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Alzheimer’s disease (AD) is characterized in part
by the accumulation and spread of amyloid beta
proteins in the brain. Recent experiments have
revealed that amyloid beta oligomers induce
microvascular mural cells to contract, thereby
constricting capillaries and increasing resistance to
blood flow. Conversely, hypoperfusion promotes
amyloid beta production and hinders its clearance,
hence creating a pathogenic positive feedback
loop. Here, we develop a mathematical model that
combines protein–capillary interaction with the
prion-like behaviour of amyloid beta. For sufficiently
strong interaction, we find that healthy and diseased
steady states, both stable, can exist simultaneously,
implying that pathogenic protein seeds must exceed a
critical threshold in order to trigger disease outbreak.
We explore the consequences of this bistability for
disease propagation through the brain’s structural
connectome network. Finally, in a first attempt
to model the AD two-hit vascular hypothesis
mathematically, we describe how spatially localized
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deficits in blood supply, e.g. due to embolic stroke or atherosclerosis of the leptomeningeal
vessels, may trigger disease outbreak and propagation.

1. Introduction
Amyloid beta and cerebral blood flow in Alzheimer’s disease. A hallmark of Alzheimer’s
disease (AD) is the accumulation and spatial propagation of pathogenic forms of the amyloid
beta (Aβ) protein in the brain [1]. Aβ is an intrinsically disordered protein [2] and can adopt
conformational variants that assemble into abnormal aggregates, ranging in size from small
oligomers to large, amyloidogenic fibrils [3,4]. Central to the toxicity of these misfolded forms
of Aβ, as well as that of misfolded tau (τP), the other key pathogenic protein in AD, is their ability
to induce misfolding in their normally folded counterparts via a prion-like mechanism [2,5–9],
thereby giving rise to an inter-peptide infectious disease dynamics.

In addition to Aβ and τP accumulation, cerebrovascular pathology, such as cerebral amyloid
angiopathy (CAA), is present in 80% of AD cases, prompting suggestions that it may contribute
to the pathogenesis and/or aetiology of the disease [10–12]. Reduced cerebral blood flow (CBF) is
the earliest biomarker of AD [13,14], and cerebrovascular disorders such as atherosclerosis and
hypertension are established risk factors for the disease [15,16]. The cerebral vasculature has
also been proposed as a potential target for disease-modifying therapies [10,17–21]. Moreover,
in contrast to the nosology of the late twentieth century, which treated AD and vascular dementia
(VaD) as intrinsically distinct [22–25], recent years have seen the concept of a mixed pathology,
spanning a ‘spectrum from “pure” AD . . . to “pure” VaD’ [26], gain in prominence [17,26,27].

Aβ is a vasoconstrictive substance, and therefore diminishes CBF by increasing vascular
resistance [28,29]. Recently, Nortley et al. [14] established that Aβ oligomers induce pericytes
(mural cells that line the capillary bed; see figure 1b) to contract by activating the vasoconstrictor
endothelin-1 (ET-1). In addition, Cruz Hernández et al. [32] showed that capillaries become
occluded by circulating neutrophils at higher rates in AD than in health, possibly due to
endothelial inflammation resulting from Aβ-induced oxidative stress.

Conversely, hypoxia upregulates Aβ production by promoting expression of BACE1 (β-site
amyloid precursor protein (APP) cleaving enzyme 1) [33], and hypoperfusion following ischaemic
injury causes overexpression and accumulation of APP [34,35]. Hypoperfusion may also diminish
the brain’s ability to clear Aβ across the blood-brain barrier (BBB) [30,36], the major clearance
pathway of Aβ [20,37,38].

Positive feedback loop and the two-hit vascular hypothesis. A positive feedback loop between
pathogenic Aβ accumulation and cerebral hypoperfusion has been hypothesised by biologists for
twenty years (see [17, fig. 8], [14, fig. 6B], and [35, fig. 3]), consistent with the interactions described
above. Additionally, the two-hit vascular hypothesis of AD states that cerebrovascular damage
(hit 1)—due, for example, to atherosclerosis of intracranial vessels [15] or stroke [26,39]—is the
initial trigger of Aβ accumulation (hit 2) in AD [20,36,40]. Though the positive feedback loop
and the two-hit vascular hypothesis have been schematized in qualitative terms many times,
they have not, to our knowledge, been formalized as mathematical models whose dynamical
behaviours can be analysed.

Modelling of prion-like kinetics and vasculature in AD. The prion-like kinetics of Aβ,
along with other proteins involved in neurodegeneration such as τP and α-synuclein, has been
modelled mathematically for about 30 years [41–44], and with increased intensity over the past
decade [45–51]. Key themes in these more recent studies are: (i) autocatalytic conversion of normal
proteins into their pathogenic form, as discussed above, and (ii) spatial propagation of proteins,
particularly trans-synaptic transport through the brain’s structural connectome.
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Figure 1. (a) Schematic of Aβ’s prion-like kinetics and its interaction with capillary pericytes (cf. [30, fig. 3]). Normal Aβ is
cleaved from the amyloid precursor protein (APP) by BACE1 and other enzymes, and is converted to the pathogenic form through
a prion-like mechanism. Pathogenic Aβ causes levels of reactive oxygen species (ROS) and endothelin-1 (ET-1) to increase, the
latter actingonETA receptors onpericytes, causing contraction and capillary constriction. The resultingdecrease in CBFpromotes
Aβ production and inhibits its clearance. (b) Schematic of a brain capillary network, lined with pericytes (cf. [31, fig. 2]).

These models often exhibit prion-like behaviour by assuming, a priori, that the disease-free
state is inherently unstable, even to minute seeds of pathogenic proteins, therefore ensuring
that any seeding event leads inevitably to accumulation and propagation. A prominent example
is Prusiner’s heterodimer model, initially proposed for the major prion protein (PrP) [52] and
frequently employed to model Aβ kinetics [47,49,53]. In such models, disease outbreak is typically
triggered by introducing a small pathogenic protein seed at some spatial location, though the
origin of this initial seed is not usually addressed.

The role of brain vasculature in AD has received less attention from mathematical modellers
compared with the prion-like characteristics of the disease. To our knowledge, the two have not
been combined in any single model; the closest example might be Craft et al. [43], who treat
plasma as a homogeneous compartment into which Aβ is cleared. Sophisticated biophysical
models of image-derived brain capillary networks have been used to estimate the decrease in
CBF caused by Aβ-induced capillary occlusions [32], as well as to study the emergence of critical
tissue regions where Aβ clearance might be impaired due to reduced flow rates [54]. However,
these studies do not account for the prion-like kinetics of Aβ, nor do they account for the two-way
coupling of Aβ and capillary health.

Outline and approach. The goal of this paper is to bridge the gap between the prion-like
nature of Aβ on the one hand and Aβ-microvascular interaction on the other. We construct a
mathematical model that integrates (i) the prion-like kinetics of Aβ, (ii) Aβ-induced capillary
constriction, and (iii) the effects of decreased CBF on Aβ production and clearance rates. In
so doing, we formalize the long-standing positive feedback loop hypothesis cited above (see
[14,17,30] and figure 1), and uncover the implications of its integration with the prion-like
hypothesis of AD [4–9], especially for disease initiation and spatial propagation.

Our primary result in this regard is the emergence of bistability in the dynamics of Aβ-
microvascular pathology, wherein it is possible for the disease-free state to be metastable, i.e.
stable only to sufficiently small pathogenic seeds (§3). We investigate the consequences of this
bistability for the spatio-temporal disease dynamics in the human connectome network (figure 5),
uncovering several threshold phenomena relevant to disease initiation and spread (§4). Finally,
we demonstrate mathematically how a focal deficit in arterial blood supply to a region of brain
tissue can be sufficient, in the context of the mechanisms summarized in figure 1, to trigger prion-
like disease outbreak, without introducing a seed of pathogenic Aβ (figure 10), consistent with the
two-hit vascular hypothesis of AD (§5).

The model of Aβ–CBF interaction in a small region of the brain is constructed in §2, and as
far as is practicable, we aim to derive it from mechanistic biological principles, most of which
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are depicted in figure 1. Readers who wish to understand the dynamics of the model without
the details of its construction can skip to §2c. In analysing the model’s behaviour, we focus on its
qualitative properties, particularly the asymptotic behaviour of solutions (representing disease
prognosis) and the bifurcations (threshold phenomena) that illuminate the boundaries between
distinct asymptotic behaviours (for a primer on bifurcations, see appendix E in the electronic
supplementary material). Once we have analysed the dynamics of the single-region model in §3,
we proceed to analyse the spatio-temporal model on the connectome network (comprising many
brain regions connected by neuronal pathways) in §§4 and 5.

2. Model derivation for a single region

(a) The heterodimer model
For the protein kinetics of Aβ, we adopt Prusiner’s heterodimer model [52], possibly the simplest
mechanistic model of prion-like behaviour. It describes the evolution of two concentrations
over time: that of the normal form of Aβ, P, and that of its pathogenic form, P̃. The normal form
is produced endogenously from the amyloid precursor protein (APP) and is non-toxic. The
pathogenic form has a misfolded structure, which it can impart to normal Aβ proteins with which
it comes into contact (see figure 1a). This interaction gives rise to an autocatalytic process, akin to
an infectious disease, and is summarized by the chemical reaction P+ P̃→ 2P̃.

Rate equations. The rate equations of the heterodimer model are

dp
dt
=μ− λp− kpp̃−mp (2.1a)

and
dp̃
dt
= kpp̃− λ̃p̃+mp, (2.1b)

where p and p̃ denote the concentrations of P and P̃, respectively, μ is the production rate of P; λ
and λ̃ are the clearance rates of P and P̃, respectively (via the vascular and glymphatic systems, for
example); k is the catalytic conversion rate of P to P̃; and m is the rate of spontaneous conversion
(also known as non-catalytic conversion).

Because spontaneous conversion is thought to be rare and sporadic [8], i.e. m� 1, it is often
disregarded by modellers [47,55–57], i.e. m= 0. However, if m is small but positive, we will
see that equation (2.1) exhibits dynamics that are subtly different to the m= 0 case. In order to
understand these differences, we assume throughout that 0≤m� 1.

The basic reproduction number. In Prusiner’s heterodimer model,μ, λ, λ̃, k and m are constants,
and similar to models of infectious diseases, the character of the dynamics is largely determined
by a dimensionless combination of these constants, namely the basic reproduction number:

R0 = μk

λλ̃
. (2.2)

For R0 < 1−O(m), there is a stable healthy equilibrium at which p=μ/λ−O(m) and p̃=O(m).
As R0 increases through unity, a stable diseased equilibrium appears, at which p= λ̃/k−O(m)
and p̃=μ/λ̃− λ/k+O(m). If m= 0, the diseased equilibrium bifurcates through the healthy
equilibrium transcritically (marked ‘TC’ in figure 2). For positive but small m, however, an
imperfection [58, §2.3] is introduced: the diseased and healthy equilibria now belong to the same
branch, which moves away from the p̃= 0 axis without bifurcation as R0 increases through unity;
see figure 2. In short, the p̃= 0 branch of equilibria is destroyed by this perturbation in m, revealing
the structural instability of the m= 0 case.

When the heterodimer model is employed to produce disease-like behaviour, e.g.
[46–49,55,56,59], R0 must be chosen greater than unity, for otherwise, the healthy equilibrium
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Figure 2. Bifurcation diagram for Prusiner’s heterodimer model (2.1). Stable and unstable branches of equilibria are solid and
dashed, respectively (only non-negative branches are shown). ‘TC’ marks a transcritical bifurcation point. Insets: Phase portraits
of healthy (blue) and diseased (red) dynamics at R0 = 0.75 and R0 = 1.5, respectively, showing the unique positive equilibrium
at the intersection of the system’s nullclines.

is a global attractor, implying the impossibility of disease outbreak. If R0 > 1, however, then the
diseased equilibrium is a global attractor, implying the inevitability of disease outbreak [60,61].

It may be that R0 > 1 in some individuals, e.g. due to enhanced Aβ production in familial
AD caused by mutations in the APP and/or presenilin genes [62], or age-related decreases in Aβ

clearance [63,64]. Our focus here, however, is to study the possible effects of vascular damage on
Aβ dynamics, absent any other predisposition to disease such as the above. Therefore, we will
assume that R0 < 1 throughout.

The remainder of this section concerns the extension of equation (2.1) to incorporate vascular
effects: first, the influence of CBF on Aβ production and clearance rates, and second, the
vasoconstrictive and ischaemic effects of Aβ.

Sensitivity of production and clearance to hypoperfusion. When CBF falls, the production rate
of Aβ increases and its clearance rate decreases (figure 1a). We assume for simplicity that these
relationships are linear:

μ=μ0 + β(1− q), λ= λ0 − γ (1− q) and λ̃= λ̃0 − γ̃ (1− q), (2.3)

where q is the normalized CBF rate (to be defined precisely later), with q= 1 and q= 0
corresponding to normal CBF and a total collapse in CBF, respectively. In healthy conditions,
q= 1 and Aβ is produced and cleared at the base rates μ0, λ0 and λ̃0. We call β, γ and γ̃ the
(hypoperfusion-)sensitivity parameters. Prusiner’s heterodimer model (2.1) corresponds to β = γ =
γ̃ = 0. By substituting equation (2.3) into equation (2.2), we see that R0 increases in response to
decreases in q. Next, we turn to the influence of pathogenic Aβ on q.

(b) Capillary networks and cerebral blood flow
As depicted in figure 1a, (i) pathogenic Aβ causes capillary constrictions, (ii) CBF falls as a result
of capillary constrictions, and (iii) hypoperfusion influences the protein kinetics of Aβ. We have
just modelled (iii) with equation (2.3). Below, we model (i) and (ii). First, we will derive a formula
for the ‘open capillary fraction’ κ in terms of p̃; this is equation (2.7). Then we will use numerical
simulations to relate κ to the normalized CBF rate q in a simple random graph model of a brain
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capillary network. The eventual result of this subsection will then be a formula for q in terms of p̃
(equation (2.15)), thus closing the Aβ–CBF feedback loop opened by equation (2.3).

(i) Capillary constrictions due to Aβ

Pericytes contract when exposed to Aβ oligomers [14] (see §1 and figure 1). Aβ oligomers, but not
monomers, cause reactive oxygen species (ROS) to be generated in pericytes and/or endothelia,
and these ROS trigger the release of the vasoconstrictor peptide ET-1 [14].

We model these relationships as the first-order chemical reactions

∅

a1p̃−−→←−−a2
ROS and ∅

a3[ROS]−−−−−→←−−−−−a4
ET-1, (2.4)

where ∅ represents chemical species external to the model [65], p̃ denotes the concentration of
pathogenic Aβ, [ROS] denotes the concentration of ROS, and the ai parameters are rate constants.

Pericyte contraction is triggered by the binding of ET-1 to ETA receptors on pericytes, and can
be reversed by removing the Aβ oligomers [14]. Thus, we model the state of each pericyte as a
reversible reaction:

relaxed
a5[ET-1]−−−−−→←−−−−−a6

contracted. (2.5)

Because pericyte contraction occurs within minutes of Aβ exposure [14], whereas the half-life of
Aβ in vivo is approximately 8 h [66], we treat reactions (2.4) and (2.5) as quasi-static, so that the
probability of a given pericyte’s being relaxed is found to be

P(relaxed)= (1+ cp̃)−1, (2.6)

where we define the contraction ratio c := a1a3a5/a2a4a6.
We define the open capillary fraction κ as the mean fraction of capillaries that either do not host

a pericyte or host a pericyte that is relaxed. Denoting by φ ∈ (0, 1] the fraction of capillaries that
host a pericyte, we obtain

κ = 1− φ + φ · P(relaxed)= 1+ c(1− φ)p̃
1+ cp̃

. (2.7)

Therefore, κ is a decreasing function of p̃: the higher the pathogenic Aβ concentration, the lower
the (mean) open capillary fraction.

(ii) Hypoperfusion due to capillary constrictions

When capillaries are constricted (κ < 1), microvascular resistance increases, leading to
hypoperfusion (q< 1). But what is the nature of the CBF decrease in response to progressive
constrictions? For example, does q change suddenly near a critical κ , or is the decrease gradual?
Below, we pursue a mechanistic understanding of the κ–q relationship, first by constructing a
simple network model of the capillary bed and its conduction of blood, followed by a numerical
study of how the network’s hydraulic conductance (inverse of resistance) depends on the
conductances of its individual edges (capillaries).

Capillary networks and cerebral blood flow. We model the brain microvasculature as a
collection of network units, each fed by a single penetrating arteriole and drained by a single
ascending venule (figure 1b). Edges are capillaries and vertices are their junctions. Most vertices
in brain capillary networks have degree three [67]. Therefore, we follow Goirand et al. [68]
in modelling our capillary network units as degree-three random regular graphs (RRGs), the
simplest model of a degree-three network [69] (figure 3a).

We assume that all capillaries have the same conductance, which we scale to unity, thereby
neglecting the heterogeneity of vessel diameters and lengths. We also neglect the complex
rheological properties of blood in the microcirculation, e.g. the Fåhræus, Fåhræus–Lindqvist, and
phase separation effects [70]. Instead, we assume only that the flow rate into a vertex equals the
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Figure 3. Hypoperfusion due to capillary constrictions. (a) An RRG with n+ 2= 300 vertices; ψ is (normalized) pressure.
(b) Numerical study of the q–κ relationship; solid lines with circles denote normalized flow rate sample mean q with respect
to the open capillary fraction κ over 1000 numerical simulations on an RRG with n+ 2= 1000 vertices, for 100% and 70%
conductance decrease in constricted capillaries. Envelopes are interquartile ranges. Pink lines are lines of best fit on the interval
κ ∈ [0.7, 1]. ‘EMT’ indicates effective medium theory prediction (see main text). Inset: probability of non-zero CBF rate with
respect to open capillary fraction κ ; solid lines with circles indicate sample mean over 1000 numerical simulations, dark solid
line indicates formula (2.12).

flow rate out of it (Kirchhoff’s Law), and that the flow rate through a capillary is proportional to
the pressure drop across its two vertices (Ohm’s Law), a common approximation [68,71]. Later,
we will compare our results with those of more physiologically accurate models in the literature
[32,54], and will find that these simplifications do not have a marked effect on the κ–q relationship.

We choose the inlet and outlet vertices, representing the interface between the network and the
arteriole–venule pair, uniformly at random from the vertex set V= {1, 2, . . . , n+ 2}, and label the
inlet by n+ 1 and the outlet by n+ 2 without loss of generality.

Blood is driven through the network by the pressure difference Ψ between the inlet and outlet.
Denoting by ψi the fluid pressure at vertex i, we fix ψn+1 = 1 and ψn+2 = 0, thereby prescribing a
unit pressure drop across the network, i.e. Ψ = 1 (figure 3a).

Kirchhoff’s and Ohm’s Laws give rise to a linear algebraic system to be solved for the pressure
vector ψ = (ψ1,ψ2, . . . ,ψn)�. Denoting by Ninlet and Noutlet the sets of vertices neighbouring the
inlet and outlet, and by {ei} the standard basis of R

n, we obtain

Λψ =
∑

i∈Ninlet

(1− ψi)ei −
∑

j∈Noutlet

ψjej, (2.8)

where Λ is the n× n Laplacian matrix of the capillary network (excluding the inlet and outlet),

Λ= (Λij) and Λij = δij

n∑
k=1

aik − aij, (2.9)

where aij is 1 if ij is in the edge set and 0 otherwise, and δij is the Kronecker delta. Solving
equation (2.8) for ψ , we obtain the total flow rate through the network

Q0 =
∑

i∈Ninlet

(1− ψi), (2.10)

which we call the healthy CBF rate.
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Cerebral blood flow following constrictions. When edges are constricted, their corresponding
edge conductances aij decrease from 1 to some ā ∈ [0, 1), thereby changing certain entries in
the Laplacian matrix (2.9) and the solution ψ of equation (2.8). The decrease in aij following
pericyte contraction has been estimated at 70% by Nortley et al., though they note this is likely an
underestimate since it assumes Poisseuille flow, neglecting blood’s higher effective viscosity at the
capillary scale [14]. It also neglects the liability of large blood cells like neutrophils to occlude the
constricted lumen altogether [30,32], modelled as a near-100% decrease in capillary conductance
by Cruz Hernández et al. [32]. Thus, we assume that the conductance of a constricted capillary is
70–100% lower than that of an open capillary, that is, ā ∈ [0, 0.3].

Re-computing equation (2.10) after constrictions yields a CBF rate Q<Q0. We define the
normalized CBF rate as

q= Q
Q0

, (2.11)

and turn next to its dependence on the open capillary fraction κ .

Percolation and conduction. Given an open capillary fraction κ ∈ [0, 1], we assume that the
constricted capillaries are distributed uniformly at random throughout the network.

For ā= 0, i.e. 100% decrease in edge conductance, and assuming n is large, we can estimate
analytically the critical value κc below which the expected CBF rate is zero, i.e. the percolation
threshold of the network. A standard computation [72, §15] yields

P(q> 0 | κ)=
([

1−
(
κ−1 − 1

)3
]
+

)2
, (2.12)

where [X]+ denotes max{X, 0} (see figure 3b, inset), whence

κc = inf{κ : P(q> 0 | κ)> 0} = 1/2. (2.13)

To estimate E(q | κ) for κ > κc = 1/2, we resort to numerical simulations. Having generated an
RRG network with n+ 2= 1000 vertices, we replaced aij = 1 with ā= 0 in a randomly selected
proportion κ of edges, solved equation (2.8), and computed q. We repeated this procedure 1000
times for each κ in a range of values between 0 and 1. The resulting sample mean E(q | κ) is shown
in figure 3b.

Upon visual inspection, the dependence of q on κ is roughly linear for κ > 0.7, and a linear
regression yields a line of best fit with slope∼2.6, consistent with previous computational studies
of anatomically accurate brain capillary networks.1 This slope is also close to the prediction of
3.0 given by the effective medium theory of Kirkpatrick [74,75] (labelled ‘EMT’ in figure 3b), a
semi-analytic method for predicting the q–κ relationship in lattice networks with uniform degree.

We repeated the simulations above, this time for a 70% decrease in the conductance of
constricted capillaries, i.e. ā= 0.3. As before, there are no sharp changes in q as κ is varied, and
the line of best fit for κ > 0.7 has slope ∼1.1.

Based on these computational findings, we treat q henceforth as a linear function of κ with
slope α in the approximate range of 1.2–2.6:

q= α(κ − 1)+ 1. (2.14)

Note that, by definition, q= 1 when κ = 1. We ignore the nonlinear portion of the q–κ relationship,
below κ ≈ 0.6, since we do not expect capillary constrictions to exceed 40%; specifically, we
assume φ ≤ 1/α, which, together with equation (2.7), guarantees formula (2.14) remains positive.

1Cruz Hernández et al. [32] analysed large, anatomically accurate microvascular networks (10 000 vessels) from the cortex
of mice and humans, and obtained a range of slopes between 2.1 and 2.9. Goirand [73], also studying anatomically accurate
networks but this time with uniform vessel conductances, found a slope of 2.75.
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Table 1. Dimensionless model parameters.

parameter meaning base value

R0 basic reproduction number 0.75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε toxic to normal clearance rate ratio 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m spontaneous misfolding rate 0.001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c contraction ratio 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β hypoperfusion-sensitivity of Aβ production rate 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ hypoperfusion-sensitivity of normal Aβ clearance rate 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ̃ hypoperfusion-sensitivity of pathogenic Aβ clearance rate 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Finally, substituting the κ–p̃ relationship (2.7) into equation (2.14), we obtain a formula for the
mean normalized CBF rate q as a function of p̃,

q(p̃)= 1− αφ p̃
c−1 + p̃

, (2.15)

thus closing the model of Aβ–CBF interaction in a single region of the connectome.

(c) The model for a single region
Substituting equation (2.15) into equations (2.3) and (2.1), we obtain a modified form of the
heterodimer model:

dp
dt
=μ(p̃)− λ(p̃)p− kpp̃−mp (2.16a)

and
dp̃
dt
= kpp̃− λ̃(p̃)p̃+mp, (2.16b)

where

μ(p̃)=μ0 + βαφ p̃
c−1 + p̃

, λ(p̃)= λ0 − γαφ p̃
c−1 + p̃

and λ̃(p̃)= λ̃0 − γ̃ αφ p̃
c−1 + p̃

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.17)

We non-dimensionalize the model by introducing the following scalings:

p= μ0

λ0
p̂, p̃= μ0

λ̃0

ˆ̃p and t= 1

λ̃0
t̂, (2.18)

where circumflexes indicate dimensionless quantities. The following dimensionless parameters,
which are also listed in table 1, arise upon substitution of equation (2.18) into equation (2.16):

R0 = kμ0

λ0λ̃0
, ε = λ̃0

λ0
, m̂= m

λ0

ĉ= μ0c

λ̃0
, β̂ = βαφ

μ0
, γ̂ = γαφ

λ0
and ˆ̃γ = γ̃ αφ

λ̃0
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.19)

We also introduce the dimensionless production and clearance rate functions:

μ̂( ˆ̃p)= μ(p̃)
μ0

, λ̂( ˆ̃p)= λ(p̃)
λ0

, ˆ̃
λ( ˆ̃p)= λ̃(p̃)

λ̃0
. (2.20)

Dropping circumflexes henceforth, the dimensionless model is

ε
dp
dt
=μ(p̃)− λ(p̃)p− R0pp̃−mp (2.21a)
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and
dp̃
dt
=R0pp̃− λ̃(p̃)p̃+mp, (2.21b)

where

μ(p̃)= 1+ β p̃
c−1 + p̃

, λ(p̃)= 1− γ p̃
c−1 + p̃

and λ̃(p̃)= 1− γ̃ p̃
c−1 + p̃

. (2.22)

Model summary. The dimensionless planar system equation (2.21) is our model of Aβ-CBF
dynamics in a single region of the connectome. We obtained it by assuming: (a) that Aβ is a
prion-like protein with normal and pathogenic forms, and that its production and clearance
rates depend on the CBF rate; (b) that pathogenic Aβ tends to constrict capillaries, causing the
open capillary fraction κ to decrease; and (c) that the CBF rate decreases linearly as κ decreases,
informed by numerical simulations on a random graph model of a capillary network. Recall that
κ and q do not appear explicitly in equation (2.21) because the time scales on which they adjust to
the pathongenic Aβ concentration p̃ are very short, so that they are in quasi-equilibrium with p̃.

The model has seven dimensionless parameters (table 1), three of which (R0, ε, m) appear
already in our version (2.1) of Prusiner’s heterodimer model; recall 0≤m� 1. The other four
(c, β, γ , γ̃ ) modulate the coupling strength between Aβ and the microvasculature; it will transpire
that these four parameters have similar influences over the model’s behaviour.

In the coming sections, we analyse the dynamics of equation (2.21) in depth (§3), followed by
its spatially extended counterpart on the connectome network (§§4 and 5).

3. Disease dynamics in a single region
In this section, we study the dynamics of system (2.21). Recall that p and p̃ denote the
dimensionless concentrations of normal and pathogenic Aβ in a single region of interest (ROI)
of the connectome.

(a) Bistability and threshold effect
The basic reproduction number R0 continues to play a crucial role, as it did for Prusiner’s
heterodimer model (§2a). A linear analysis of equation (2.21) reveals that when R0 < 1−O(m),
there is a stable healthy equilibrium (ph, p̃h)≈ (1, 0), and when R0 > 1, there is a stable diseased
equilibrium (pd, p̃d) with p̃d =O(1). Unlike Prusiner’s heterodimer model, however, stable healthy
and diseased equilibria may coexist when R0 < 1 provided the Aβ–CBF coupling is sufficiently
strong, as we now show.

Phase plane. Equilibria lie at the intersections of the nullclines shown in figure 4a, given by

dp
dt
= 0 ⇐⇒ p= ν(p̃) := μ(p̃)

λ(p̃)+ R0p̃+m
(3.1a)

and
dp̃
dt
= 0 ⇐⇒ p= ν̃(p̃) := λ̃(p̃)p̃

R0p̃+m
. (3.1b)

When Aβ–CBF coupling is absent, i.e. Prusiner’s original heterodimer model (2.1), μ(p̃), λ(p̃)
and λ̃(p̃) all equal 1 (recall (2.22)). In this case, the nullclines p= ν(p̃) and p= ν̃(p̃) are shown in
figure 2. In particular, for R0 < 1, they intersect only at the healthy equilibrium (ph, p̃h)≈ (1, 0).

When one or more of c, β, γ , γ̃ is increased, the nullclines are deformed continuously in the
phase plane: the graph of p= ν(p̃) rises and that of p= ν̃(p̃) falls. For fixed R0 < 1, if c, β, γ , γ̃
are made sufficiently large, then the phase plane in figure 2 is deformed to the phase plane in
figure 4a. Indeed, a saddle-node (SN) bifurcation occurs at the nullclines’ tangential intersection,
whence two new positive equilibria are born. A linear analysis confirms that one is a saddle and
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Figure 4. Bistable dynamics emerging from Aβ-capillary coupling. (a) Phase portrait of system (2.21) with parameter values
as given in table 1. Nullclines (3.1) shown in black; stable and unstable equilibria shown as black and white circles, respectively;
healthy and diseased domains of attraction highlighted in blue and red, respectively. (b) Bifurcation diagram showing the p̃-
coordinate of the system’s equilibria as R0 is varied; stable and unstable branches are solid and dashed, respectively; ‘SN(1)’ and
‘SN(2)’ indicate saddle-node bifurcations. (c) Cusp separating themono- and bistable regimes in a R0-β slice of parameter space
(other parameters as in table 1); the parameter values corresponding to panels (a,b) are indicated by a point and line segment,
respectively. (d) One-dimensional dynamics of equation (3.2), obtained from the quasi-steady-state approximation, for ε � 1,
of the planar dynamics. Inset: the function f for values ofβ between 0.2 (purple) and 0.35 (light green).

the other is a stable node, which we denote by (pc, p̃c) and (pd, p̃d), respectively (‘c’ for ‘critical’ and
‘d’ for ‘diseased’).

This bistability emerges from the biological assumptions outlined in §1 and figure 1. The key
insight is that stable healthy and diseased equilibria, (ph, p̃h) and (pd, p̃d), can coexist when R0 < 1
provided the kinetics of Aβ are sufficiently sensitive to hypoperfusion (β, γ , γ̃ large enough) and
capillaries are sufficiently sensitive to pathogenic Aβ (c large enough).

Critical seed size. An important implication of bistability is a new threshold phenomenon:
the healthy equilibrium remains stable but is no longer globally stable. The healthy (blue) and
diseased (red) domains of attraction are shown in figure 4a; their separatrix is the stable manifold
of (pc, p̃c). For ε � 1, we see from figure 4a that, near the healthy equilibrium, the separatrix is
roughly parallel to the p-axis. Therefore, the critical seed size, i.e. the minimum p̃ such that (ph, p̃) is
not in the healthy domain of attraction, is roughly p̃c when ε � 1.

Hysteresis and hard loss of stability. By increasing some or all of c, β, etc., the bifurcation
diagram of Prusiner’s heterodimer model in figure 2 is deformed into the ‘S-shaped’ bifurcation
diagram in figure 4b which is characteristic of hysteresis.

As R0 increases, the healthy equilibrium now undergoes a hard loss of stability at R0 = 1−O(m),
via transcritical bifurcation if m= 0, or a saddle-node bifurcation if m> 0 (marked ‘SN(2)’ in
figure 4b). In order to return to the healthy state, however, it is not enough to decrease R0 back
below unity; rather, a lower threshold exists below which R0 must fall for the diseased equilibrium
to be eliminated (marked ‘SN(1)’ in figure 4b).

(b) Quasi-steady-state reduction
Before introducing spatial variation in §4, we reduce the regional model from the planar system
(2.21) to a scalar equation by exploiting its fast-slow form, thereby greatly simplifying later
analyses.
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We expect the clearance rate of pathogenic Aβ to be less than that of normal Aβ, i.e.
ε = λ̃0/λ0 < 1. The ε parameter can also be understood as a ratio of characteristic time scales,
i.e. ε = (1/λ0)/(1/λ̃0): if ε is small, then the dynamics of p is fast relative to that of p̃. Even
for ε = 1, the phase plane figure 4a exhibits near-vertical orbits, i.e. |dp/dt| � |dp̃/dt|. In this
case, the quasi-steady-state approximation (QSSA) applies [76, §8.3]: after a short transient, p
achieves quasi-steady-state in a neighbourhood of the p= ν(p̃) nullcline. Substituting ν(p̃) for p in
equation (2.21), we then obtain a scalar equation that governs the slow (relative to p) dynamics
of p̃:

dp̃
dt
= f (p̃) := (R0p̃+m)ν(p̃)− λ̃(p̃)p̃. (3.2)

We call f (p̃) the reaction function. In the bistable parameter regime, a slice of which is shown
in figure 4c, f (p̃) has three roots, namely p̃h (stable), p̃c (unstable) and p̃d (stable), as illustrated in
figure 4d.

The QSSA remains valid outside the bistable parameter regime, too. Take for example
Prusiner’s heterodimer model (c= β = γ = γ̃ = 0) with R0 > 1 and m= 0, a popular model of
prion-like dynamics [46–49,55,56]. In this case,

dp̃
dt
= f (p̃)= p̃

(
1− R0

R0 − 1
p̃
)

R0 − 1
1+ R0p̃

, (3.3)

which produces equivalent dynamics to the logistic equation (obtained by replacing 1+ R0p̃ in
the denominator of the final term with 1).

For the remainder of the paper, we assume that ε is sufficiently small and adopt the scalar
reduction (3.2) of the regional model (2.21). For a fuller discussion of the QSSA, in particular
its inapplicability to the case of ε� 1 (equivalently λ̃0� λ0), see appendix B in the electronic
supplementary material.

4. Network disease dynamics
Modelling axonal transport. Aβ spreads along axonal fibre tracts between neuronally connected
brain regions, moving in both anterograde and retrograde directions [77,78]. Though the precise
transport mechanisms are not fully understood, it is common to model the spatial spread of Aβ

as a diffusion process through the structural connectome network [79–81].
The nodes of the connectome are ‘regions of interest’ (ROIs) obtained from a parcellation

scheme [82]; we will use the 83-node Lausanne parcellation [83] (see figure 5) to illustrate the
analyses of the present and next sections. The edges, representing axonal connections, derive from
magnetic resonance diffusion tractography, which estimates the number of fibres nij connecting
each pair of regions ij in the parcellation [83]. The result is an N-dimensional (N= 83) dynamical
system governing the pathogenic Aβ concentration at each ROI:

dp̃i

dt
=D

N∑
j=1

wij(p̃j − p̃i)+ f (p̃i), i= 1, . . . , N, (4.1)

where D is a diffusion coefficient, wij is the ij edge weight, and f is the reaction function (3.2). We
let wij =wji = nij/l2ij, where nij is the number of fibres connecting i and j, and lij is their length; see
[85] for a discussion of this and other choices of wij =wij(nij, lij).

Model behaviour. Several prion-like modelling studies have treated equation (4.1) when m= 0
and p̃h = 0 is an unstable root of f (p̃) [47,49,55,86], in which case the dynamics are simple and
well-understood, namely:

if R0 > 1, then either p̃i ≡ 0 for all i or p̃i→ p̃d as t→∞ for all i.

That is, the brain-wide diseased state (p̃1, . . . , p̃N)= (p̃d, . . . , p̃d) attracts all states except for the
brain-wide healthy state (p̃1, . . . , p̃N)= (0, . . . , 0). Therefore, arbitrarily small pathogenic seeds,
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Figure 5. Axial and coronal views of the connectome network (83-node Lausanne parcellation [83]), with darker, thicker edges
indicating larger fibre number nij . For the GraphML file and processing details, see the electronic supplementary material. All
connectome visualizations in the paper were created with BrainNet [84].

placed anywhere in the connectome, guarantee outbreak and spatial propagation of disease. (This
fact follows from the comparison principle stated below.)

The goal of this section is to gain insight into equation (4.1) when f (p̃) is bistable, i.e. takes the
form shown in figure 4d. That is, we assume that R0 < 1 and that the Aβ–CBF coupling (i.e. c,
β, γ , γ̃ ) is sufficiently strong to ensure the simultaneous existence of stable healthy and diseased
equilibria p̃h and p̃d. We will find that the dynamical behaviour that emerges is significantly more
complicated than that in the R0 > 1 case covered by previous studies. In particular, many more
stable states may exist, and propagation between ROIs may fail.

We will tackle the analysis of equation (4.1) in small steps. We start by analysing the simplest
possible non-trivial network, namely the two-node network, in place of the 83-node connectome.
We then study a second toy model, namely the ‘star network’ [87], which will shed some light on
the influence of ROI-connectivity over the disease dynamics. Finally, we will study the critical
seed size at different ROIs in the full connectome network. But first, we mention two useful
properties of equation (4.1): its gradient structure and comparison property.

Gradient structure. Denoting (p̃1, . . . , p̃N) by p̃, we can write equation (4.1) as a gradient system:

dp̃
dt
=−∇E(p̃), E(p̃) := 1

2
D

N∑
i,j=1

wij(p̃i − p̃j)
2 −

N∑
i=1

∫ p̃i

0
f (p̃′) dp̃′. (4.2)

It follows that all trajectories of equation (4.1) converge to an equilibrium of the system.2

Comparison principle. If a solution p̃a ∈R
N of equation (4.1) is less than or equal to another

solution p̃b ∈R
N at every node, i.e. p̃a

i ≤ p̃b
i for all i= 1, . . . , N, at t= 0, then it remains so for all

t> 0. A proof is given in appendix C in the electronic supplementary material.

(a) The two-node network: the role of edge strength
The simplest non-trivial network has two nodes, in which case equation (4.1) takes the form

dp̃1

dt
=D(p̃2 − p̃1)+ f (p̃1) (4.3a)

2This result follows from a theorem of Łojasiewicz [88] which guarantees convergence to equilibria in gradient systems
whose potential/Lyapunov function is analytic and radially unbounded, the latter property guaranteeing the boundedness
of forward orbits.
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Figure 6. Phase plane of the two-node system (4.3) for four values of the diffusion coefficient D (given above each plot). Stable
and unstable equilibria are indicated by black and white points, respectively, at the intersection of the two nullcline curves (for
their labels, see the text). The domains of attractionAh,Ad andAp are shaded blue, red and purple, respectively. Parameter
values as in table 1.

and
dp̃2

dt
=D(p̃1 − p̃2)+ f (p̃2), (4.3b)

where we have absorbed the edge weight w12 into D.

Phase plane. The phase plane of equation (4.3) is symmetric about the identity line p̃1 =
p̃2 (unsurprisingly, given the symmetry of the network), and this line contains exactly three
equilibria independent of D≥ 0, namely

ah = (p̃h, p̃h), rc = (p̃c, p̃c) and ad = (p̃d, p̃d), (4.4)

where p̃h < p̃c < p̃d are the three roots of the bistable reaction function f (p̃) (see figure 4d). The
healthy and diseased equilibria, ah and ad, are attractors, with domains of attraction denoted by
Ah and Ad (blue and red regions in figure 6), while rc is a repellor (either a saddle or an unstable
node).

Inspection of equation (4.3) yields that all equilibria lie in R= [p̃h, p̃d]× [p̃h, p̃d], and so by the
system’s gradient structure, every neighbourhood of R is an absorbing set. Thus, we restrict our
attention to R. It also follows from the comparison principle that the following square regions:

Rh = (p̃h, p̃c)× (p̃h, p̃c) and Rd = (p̃c, p̃d)× (p̃c, p̃d), (4.5)

are positively invariant and that Rh ⊆Ah and Rd ⊆Ad for all D≥ 0. Therefore, no equilibria lie in
the (open) squares Rh and Rd.

Uncoupled case. When D= 0, the system has nine equilibria (figure 6a): the three given by
equation (4.4), two pinned equilibria ap and Rap (attractors), and four saddles s1, s2, Rs1, Rs2,
where

ap = (p̃d, p̃h), s1 = (p̃c, p̃h) and s2 = (p̃d, p̃c), (4.6)

and R= ( 0 1
1 0 ) reflects points through the identity line. We follow Kouvaris et al. [87] in calling ap

and Rap pinned equilibria, since the disease is pinned at one node and unable to invade the other;
we denote their domains of attraction by Ap and RAp (purple regions in figure 6).

Bifurcations. Equilibria lie at intersections of the two nullclines, given by

D(p̃1 − p̃2)= f (p̃1) and D(p̃2 − p̃1)= f (p̃2). (4.7)
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Figure 7. Phase diagrams for (a) the two-node network and (b) star network. Each parameter plane is divided into regions of
disease invasion, collapse and pinning, according to whether (p̃d , p̃h), marked by a cross in the phase planes of figure 6, is in
Ad ,Ah orAp, respectively. Solid curves indicate branches of saddle-node and pitchfork (PF) bifurcations. Points a, b, c, d in
(a) mark the parameter values used for the phase portraits in figure 6. Inset in (b) shows nullclines in the (p̃1, p̃2) phase plane
over a range of k values, each corresponding to a triangle on the D= 0.01 line in the phase diagram. The coloured circles in the
inset of (b) indicate pinned equilibria, corresponding to triangles in the pinned region of the phase diagram (b). All parameters
are as in table 1, exceptβ = 0.4 in (b) (recall ε was eliminated by the QSSA).

For D= 0 (figure 6a), each nullcline consists of three parallel lines, and all intersections are
transversal. Therefore, all nine equilibria persist (though perturbed) for sufficiently small D> 0
(figure 6b). In particular, disease pinning is possible when transport is weak.

At a threshold value D=D1, ap vanishes in a saddle-node bifurcation upon collision with
one of the saddles si. For D>D1, only the healthy and diseased equilibria remain as attractors;
compare figure 6b,c. A second bifurcation occurs at D=D2, in which the remaining saddles sj
and Rsj collide with the repellor rc in a supercritical pitchfork bifurcation, turning the unstable
node rc into a saddle; compare figure 6c,d. This second bifurcation, however, does not cause a
sudden change in the domains of attraction of the healthy and diseased equilibria Ah and Ad,
and therefore does not affect the system’s asymptotic behaviour.

The threshold values D1 and D2 depend on the system’s other parameters, contained in
the reaction function f . Their relationships with β (the sensitivity of the Aβ production rate to
hypoperfusion) are indicated in figure 7a by the curves labelled ‘SN’ and ‘PF’, respectively.

Invasion. To investigate the dependence of disease invasion on D, we ask (similar to [87])
whether a pathogenic Aβ seed of size ≤ p̃d placed at node 1 can spread to a healthy node 2. There
are three possibilities:

— invasion: (p̃d, p̃h) ∈Ad �⇒ invasion is possible for large enough seeds;
— pinning: (p̃d, p̃h) ∈Ap �⇒ pinning, but not invasion, is possible for large enough seeds;
— collapse: (p̃d, p̃h) ∈Ah �⇒ all seeds are extinguished; disease outbreak is not possible.

The point (p̃d, p̃h) is marked by a cross in figure 6b–d, where it is in Ap, Ad, Ad, respectively. Each
of the phase planes (a, b, c, d) in figure 6 is also marked by a point in the phase diagram figure 7a.

Figure 7a shows how disease invasion in the two-node network is affected both by D and
by the local protein kinetics f (p̃). In particular, when the sensitivity to hypoperfusion of the Aβ

production rate, β, is large, invasion is possible for diffusivity stronger than D1, whereas if β is
small, D>D1 leads to disease collapse.
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A key insight of this section is that if the connection between two regions is sufficiently weak,
then invasion from one to the other is not possible.

(b) The star network: the role of node degree
We now investigate the role of node degree (number of neighbours) in the dynamics of disease
initiation and invasion. To this end, we perform an analysis of the so-called star network,
comprising a central node (i= 1) connected by equally weighted edges to k≥ 1 neighbours [87].

We assume that all k peripheral nodes are initially healthy, and therefore have a common
concentration p̃2 for all t≥ 0; that is, the network’s radial symmetry allows us to regard the
peripheral nodes as identical. Therefore, we again have a planar system:

dp̃1

dt
= kD(p̃2 − p̃1)+ f (p̃1) (4.8a)

and
dp̃2

dt
=D(p̃1 − p̃2)+ f (p̃2). (4.8b)

The symmetry about the identity line p̃1 = p̃2 is lost when k> 1, but the dynamics of equation
(4.8) is otherwise similar to that of the two-node network (4.3). For example, if the central node
is seeded with pathogenic Aβ, then pinning occurs for sufficiently small D, therefore precluding
invasion. Moreover, as D is increased, the same bifurcations (saddle-node and pitchfork) occur
(figure 7b).

Increasing k hinders the ability of a seed placed at the central node to effect invasion of its
neighbours. See figure 7b: for D= 0.01 (triangle markers), increasing k first precludes invasion in
favour of pinning, and eventually leads to disease collapse. For large D, pinning cannot occur,
and a critical value of k separates invasion from collapse (kcrit ≈ (p̃d − p̃h)/p̃c ≈ 5 in figure 7b).

Analysis of this toy network therefore suggests that highly connected brain regions are more
resilient to seeds of pathogenic Aβ than poorly connected regions, and are less effective as
bridgeheads for the invasion of neighbouring regions. We pursue this idea in more detail for
the full connectome network below.

(c) The connectome network: critical seed size
Suppose all nodes in the N-node connectome network are in the healthy state p̃h, and that node
i is seeded with pathogenic Aβ. We ask: how large must the seed be to ensure escape from the
healthy state ah = (p̃h, . . . , p̃h) ∈R

N , thus triggering disease outbreak, and how is this threshold
affected by Aβ transport? Precisely, we define the critical seed size associated with node i as

p̃crit
i =min{p̃> p̃h : ah + (p̃− p̃h)ei /∈Ah}. (4.9)

First, we note that p̃crit
i ≥ p̃c for all i and D≥ 0, with equality if and only if D= 0 (this follows from

the comparison principle). Therefore, for small D, the critical seed size increases with respect
to D.

If D is fixed, however, what is the effect of i’s neighbours on p̃crit
i ? A partial answer is obtained

by comparing the critical seed size of each node to its weighted degree, di :=D
∑N

j=1 wij. In

figure 8b, we plot p̃crit
i , computed numerically given a small value of D, against di for all N= 83

nodes, and observe an increasing relationship. That is, highly connected nodes are more resilient
to pathogenic seeding in the context of our model.

To gain further insight into this relationship, we can estimate p̃crit
i via asymptotic expansion

for small D> 0, the details of which are in appendix D in the electronic supplementary material.
The resulting dependence is shown by the curve in figure 8b, and fits the numerically computed
values well for small di.
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Figure 8. Critical seed size versus weighted degree. (a) The connectome network with nodes i= 1, . . . , 83 coloured by
weighted degree di = D

∑
j wij . (b) Critical seed size p̃

crit
i versus weighted degree di ; circular markers indicate values

computed numerically for each node, and the curve indicates the asymptotic approximation derived in appendix D in the
electronic supplementary material. Parameter values are as in table 1, and D= 0.05.

5. Disease initiation by vascular injury
So far, we have seen two theoretical mechanisms for disease initiation, namely an increase in R0
above unity, and the introduction of a sufficiently large pathogenic seed.

In this section, we ask whether hypoperfusion of a localized brain region, due for example
to embolic stroke or to atherosclerosis of the leptomeningeal vessels [15,39], may be sufficient to
trigger Aβ pathology, without the need for a pathogenic seed. Specifically, we ask if a deficit in
arterial blood supply is capable of destabilizing the healthy equilibrium ah.

We model this scenario as a proportional decrease�Ψ in perfusion pressure in a single node of
the connectome network. For example, a value of�Ψ = 0.4 represents a 40% decrease in perfusion
pressure at the injured node. Because our simple model of blood flow in §2b(ii) is linear, the
CBF rate in a brain region is proportional to the perfusion pressure in that region; therefore, �Ψ
is also the proportional decrease in the normalized CBF rate q in the injured node. Recall from
(2.14) the linear dependence of q on the open capillary fraction κ in a region with normal pressure
(�Ψ = 0), namely q= α(κ − 1)+ 1. Therefore, in the injured node, this relationship is scaled down
to q= (1−�Ψ )(α(κ − 1)+ 1), as shown in figure 9a.

Following the same model reduction and non-dimensionalization steps as in §2b(ii), we obtain
new expressions for the Aβ production and clearance rates in the injured region, which now
depend on �Ψ :

μ(p̃;�Ψ )= (1+ β�Ψ )+ β(1−�Ψ )
p̃

c−1 + p̃
,

λ(p̃;�Ψ )= (1− γ�Ψ )− γ (1−�Ψ )
p̃

c−1 + p̃

and λ̃(p̃;�Ψ )= (1− γ̃ �Ψ )− γ̃ (1−�Ψ )
p̃

c−1 + p̃
.

Substituting these expressions into formula (3.2) for the reaction function f (p̃), we obtain the
injured reaction function, which we denote by finj(p̃;�Ψ ); note finj(p̃; 0)= f (p̃). See figure 9b for
finj(p̃;�Ψ ) over a range of �Ψ values, and note ∂�Ψ finj ≥ 0.
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Figure 9. Effect of CBF supply deficit�Ψ on disease dynamics; the values of�Ψ in each panel are 0 (purple), 0.1, . . . , 0.5
(light green). (a) The normalized CBF rate q versus open capillary fraction κ (equation (2.14) with α= 2.5). (b) The reaction
function finj(p̃;�Ψ ). (c) Bifurcation diagram for system (5.1) on the star network (D= 0.02), with respect to the bifurcation
parameter �Ψ ; the transcritical and saddle-node bifurcations at the healthy equilibrium are marked by crosses. Inset:
nullclines of the star network system. Parameter values as in table 1, except form= 0.

Labelling the injured node as i= 1 without loss of generality, we obtain the following system:

dp̃1

dt
= finj(p̃1;�Ψ )+D

N∑
k=1

w1k(p̃k − p̃1) (5.1a)

and
dp̃j

dt
= f (p̃j)+D

N∑
k=1

wjk(p̃k − p̃j), j �= 1. (5.1b)

If, by increasing �Ψ , the healthy equilibrium ah = (p̃h, . . . , p̃h) becomes unstable, then disease
outbreak ensues.

(a) An isolated injured node
If the injured node were isolated (no axonal connections), then equation (5.1) reduces to dp̃/dt=
finj(p̃;�Ψ ), so that stability of the healthy state p̃h is determined by the sign of the linear growth
rate rinj := ∂p̃finj(p̃h;�Ψ ) alone. The linear growth rate is increasing with respect to �Ψ , i.e.
∂�Ψ rinj > 0; see figure 9b (in which p̃h = 0). Therefore, the healthy state becomes less stable as
the deficit in CBF supply becomes more severe. Stability is lost (and disease outbreak ensues) if
the linear growth rate becomes positive at a critical �Ψ =�Ψ crit.

Hard loss of stability. This threshold phenomenon is very similar to the increase of R0 through
unity in Prusiner’s heterodimer model, as depicted in figure 2. Both are examples of transcritical
bifurcation (with imperfection if m> 0). However, the loss of stability is soft in figure 2, whereas it
is hard in the present case. That is, for R0 = 1+ δ in Prusiner’s heterodimer model, with δ� 1, the
diseased state p̃d is O(δ)-close to the (now unstable) healthy state p̃h—the transition to disease is
smooth and gradual. However, for �Ψ just above �Ψ crit, the branch of diseased equilibria is far
above p̃h—the transition to disease is discontinuous and catastrophic.

To verify this fact, one shows in the latter case that the positive branch of equilibria near
the transcritical bifurcation is subcritical (below �Ψ crit); see figure 9b, where the middle root
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..........................................................Figure 10. Two-hit mechanism for disease initiation. (a) Focal hypoperfusion following vascular injury (‘hit 1’, left axis)
destabilizes the disease-free state ah, causing localized outbreak of pathogenic Aβ (‘hit 2’, right axis), which may or may not
spread (right and left panels of (a), respectively). The shaded area indicates the prescribed time course of the arterial supply
deficit �Ψ at the injured brain region, and the curves indicate the evolution of pathogenic Aβ concentration p̃i at each
node i= 1, . . . , 83. Owing to the system’s hysteresis, full restoration of the arterial blood supply (i.e.�Ψ ↘ 0) may not
be sufficient to stop the spread. (b) Disease spread from the injury site: disease distribution at t= 300, 500, 700 in right-hand
panel of (a), marked there by dashed lines. Parameters as in table 1 except R0 = 0.768, not 0.75, in right-hand panel of (a) and
in (b), and D= 0.2.

of finj decreases through p̃h = 0 as �Ψ increases through �Ψ crit ≈ 0.35. Analytically, one can
establish subcriticality of the positive branch by verifying (see Glendinning [89, §8.4]) that
∂2

p̃ finj(p̃h;�Ψ crit)> 0 and ∂�Ψ ∂p̃finj(p̃h;�Ψ crit)> 0.

(b) Star network with injured central node
Suppose next that the injured node is the central node of a star network with k neighbours, so that
the reaction function of the central node is finj(p̃;�Ψ ), and that of the k peripheral nodes is f (p̃)=
finj(p̃; 0). Denote the linear growth rates at the injured and un-injured nodes by rinj := ∂p̃finj(p̃h;�Ψ )
and r0 := ∂p̃f (p̃h), respectively (recall r0 < 0).

Connectivity imparts resilience. Stability of the healthy state ah ∈R
2 is now determined by

rinj and r0. By analysing the star network system (4.8a) with f (p̃1) replaced with finj(p̃1;�Ψ ), one
can verify here that rinj must now exceed rcrit

inj :=Dkr0/(r0 −D) in order to destabilize ah. This

threshold is increasing with respect to both D and k. If either is zero, then rcrit
inj = 0 and we are back

to the isolated node case of §5a. At the other extreme, if D→∞, then rcrit
inj =−kr0 > 0. In short,

highly connected nodes are more resilient than poorly connected nodes.
If �Ψ increases to such an extent that rinj exceeds the above threshold (recall from §5a that

∂�Ψ rinj > 0), then disease outbreak ensues. It is straightforward to show that, as in the isolated
node case, the loss of stability is hard; see figure 9c and note that the positive branch near ‘TC’ is
subcritical.
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(c) Connectome network with an injured node
The linearization of system (5.1) (in its full generality) about ah ∈R

N is dp̃/dt= Jp̃, where J is the
Jacobian matrix

J=M−DL, (5.2)

with M= diag(rinj, r0, . . . , r0) and L is the graph Laplacian of the connectome network (see
electronic supplementary material for information on the graph Laplacian). We denote the largest
of J’s eigenvalues, all of which are real, by σJ. The healthy equilibrium is stable if σJ < 0, and
unstable if σJ > 0.

We obtain the following bounds on σJ :

σJ ∈ (rinj − d1, rinj), (5.3)

where d1 =D
∑N

k=1 w1k (weighted degree of the injured node). Indeed, σJ =max||u||=1 uᵀJu,
whence σJ > eᵀ

1 Je1 = rinj − d1, and from equation (5.2) we have σJ <σM + σ−DL = rinj, where we
have used the fact that the largest eigenvalue of −L is 0, as is true for any graph Laplacian. From
equation (5.3), we obtain bounds on the critical value of rinj = rcrit

inj (for which σJ = 0) above which
ah is unstable:

rcrit
inj ∈ (0, d1). (5.4)

This upper bound indicates the positive effect of connectivity on resilience, as in the star network
case. If �Ψ increases to such an extent that rinj rises above rcrit

inj , then ah is destabilized in a
transcritical bifurcation (with imperfection if m> 0), and we expect the loss of stability to be hard
as in §5a and b.

Simulation: injury-induced disease outbreak. To complement the analysis above, we ran a
numerical simulation in which we increased �Ψ slowly from 0 to 0.4 in a single node of
the connectome network, namely the rostral middle frontal gyrus, near the top of the right
hemisphere in figure 10b.

Whereas initial disease outbreak is decided by the (linear) stability of the healthy equilibrium
alone, progression of the disease (e.g. whether or not spatial propagation ensues) is determined by
the complex dynamics of system (5.1) in all its nonlinearity. In the left-hand panel of figure 10a, ah
indeed undergoes a hard loss of stability, but invasion of neighbouring regions does not follow—
disease outbreak occurs locally, but is pinned at the injured node. In the right-hand panel of
figure 10a, R0 has a slightly higher value, and this time invasion is successful. Moreover, returning
�Ψ to zero following outbreak need not be sufficient to quell disease progression, as seen in
the right-hand panel of figure 10a. This irreversibility is due to the system’s hysteretic property,
already observed in §3.

To summarize, this section has demonstrated, in the context of our model, how a focal deficit
in arterial blood supply, if sufficiently severe, can trigger prion-like accumulation and spatial
propagation of pathogenic Aβ without the need for an initial seed.

6. Discussion
The role of cerebrovascular disease in neurodegeneration has been debated for over a century
[17,90]. In the last 30 years, several mechanisms have emerged through which Aβ and the
brain’s vessels may influence each other: hypoperfusion and BBB breakdown exacerbate Aβ

accumulation [33–36], whereas Aβ is vasoconstrictive [28,29], pro-atherogenic [17,91], and
therefore inhibits CBF. In particular, recent experiments have established that pathogenic forms of
Aβ constrict capillaries in AD by causing pericytes to contract [14]. Here, we have constructed a
mathematical model that integrates Aβ-induced capillary constriction (and its effect on CBF) with
the prion-like property of Aβ, with the goal of gaining mechanistic insight into their combined
effect on disease initiation and spreading. We summarize the model assumptions in table 2. Below,
we discuss the key insights that have emerged from the model’s analysis, and several limitations.
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Table 2. Summary of model assumptions, which fall into two categories, namely biological premises (Bio.) and modelling
simplifications (Mod.), along with the section of the present paper in which the assumption is invoked (§), and sources.

assumption type § source

Aβ is prion-like. Bio. 2a [4–6,8,9]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aβ production rate increases when CBF decreases. Bio. 2a [33–35]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aβ clearance rate decreases when CBF decreases. Bio. 2a [30,36]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

clearance rate of pathogenic Aβ< clearance rate of normal Aβ. Bio. 3b [99]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pericytes contract & constrict capillaries when exposed to Aβ. Bio. 2b(i) [14]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

brain capillary networks are degree-three & without community structure. Bio. 2b(ii) [67]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

brain microvasculature behaves as a disjoint union of degree-three RRGs with
uniform edge conductances, fed by a single arteriole and drained by a
single venule.

Mod. 2b(ii) [54]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flow through capillary network obeys Kirchhoff’s and Ohm’s Laws. Mod. 2b(ii) [70]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

axonal transport of Aβ is bi-directional. Bio. 4 [78]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Key insights
Bistability, critical seed size, hysteresis. Eigen [60], in one of the earliest modelling studies on
‘prionics’, dismissed Prusiner’s classic heterodimer model as implausible, as ‘either there is no
infection at all . . . or a spontaneous outbreak of the disease occurs. . . in every case’. This criticism,
shared by others [57,61], pertains to the absence of a threshold phenomenon, a ‘knife-edge’ [61],
separating disease outbreak from the disease-free state that most people, thankfully, never leave.

By incorporating putative interaction mechanisms between Aβ and microvascular damage
into the heterodimer model, we have shown that metastability of the healthy state is possible.
Specifically, should the prion mechanism alone be incapable of generating disease outbreak
(R0 < 1), but the Aβ-microvascular coupling is sufficiently strong (β, γ , γ̃ , c sufficiently large),
then bistable dynamics can emerge, in which case seeds of pathogenic protein must exceed a
minimal threshold to trigger disease outbreak.

Another consequence of the Aβ-vascular feedback is that an increase of R0 through unity, for
example due to age-related decline in the Aβ degradation rate [64], now precipitates a hard loss
of stability by the healthy state. The biological relevance of this change from soft to hard is at
least twofold. First, the prion-like disease outbreak is sudden and catastophic in the hard case
(figures 4b and 9), unlike the soft transition in Prusiner’s heterodimer model (figure 2). Second,
the hard loss in stability results in hysteresis, implying that the pathology, once triggered, is
likely very difficult to eliminate, thus making preventative therapies (aimed at keeping patients
in the subcritical parameter regime) preferable to post-onset therapy. Examples could include
the lowering of R0, e.g. by increasing Aβ clearance, or of the contraction ratio c (table 1), e.g. by
blocking Aβ-induced generation of ROS (modelled here in §2b(i)), as already proposed by Nortley
et al. [14]. Another preventative strategy would be to monitor and treat cerebral hypoperfusion
prophylactically before other AD pathology is present (in order to keep �Ψ below �Ψ crit; see
figures 9 and 10).

Prion models exhibiting bistable dynamics have been proposed on phenomenological grounds
[92,93], and based on an assumption of nucleation-dependent aggregation [61]. Our results
indicate that Aβ-induced vascular damage and its feedback onto the kinetics of Aβ comprise
another route to bistability.

Two-hit vascular hypothesis. A vascular two-hit hypothesis for AD has existed for at least
twenty years, which proposes that cerebrovascular damage is the initial trigger of AD pathology,
antecedent to Aβ accumulation [15,20,36,40]. In §5, we presented a theoretical manifestation of this

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 A

pr
il 

20
25

 



22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240548

..........................................................

hypothesis, demonstrating how a focal decline in arterial blood supply, if it surpasses a threshold,
can induce a hard loss of stability by the disease-free state, leading to an outbreak of pathology
even in the absence of an initial pathogenic seed (figure 9). To our knowledge, this is the first
attempt to formalize and analyse the two-hit hypothesis mathematically.

This theoretical mechanism of vascular-injury-induced disease initiation is consistent with
experimental studies in mouse models of AD. For example, focal cerebral hypoperfusion, induced
by the targeted occlusion of penetrating cortical arterioles, has been shown to increase the number
of Aβ plaques in the infarcted region [94]. Similarly, global chronic cerebral hypoperfusion,
induced by bilateral common carotid artery stenosis, has been found to shift the equilibrium of
Aβ toward its pathogenic form [95]. It is our hope that the results of §5 (particularly the presence
of a threshold effect and a hard loss of stability) will help to supply mechanistic insight to these
experimental findings and contribute to the refinement of the two-hit vascular hypothesis.

Complex spatial dynamics. In monostable spatially extended models of prion-like behaviour
(such as Fisher’s equation and the diffusive heterodimer model), every pathogenic seed,
independent of size and location, leads to the eventual invasion of the entire domain
[46,47,53,55,56,86]. That is, these models imply that the uniformly diseased brain is a global
attractor.

In a bistable regime, however, spatial invasion is not straightforward, as has been shown for
bistable dynamics on generic networks [87,96–98]. By analysing simple model networks in §4a
and b, we found that propagation fails if edges are too weak (figures 6 and 7), representing weak
axonal connectivity, which enables stable, spatially heterogeneous steady states to emerge, i.e.
pinned states (figure 6).

The size of a pathogenic seed required to trigger local outbreak in a well-connected region
is higher than that in a poorly connected region. The stronger effect of diffusion at the well-
connected region is stabilizing, as it is capable of evacuating more pathogenic proteins to
neighbouring regions, whose clearance capacity can then be exploited to suppress disease
outbreak (figure 8; see also [51]). Together, these observations indicate that spatial propagation
(whether it occurs, along what paths, towards what asymptotic state) is complex when the
disease-free state is metastable, in contrast to the case where it is unstable [47,49,55,59].

(b) Limitations
In considering the results, certain limitations should be borne in mind, including the following.

(1) Our model neglects countless important features of AD pathogenesis, e.g. τP
accumulation, neuroinflammation, neuron death, and the myriad interdependences
between these and other pathways. In focusing on the combined effect of two specific
aspects of AD, namely the prion-like kinetics of Aβ and microvascular damage, we
make no claim regarding their relative importance in comparison to the pathways
left unaddressed. The goal of the model has been to investigate the theoretical
implications of the two-way coupling between these two pathways, but it could be
extended to incorporate others. A natural pathway to include would be that of τP.
Hyperphosphorylation of τP is downstream of Aβ accumulation in AD [30], the
implications of which have been explored with mathematical modelling [49]. Also,
ischaemia triggers τP hyperphosphorylation independent of Aβ [30]. These interactions
could be incorporated in a straightforward manner into our model. Nonetheless, to quote
Fisher, ‘the effects of all such complications can only be discussed by reference to the
course of events when they are absent’ [100].

(2) We have modelled the transport of proteins along axons as a simple diffusion process
in the connectome network, following Raj et al. [79] and others [47,101]. This approach
captures the topology of the connectome, which is important for protein spreading
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patterns [47,55,86], but is not derived from a mechanistic description of Aβ molecular
movement, as a continuum diffusion model may be interpreted [46].

(3) We have modelled the brain’s microvasculature as a collection of small independent
capillary networks, so that capillary damage in one brain region does not affect the CBF
rate in other regions. Though we believe this minimal model to be reasonable for our
purposes, the notion that the brain’s capillary bed is organized as a collection of ‘largely
autonomous modules, each sourced by one or more penetrating arterioles and drained
by one or more penetrating venules’ has been challenged [102]. A more sophisticated
approach would treat the capillary bed as a brain-wide network, fed and drained by
many penetrating vessels from the pial surface.

One approach that would address limitations (2) and (3) would be to model the brain as
a continuum in which Aβ can diffuse, as in [46,53], and the brain’s microvasculature as a
continuous porous medium whose spatially varying permeability field depends on the local
concentration of pathogenic Aβ, consistent with Aβ-induced capillary constriction. The result
would be a coupled system of partial differential equations, probably of parabolic-elliptic type, on
a complex geometry. This approach would have the benefit of being derivable from mechanistic
physical principles (by coarse-graining the underlying capillary bed), though at the price of
greater computational expense and lesser analytic tractability compared with the network model
presented here.
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