous genomic DNA (Lai et al., 2020; Li et al., 2023), 
would help resolve these issues.

ChIP-seq studies (utilizing GFP antibodies targeting different 
GFP–bZIP fusion proteins) confirm an over-representation of 

G-box (CACGTG) and ABRE (ACGTGT/GC) motifs at the 
in vivo binding sites of FD/FDP and the ABF clade TFs, respec-
tively (Song et al., 2016; Collani et al., 2019; Romera-Branchat 
et al., 2020). Interestingly, Assay for Transposase-Accessible 
Chromatin with sequencing (ATAC-seq) revealed an over-
representation for ABF1–ABF4- and ABI5-binding sites in 
ABA-induced accessible chromatin regions (ACRs) (Seller and 
Schroeder, 2023). In guard cells, abf1–abf4 quadruple mutants 
were strongly impaired in ABA-induced chromatin opening, 
and the corresponding ABF-regulated ACRs were strongly 
enriched for ABREs. These ABA-regulated ACRs were also 
preferentially associated with ABA-induced transcriptional ac-
tivation of neighboring genes, suggesting that the ABFs can act 
as strong determinants of ABA-triggered chromatin opening 
and gene transcriptional activation. This information is highly 
relevant to the broader question of how bZIPs can select their 
DNA-binding sites based on genomic context, as suggested 
by the analysis/modeling of DAP-seq and gene expression 
datasets (O’Malley et al., 2016; Ezer et al., 2017), and by the 
comparison of binding preferences in vivo and in vitro (Song 
et al., 2016). Therefore, it would be intriguing to explore fur-
ther whether ABFs function as pioneer TFs by binding to their 
DNA target sequences located in inaccessible chromatin re-
gions (Seller and Schroeder, 2023), and to determine if they 
require accessory proteins to perform this role. In this context, 
PEBPs are unlikely to influence DNA binding selectivity, al-
though they could confer stability of the bZIP–DNA complex 
(Kaneko-Suzuki et al., 2018; Collani et al., 2019).

Perspectives

The subsets of group A bZIPs involved in ABA-mediated 
responses or floral induction have largely been studied inde-
pendently, and emphasis has been placed on different aspects of 
their function. Nevertheless, they contain conserved domains 
along their entire length, and recent work has identified paral-
lels in their regulation and activity. For example, the PEBPs 
FT and TFL1 were originally identified as interacting with the 
group A bZIPs FD and FDP at the C4 region and being floral 
regulators, but more recently TFL1 and the related PEBP MFT 
were also found to associate with the ABA-regulated bZIP 
ABI5 during seed development. These results together with the 
conservation of the C4 region pose the question of whether all 
group A bZIPs form transcriptional complexes related to the 
FAC, comprising two molecules each of the bZIP, the 14-3-
3, and the PEBP. If all group A bZIPs form such complexes, 
the biochemical functions of the 14-3-3 and the PEBP within 
each of them remain to be fully understood as they have been 
variously described to affect protein stability or transcriptional 
activation ability of different group A bZIPs. In particular, the 
basis of specificity between members of the group A bZIP and 
PEBP families is unclear. Similarly, the biological distinction 
between ABA group A bZIPs and those involved in flowering 
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at the shoot apex (FD and FDP) has also been weakened by 
the observation that AREB3, a classical ABA bZIP, is expressed 
at the shoot apex and can partially compensate for FD activity 
in fd mutants. This result clearly demonstrates shared func-
tions across subgroups. Another unexplored feature of these 
TFs is the extent to which heterodimerization can occur. All 
bZIPs bind DNA in a dimeric structure, and heterodimeriza-
tion across groups can create novel biological specificities. In 
the future, whether the formation of heterodimers across the 
group A subgroups represents a way in which ABA signaling 
and floral induction are integrated should be explored.

The binding sites for 14-3-3 and PEBPs in the C4 domain 
as well as the bZIP domain are located at the C-terminus of all 
group A bZIPs, but the functions of their long N-terminal re-
gion are less clear. In the ABA bZIPs, the N-terminus is phos-
phorylated in response to ABA, and this was shown to allow 
transcriptional activation. However, FD and FDP lack these 
phosphorylation sites, and in their case recruitment of FT into 
the FAC was proposed to be required to activate transcription. 
This distinction in the mechanisms underlying transcriptional 
activation ability highlights the need for a fuller understanding 
of the functions of the N-termini of all of these proteins, and 
for an improved understanding of the biochemical functions of 
the PEBPs. The mechanisms of florigen signaling and of ABA 
perception are two long-standing questions in plant biology 
that have converged on the group A bZIPs, and future studies 
on this fascinating family will be likely to reveal further impor-
tant commonalities and differences in these pathways.
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