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Summary

� The barley Mla locus contains functionally diversified genes that encode intracellular

nucleotide-binding leucine-rich repeat receptors (NLRs) and confer strain-specific immunity to

biotrophic and hemibiotrophic fungal pathogens.
� In this study, we isolated a barley gene Scs6, which is an allelic variant of Mla genes but

confers susceptibility to the isolate ND90Pr (BsND90Pr) of the necrotrophic fungus Bipolaris

sorokiniana. We generated Scs6 transgenic barley lines and showed that Scs6 is sufficient to

confer susceptibility to BsND90Pr in barley genotypes naturally lacking the receptor. The

Scs6-encoded NLR (SCS6) is activated by a nonribosomal peptide (NRP) effector produced by

BsND90Pr to induce cell death in barley and Nicotiana benthamiana. Domain swaps between

MLAs and SCS6 reveal that the SCS6 leucine-rich repeat domain is a specificity determinant

for receptor activation by the NRP effector.
� Scs6 is maintained in both wild and domesticated barley populations. Our phylogenetic

analysis suggests that Scs6 is a Hordeum-specific innovation.
� We infer that SCS6 is a bona fide immune receptor that is likely directly activated by the

nonribosomal peptide effector of BsND90Pr for disease susceptibility in barley. Our study pro-

vides a stepping stone for the future development of synthetic NLR receptors in crops that are

less vulnerable to modification by necrotrophic pathogens.

Introduction

Plants have evolved an innate immune system that is constantly
challenged by a wide variety of microbial pathogens with differ-
ent lifestyles, each of which has evolved different strategies to
manipulate the host and establish virulence. Interactions between
plants and biotrophic pathogens, which must retrieve nutrients
from living host cells to proliferate, are often subject to coevolu-
tion, with the pathogen restricted to a particular host species.
The dynamics of these interactions are often driven by competing
sets of co-evolving genes encoding plant immune receptors and
pathogen effectors, the former being essential components for

nonself-perception in the host and the latter being required
for pathogen virulence (Saur et al., 2021). Despite recent
advances, our understanding of the evolutionary history and
dynamics of plant interactions with necrotrophic pathogens that
kill and feed on dying host cells is less understood, even though
these pathogens cause substantial economic damage in crops
(Newman & Derbyshire, 2020; Derbyshire & Raffaele, 2023a).

Necrotrophic pathogens may have a wide or narrow host
range. The molecular basis of host generalism is not well defined,
but appears to be linked to the repertoire of secreted cell
wall-degrading enzymes (Newman & Derbyshire, 2020). Com-
putational mining of pathogen genomes has revealed large
arsenals of lineage- or species-specific effector proteins, often
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structurally related but with extreme divergence in their amino
acid sequences (Sperschneider et al., 2016; Derbyshire et al.,
2017; Lopez et al., 2018; Le Marquer et al., 2019; Seong & Kra-
sileva, 2023; Derbyshire & Raffaele, 2023b). Experimental evi-
dence shows that a subset of these effectors is required for
virulence in necrotrophic pathogens with a narrow host range
(Derbyshire & Raffaele, 2023a). Host-specialized necrotrophs
often rely on proteinaceous or specialized metabolites that act as
necrotrophic effectors (NEs) to induce host cell death and pro-
mote infection. Pyrenophora tritici-repentis produces the protei-
naceous ToxA effector, which targets the extracellular C-terminal
domain of the wheat transmembrane protein TaNHL10, but sus-
ceptibility depends on wheat Tsn1, which encodes an intracellular
hybrid protein consisting of an N-terminal S/T protein kinase
fused to an NLR composed of nucleotide-binding (NB) and
leucine-rich repeat (LRR) domains (Faris et al., 2010; Dagvadorj
et al., 2022). The necrotrophic pathogen Parastagonospora
nodorum secretes the cysteine-rich proteinaceous effector
SnTox1, which appears to directly target the plasma
membrane-resident and wall-associated kinase (WAK) Snn1 for
disease susceptibility in wheat (Liu et al., 2009; Shi et al., 2016).

Chemically diverse metabolites that act as NEs have been
identified in the fungal genera Cochliobolus, Corynespora, and
Periconia. The susceptibility of sorghum to Periconia circinata
depends on the Pc locus, which encodes a cluster of three tan-
demly repeated NLR genes and production of chlorinated pep-
tide toxins by the pathogen, called peritoxins (Dunkle &
Macko, 1995; Nagy & Bennetzen, 2008). Loss of the central
NLR results in loss of susceptibility to P. circinata, but it is
unknown whether the toxin targets the NLR receptor directly
or indirectly. The HC toxin of the causal agent of northern
corn leaf spot, Cochliobolus carbonum, is a cyclic tetrapeptide
and targets histone deacetylases of susceptible corn plants to
establish infection (Brosch et al., 1995; Walton, 2006). Cochlio-
bolus victoriae deploys victorin toxin, a mixture of ribosomally
encoded but highly modified hexapeptides, to induce cell death
and establish infection on Vb-containing oat genotypes (Kessler
et al., 2020). Vb is genetically inseparable from Pc-2, which
mediates disease resistance to the biotrophic pathogen Puccinia
coronata, but it remains unclear whether they are the same or
two closely linked genes (Mayama et al., 1995; Wolpert & Lor-
ang, 2016). Victorin toxin is sufficient to induce cell death in
several ‘nonhost’ species, including c. 1% of accessions of Arabi-
dopsis thaliana (Lorang et al., 2004, 2007, 2010, 2012, 2018;
Wolpert & Lorang, 2016). The NLR LOV1 in A. thaliana
accession Cl-0 determines sensitivity to victorin, but also
requires the thioredoxin AtTRXh5, which contributes to sal-
icylic acid-dependent defense through its denitrosylation activity
on host proteins, including NPR1, the activator of systemic
acquired resistance (Sweat & Wolpert, 2007; Tada et al., 2008;
Kneeshaw et al., 2014). Victorin binds to AtTRXh5 and inhi-
bits its activity. Since AtTRXh5 binds to LOV1 in the absence
of victorin, it is proposed that the receptor senses the toxin
indirectly through victorin-mediated perturbation of AtTRXh5
activity (Lorang et al., 2012).

Isolate-specific disease resistance to biotrophic or hemibio-
trophic pathogens is often conferred by intracellular plant NLRs
that directly or indirectly sense the presence of pathogen effec-
tors. This results in receptor oligomerization and resistosome for-
mation, inducing immune signaling and termination of
pathogen proliferation. Canonical plant NLRs consist of three
domains, a variable N-terminal signaling domain, a central
nucleotide-binding oligomerization (NOD) domain, followed by
a C-terminal leucine-rich repeat region (LRR) (Hu &
Chai, 2023). Most plant NLRs carry either a Toll-interleukin-1
receptor-like (TIR) domain or a coiled-coil (CC) domain at the
N-terminus and are referred to as TNLs and CNLs, respectively
(Lapin et al., 2022; Hu & Chai, 2023). The recognition specifi-
city of sensor TNLs or CNLs is usually determined by their poly-
morphic LRR, whereas signaling NLRs become engaged in
immune signaling initiated by sensor NLRs. CNL resistosomes
integrate into host cell membranes and act as calcium-permeable
channels that mediate Ca2+ influx, triggering immune signaling
leading to host cell death (Wang et al., 2019a,b; Bi et al., 2021;
F€orderer et al., 2022b). Sensor TNLs produce nucleotide-based
second messengers that converge on the conserved EDS1 family
to activate signaling/helper NLRs that carry a RESISTANCE
TO POWDERY MILDEW 8 (RPW8)-CC domain (CCR)
(Wang et al., 2019b; Ma et al., 2020; Martin et al., 2020; Jia
et al., 2022; Zhao et al., 2022; S. Huang et al., 2022; F€orderer
et al., 2022a; Chai et al., 2023). Similar to sensor CNL resisto-
somes, activated signaling NLRs of A. thaliana have
calcium-permeable channel activity (Jacob et al., 2021). Ca2+

influx and the accumulation of reactive oxygen species are key
events in immune signaling and are tightly linked to a regulated
death of host cells at sites of attempted pathogen ingress, the
so-called hypersensitive response (HR) (Thordal-Christensen
et al., 1997; Grant et al., 2000; Torres et al., 2001). While the
HR likely contributes to the termination of growth of biotrophic
pathogens, it may promote the virulence of necrotrophs that
retrieve nutrients from dying cells (Govrin & Levine, 2000).

Bipolaris sorokiniana (Bs) (teleomorph Cochliobolus sativus) is a
necrotrophic fungus causing a wide range of diseases in cereals,
including leaf spot blotch, common root rot, seedling blight and
kernel blight (Kumar et al., 2002). Although Bs can infect a wide
range of grass species, strain-specific variation in virulence among
a world-wide collection of isolates has been identified based on
differential infection responses on a panel of barley accessions,
distinguishing four Bs pathotypes (Valjavec-Gratian & Steffenson,
1997b; Zhong & Steffenson, 2001; Leng et al., 2016). Major genes
or QTLs for spot blotch resistance/susceptibility have been identi-
fied in various barley genotypes depending on the Bs pathotype
(Valjavec-Gratian & Steffenson, 1997a; Bilgic et al., 2005, 2006;
Bovill et al., 2010; Roy et al., 2010; Grewal et al., 2012; Wang
et al., 2017), but the dominant/recessive nature of each gene or
QTL has yet to be determined in most cases. Recently, two
wall-associated kinase genes, Sbs1 and Sbs2, were isolated at the
Rcs5 locus, which confer susceptibility to spot blotch induced by
the Bs isolate ND85F (Ameen et al., 2020). Barley cultivar Bow-
man initially displayed moderate resistance to spot blotch when it
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was released in North Dakota, USA, in 1985 (Franckowiak
et al., 1985). Only six years later, Bowman and cultivars derived
from Bowman showed hyper-susceptibility to a newly emerged iso-
late of spot blotch, named BsND90Pr (Fetch & Steffenson, 1994).
This isolate belongs to Bs pathotype 2 and its high virulence on
Bowman depends on the unique VHv1 locus, which harbors a
cluster of genes including two encoding nonribosomal peptide
synthetases (NRPSs) (Valjavec-Gratian & Steffenson, 1997a;
Zhong et al., 2002; Condon et al., 2013). Deletion of one of the
two NRPS genes, termed NPS1 (ID#115356), is sufficient to abol-
ish the high virulence of BsND90Pr on cultivar Bowman (Condon
et al., 2013). We recently identified Scs6 as the dominant gene
needed for susceptibility to spot blotch caused by BsND90Pr in Bow-
man and physically anchored the locus to a 125 kb genomic region
overlapping with the Mla locus in the barley cv. Morex reference
genome (Leng et al., 2018). Interestingly, the complexMla locus is
known to confer isolate-specific disease resistance to several foliar
biotrophic pathogens, including the barley powdery mildew Blu-
meria graminis f. sp. hordei (Bgh), the stripe rust pathogen Puccinia
striiformis and the hemibiotrophic blast pathogenMagnaporthe ory-
zae (Jørgensen & Wolfe, 1994; Seeholzer et al., 2010; Maekawa
et al., 2019; Bettgenhaeuser et al., 2021; Brabham et al., 2023).
The Mla locus harbors three NLR families, Rgh1, Rgh2 and Rgh3,
all of which encode CNL receptors (Wei et al., 2002). For several
MLA CNL immune receptors belonging to the RGH1 family,
cognate pathogen effector proteins, termed avirulence effectors,
have been isolated and at least some bind directly to the corre-
sponding receptor (Lu et al., 2016; Chen et al., 2017; Saur
et al., 2019; Bauer et al., 2021). Barley MLA immune receptors
identified to date all belong to one of two MLA subfamilies from
the RGH1 superfamily (Maekawa et al., 2019).

Here, we used chemical mutagenesis of the susceptible culti-
var Bowman to identify several BsND90Pr resistant mutants. A
customized Mutant Chromosome Sequencing (MutChromSeq)
(Steuernagel et al., 2017) approach was then used to identify
independent mutations in the susceptibility factor Scs6, which
we show to be a naturally occurring Mla allele present in 16%
of domesticated barley germplasm. We generated Scs6 trans-
genic barley in accessions lacking the receptor to show that Scs6
is sufficient to confer BsND90Pr susceptibility. We collected
intercellular washing fluids (IWFs) from Bowman leaves inocu-
lated with wild-type (WT) BsND90Pr or the BsND90Pr Dnps1
mutant and show that the former IWF is necessary and suffi-
cient to reconstitute a cell death response in Scs6-containing
barley and in N. benthamiana transiently expressing Scs6.
Domain swaps between the SCS6 CNL and the MLA1 or
MLA6 barley powdery mildew immune receptors and expres-
sion of the resulting hybrid proteins in N. benthamiana revealed
that the SCS6 LRR domain determines sensitivity to the
NPS1-derived effector. We performed BsND90Pr inoculation
experiments with a collection of wild barley lines to show that
Scs6 is maintained in multiple geographically separated wild
barley populations. Phylogenetic analysis suggests that Scs6 is a
Hordeum-specific innovation. We infer that SCS6 is a bona fide
immune receptor that is likely directly activated for disease sus-
ceptibility by the NPS1-derived effector of BsND90Pr.

Materials and Methods

Plant materials and generation of EMS mutant population

The barley (Hordeum vulgare L.) cv. Bowman carrying Scs6 (Leng
et al., 2018) was used to generate mutant lines that were resistant
to spot blotch caused by B. sorokiniana isolate ND90Pr. The
mutagenesis procedure was performed according to (Williams
et al., 1992) with some modifications (Fig. 1a). Approximately
2000 seeds of barley cv. Bowman were presoaked in 300 ml of
phosphate buffer (0.05 M, pH 8.0) for 8 h at room temperature
with gentle agitation. Then, the seeds were treated in 0.3% (v/v)
Ethyl methanesulfonate (EMS) in phosphate buffer for 16 h at
room temperature. Treated seeds were rinsed with water for
1 min and sown in pots immediately. The M1 plants were grown
in the greenhouse at 20 to 24°C under supplemental fluorescent
lighting with a 16 h : 8 h, day : night cycle. Spikes were har-
vested separately from individual M1 plants. Approximately 20
M2 seedlings from each M1 plant were screened for spot blotch
resistance using isolate ND90Pr following the procedures and
1–9 disease rating scale described by (Fetch & Steffenson, 1999).
Plants with an average disease score of 1 to 3 were classified as
resistant, 4 to 5 as moderately resistant, and 6 to 9 as susceptible.
Bowman was included as a positive control for susceptibility and
ND5883 and NDB112 as positive controls for resistance. Resis-
tant M2 seedlings were selected and propagated by selfing to
develop homozygous M3 mutant lines, which were further con-
firmed for resistance to ND90Pr and then used for MutChrom-
Seq analysis. Cultivated barley accessions from the USDA
National Small Grains Collection (Leng et al., 2016) and the
Wild Barley Diversity Collection (WBDC) accessions (Roy
et al., 2010) were also screened against isolate ND90Pr using the
same method as described above for the EMS mutants and used
in the Scs6 gene diversity study.

Fungal isolates, spot blotch phenotyping, Intercellular
Washing Fluid (IWF) extraction and relative fungal biomass
quantification

The pathotype 2 isolate ND90Pr of B. sorokiniana and the NPS1
(ID# 115356) knockout mutants (Dnps1 KO#3 and KO#9) were
used for phenotyping throughout this research. Dnps1 KO#3 was
previously described as Δ115356 (Condon et al., 2013) and
Dnps1 KO#9 was independently generated and isolated using the
same method described by Condon et al. (2013). The disrupted
gene structure in Dnps1 KO#3 and KO#9 is shown in Support-
ing Information Fig. S1(c). V8 PDA (150 ml of V8 juice, 850 of
ml H2O, 10 g of PDA, 10 g of agar and 3 g of CaCO3) was used
to culture BsND90Pr and fungal mutants under the conditions of
14 h of light and 10 h of darkness. Spore suspension containing
2 9 103 conidia ml�1 was prepared and sprayed on seedlings
with the second leaves fully expanded (12–14 d after planting).
Inoculated plants were incubated in a humidity chamber for
18–24 h and then transferred into the same greenhouse room.
Disease ratings were conducted at 7 d postinoculation using the
1–9 rating scale of (Fetch & Steffenson, 1999).
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To prepare the IWF, barley cv. Bowman was inoculated with
BsND90Pr or BsND90Pr Dnps1 KO#3 or Dnps1 KO#9 as described
above, and leaves were harvested 7 d after inoculation. Harvested
leaves were cut into fragments of c. 1 inch in length, and leaf frag-
ments were submerged into distilled water in the beaker. The
beaker was then set into a vacuum chamber and vacuumed for
30 min. Then, leaf fragments were surface-dried and transferred
into 50-ml centrifuge tubes, which were centrifuged at 3200 g
for 30 min. Finally, IWFs were harvested from the bottom of
each centrifuge tubes, confirmed on barley cv. Bowman seedlings
by infiltration, and stored at �20°C for further use.

To quantify the fungal biomass, DNA was extracted from the
leaves harvested at 7 d after pathogen inoculation using a DNeasy
Plant Mini Kit (Qiagen, Germantown, MD, USA). Subsequently,
50 ng of each DNA sample were used for quantitative real-time
PCR (qPCR), which was performed using the ITS region as fungal
target (ITS4 and ITS5, Table S1) and the actin gene of barley as
reference (Actin-RT-F1 and Actin-RT-R1, Table S1). Real-time
PCR was performed as described by (Condon et al., 2013). The
ITS CT values were normalized using the barley actin gene, and
the relative gene copy number of ITS was calculated according to
the 2�ΔΔCT method (Kumar et al., 2015). The relative quantity of

fungal biomass was calculated using barley cv. Bowman leaves
inoculated with WT isolate ND90Pr as a control.

Flow sorting of barley chromosomes and preparation of
DNA for sequencing

Suspensions of mitotic metaphase chromosomes were prepared
from root tips of barley cv. Bowman carrying SCS6 and its five
EMS mutants following (Lys�ak et al., 1999). Briefly, root-tip cells
were synchronized using hydroxyurea, accumulated in metaphase
using amiprohos-methyl and fixed by formaldehyde. Intact chro-
mosomes were released by mechanical homogenization of 100 root
tips in 600 ll ice-cold LB01 buffer (Dole�zel et al., 1989). GAA
microsatellites on the isolated chromosomes were labelled by fluor-
escence in situ hybridization in suspension (FISHIS) using 5 0-
FITC-GAA7-FITC-3 0 oligonucleotides (Sigma) according to
(Giorgi et al., 2013) and chromosomal DNA was stained by DAPI
(4 0,6-diamidino 2-phenylindole) at 2 lg ml�1. Bivariate chromo-
some analysis and sorting was done using a FACSAria II SORP
flow cytometer and sorter (Becton Dickinson Immunocytometry
Systems, San Jos�e, CA, USA). Sort window delimiting the popula-
tion of chromosome 1H was setup on a dot-plot FITC-A vs

Fig. 1 Identification of Scs6 by MutChromSeq.
(a) Workflow for MutChromSeq. (b) Infection
responses, disease scorings, and quantification of
fungal biomass in Bowman and six barley Ethyl
methanesulfonate (EMS)-induced M3 lines after
inoculation with Bipolaris sorokiniana ND90Pr.
Photos were taken at 7 d after inoculation. The
1–9 rating scale of Fetch & Steffenson (1999)
was used to rate the spot blotch disease. Fungal
biomass was quantified for Bowman and the six
EMS-induced M3 lines using quantitative real-
time polymerase chain reaction. The error bar
indicates the SD. (c) Gene structure and EMS-
induced mutations in Scs6, a gene encoding a
canonical coiled-coiled-type NLR (CNL). *
indicates stop codon. See also Supporting
Information Fig. S3 and Tables S2–S3.
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DAPI-A and 55 000–70 000 copies of 1H chromosomes were
sorted from each sample at rates of 1500–2000 particles per second
into PCR tubes containing 40 ll sterile deionized water. Chromo-
some content of flow-sorted fractions was checked by microscopic
observation of 1500–2000 chromosomes flow sorted into 10 ll
drop of PRINS buffer containing 2.5% sucrose (Kubal�akov�a
et al., 1997) on a microscopic slide. Air-dried chromosomes were
labelled by FISH with a probe for GAA microsatellite according to
(Szak�acs et al., 2013). In order to determine chromosome content
and the purity, which was expressed as percent of 1H in the sorted
fraction, at least 100 chromosomes in each sorted sample were clas-
sified following the molecular karyotype of barley (Szak�acs
et al., 2013). The samples of flow-sorted chromosomes 1H were
treated with proteinase K, after which their DNA was amplified by
multiple displacement amplification (MDA) (Table S2) using an
Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare,
Chalfont St. Giles, UK) as described by (�Simkov�a et al., 2008).
The DNA samples were sequenced by BGI using BGISEQ-500
(Cambridge, MA, USA) to generate 100-bp paired-end (PE)
reads.

MutChromSeq

Raw sequencing data from flow-sorted chromosome 1H of the
WT and EMS mutants were quality-trimmed using TRIMMO-

MATIC (Bolger et al., 2014). The Bowman 1H chromosome
sequencing data was assembled using ABYSS 2.0 (Simpson
et al., 2009; Jackman et al., 2017) and was masked for repeats
using REPEATMASKER (http://repeatmasker.org). Sequence reads
from EMS mutants were aligned to the repeats-masked Bowman
1H assembly using software BWA (Li & Durbin, 2009). The
reads-aligned bam files were further processed using SAMTOOLS

0.1.19 (Li & Durbin, 2009) following parameters suggested by
(Steuernagel et al., 2016). The resulting pileup formatted files for
WT and EMS mutants were used as the inputs analyzed by
Pileup2XML.jar (https://github.com/steuernb/MutChromSeq).
Finally, MutChromSeq.jar (https://github.com/steuernb/
MutChromSeq) was executed to identify the candidate contigs
with mutations in EMS mutants analyzed. All mutations were
manually validated using INTEGRATIVE GENOMICS VIEWER soft-
ware (IGV, v.2.5.2, Robinson et al., 2011).

Identification of the candidate gene for Scs6 and
quantification of the relative expression of Scs6 by
quantitative real-time PCR

Gene annotation for the MutChromSeq-identified contig with
mutations in EMS mutants was performed by FGENESH (Solo-
vyev et al., 2006). The genomic structure of Scs6 was confirmed
by PCR sequencing using both genomic DNA and cDNA as
templates and primers listed in Table S1. Scs6 was amplified by
PCR from the five EMS mutants used in MutChromSeq and
three additional EMS mutants with primer pair SCS6-F2/SCS6-
R17 (Table S1).

To analyze the relative expression of Scs6, quantitative reverse
transcription polymerase chain reaction was performed. The total

RNA was extracted from barley leaves at nine time points (0, 6,
12, 24, 36, 48, 72, 96 and 120 h) after pathogen inoculation
using the Total RNA Miniprep Kit (NEB, Ipswich, MA, USA).
2 lg of total RNA was used in the reverse transcription PCR to
synthesize complementary DNA (cDNA) using ultrapure
SMART MMLV reverse transcriptase (Takara Bio, San Jose, CA,
USA) according to the manufacturer’s protocol. cDNA was
diluted 20 times and used as the template for quantitative reverse
transcription polymerase chain reaction, which was performed
with the CFX96 real-time PCR system (Bio-Rad). Real-time
polymerase chain reaction was performed as described by Con-
don et al. (2013). All samples were normalized using the internal
reference gene of Actin (Actin-RT-F1 and Actin-RT-R1,
Table S1) and the relative expression of Scs6 was calculated using
the 2�ΔΔCT method (Livak & Schmittgen, 2001) and the sample
collected from 0 h after inoculation was used as the control.

Binary vector construction and Agrobacterium-mediated
transformation of barley

To determine the function of Scs6, two binary vectors for expres-
sion of Scs6 (Fig. S2) were constructed and used to transform
Golden Promise and SxGP DH-47 (DH47), which are resistant
to isolate ND90Pr, using the Agrobacterium-mediated transfor-
mation method. The whole coding sequence (CDS) of Scs6 was
synthesized by GenScript (Piscataway, NJ, USA) and inserted
between the SpeI and BsrGI restriction sites of the binary vector
pANIC12A (Mann et al., 2012), producing a new construct
pANIC12A-Scs6 with the Scs6 gene driven by a Ubi promoter
and stopped by a NOS terminator. Another binary vector based
on pBract202 (Smedley & Harwood, 2015) was constructed
(pBract202-pMla6-Scs6-tMla6, Fig. S2), which carries the coding
sequence of candidate Scs6 flanked by the 5 0 and 3 0 regulatory
sequences of Mla6. The two binary vectors pANIC12A-Scs6 and
pBract202-pMla6-Scs6-tMla6 were introduced into barley cv.
Golden Promise and DH47 by Agrobacterium-mediated transfor-
mation following the methods described by Bartlett et al. (2008)
and Brabham et al. (2023), respectively.

Transient gene expression in N. benthamiana and protein
detection by immunoblotting

Generation of entry and destination vectors for expression of
MLA1, MLA6, MLA22, and AVRA1 and AVRA6 is described in
Saur et al. (2019), Bauer et al. (2021). The WT coding sequence
without the stop codon of Scs6 and of MLA16, MLA18-1 and
MLA25 (Seeholzer et al., 2010) was amplified by PCR using
attB-primers followed by BP reaction into pDONR221 to gener-
ate a gateway-compatible entry clone (Table S1). Entry vectors
carrying WT cDNAs of MLA3, FT153, FT352-2 and MLA18-2
without stop codons and insect-cell codon-optimized ScSr50
were obtained by gene synthesis (GeneArt; Invitrogen). Plasmids
encoding chimeric SCS6/MLA1 and SCS6/MLA6 receptors were
assembled using the NEBuilder HiFi assembly Kit (NEB) based
on the domain boundaries reported in (Shen et al., 2003).
pENTR221-Scs6 was used as a template to generate Scs6S793F
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and Scs6H502V via PCR mutagenesis using the Q5 Site-Directed
Mutagenesis Kit (New England Biolabs, Ipswich, MA, USA).

LR-Clonase II (Thermo Fisher Scientific, Waltham, MA,
USA) was used to recombine the genes into the expression vector
pGWB517 that carries a C-terminal linker region followed by an
in-frame 4xmyc epitope tag (Nakagawa et al., 2007). The integ-
rity of all entry and destination vectors was confirmed by whole-
plasmid nanopore sequencing (Eurofins Genomics, Louisville,
KY, USA). Expression constructs were transformed into Agrobac-
terium tumefaciens GV3101 (pMP90RK) by electroporation.
Transformants were selected for 3 d at 28°C on LB agar medium
containing rifampicin (15 mg ml�1), gentamycin
(25 mg ml�1), kanamycin (50 mg ml�1), and spectinomycin
(50 mg ml�1). Transformants were cultured in liquid LB med-
ium containing the corresponding antibiotics at 28 h overnight,
after which they were harvested by centrifugation at 2500 g for
6 min and resuspended in infiltration buffer (10 mM MES
pH 5.6, 10 mM MgCl2, and 200 lM acetosyringone). Transi-
ent gene expression in leaves of 4-wk-old N. benthamiana plants
was performed via Agrobacterium-mediated transient expression
assays in the presence of the P19 and CMV2b suppressors of
RNAi silencing (Norkunas et al., 2018). The final OD600 of bac-
teria carrying expression vectors of immune receptors and silen-
cing suppressors was set to 0.5, unless stated otherwise. For the
expression of effector proteins, the OD600 was increased to 1.0
unless stated differently. Twenty-four hours after agrobacterium-
mediated gene delivery, IWF was infiltrated, as indicated. For
this, a small subset toward the outer part of the region of trans-
gene expression was infiltrated with c. 25–50 ll of IWF. Cell
death phenotypes were assessed and documented at 2 or 4 d after
agroinfiltration for IWF-triggered cell death or AVRA-triggered
cell death, respectively.

Ion leakage assays were performed as described in Lapin
et al. (2019). After agroinfiltration into N. benthamiana, the
plants were placed under a 16 h : 8 h, light : dark growth cham-
ber at 23°C. 6-mm leaf discs from N. benthamiana agroinfiltrated
leaves were collected at 24 h after agroinfiltration. IWF was infil-
trated before that at 18 h after agroinfiltration, as indicated. The
leaf discs were washed in 15 ml of Milli-Q water (5 MΩ*cm)
for 30 min, and subsequently transferred to a 48-well plate with
0.5 ml Milli-Q water in each well, and incubated in a growth
chamber with constant light. Ion leakage was measured at 6 h
after with a Horiba Twin Model B-173 conductometer. For sta-
tistical analysis, results of measurements of 6 individual leaf discs
were combined from 3 experiments. One-way ANOVA analysis
was used and significantly different values were labelled with dif-
ferent letters (adjusted P value < 0.05).

For the detection of protein accumulation, leaf material of four
individual plants was harvested 48 h after infiltration, flash-
frozen in liquid nitrogen and ground to powder using a Retsch
bead beater. Then, 100 mg plant tissue powder was resuspended
in 200 ll Urea-SDS sample buffer (50 mM Tris–HCl pH 6.8,
2% SDS, 8 M Urea, 4% b-mercaptoethanol, 5% Glycerol and
0.004% bromophenol blue) and vortexed at room temperature
for 10 min. After centrifugation at 16 000 g for 15 min, 10 ll
of supernatant were loaded onto a 10% SDS-PAGE without

prior boiling. Separated proteins were transferred to a PVDF
membrane and probed with monoclonal mouse anti-Myc
(1 : 3000, R950-25; Thermo Fisher Scientific), polyclonal rabbit
anti-GFP (1 : 3000, pabg1; Chromotek, Planegg, Germany) fol-
lowed by polyclonal goat anti-mouse IgG-HRP (1 : 7500,
ab6728; Abcam, Cambridge, UK) or polyclonal swine anti-rabbit
IgG-HRP (1 : 5000, PO399; Agilent DAKO, Santa Clara, CA,
USA) antibodies. Myc-tagged proteins were detected using
SuperSignal West Femto: SuperSignal substrates (Thermo Fisher
Scientific) in a 1 : 1 ratio. SuperSignal Femto Substrate was used
for AVRA1 and SuperSignal Substrate for AVRA6.

Sequencing of Scs6 homologs in cultivated and wild barley
accessions

The primer pair SCS6-F2 and SCS6-R17 (Table S1) was used to
amplify the whole gene of Scs6 in cultivated and wild barley
accessions (Datasets S1, S2). PCR products were purified using
Quick PCR Purification Kit (Thermo Fisher Scientific) and
sequenced by EurofinGenomics (Louisville, KY, USA) using pri-
mers F2, R2, R3, SCS6-Seq-R1, SCS6-Seq-F1, and SCS6-Seq-
F2 (Table S1). Homologs were aligned against the CDS of Scs6
and any single nucleotide polymorphism (SNP) was validated by
checking the sequence quality manually. Finally, the sequences of
Scs6 homologs excluding introns were translated into amino acid
sequences and used for phylogenetic analysis.

Phylogenetic analysis of Scs6 andMla alleles

Previously published MLA protein sequences were retrieved from
NCBI and aligned via SnapGene using Clustal Omega. Protein
sequences of SCS6 variants in wild barley identified in this study
were manually added to the alignment (Datasets S3, S4). A
BLAST search was conducted to identify MLA-like sequences in
the Triticeae using MLA1 and SCS6 as an input. The identified
candidate sequences were manually inspected to remove trun-
cated (> 840 aa) sequences. The resulting alignment was used to
generate neighbor-net networks as described in Maekawa
et al. (2019) using splitstree4 (Huson & Bryant, 2006). We
regarded the first N-terminal 161 amino acids that align with
SCS6 as the CC domain, the sequence stretching from amino
acid 162 to 551 as the NB domain, and the sequence from
amino acid 551 to the end as the LRR. To analyze sites under-
going positive selection, the Clustal alignment of protein
sequences as well as the corresponding nucleotide coding
sequences were used as an input for PAL2NAL to generate a
codon-aware MSA (Dataset S5). In this MSA, sites under episo-
dic positive selection were identified using the MEME algorithm
(Murrell et al., 2012) with default parameters and sites under
pervasive positive selection identified using FUBAR (Murrell
et al., 2013) with default settings. Both MEME as well as
FUBAR were accessed via the datamonkey application (Weaver
et al., 2018). The maximum-likelihood tree was constructed
using MEGA11 using the bootsstrap method (100 replications)
and based on amino acid substitutions with the Jones-Taylor-
Thornthon (JTT) method.
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Geographic distribution of wild barley accessions
susceptible to BsND90Pr

The geographic coordinates of sampled accessions from the
WBDC (Roy et al., 2010) and (Maekawa et al., 2019) were
plotted in QGIS 3.32. Geographic vector map datasets
were downloaded from the Natural Earth repository
(http://www.naturalearthdata.com).

Results

SCS6 is a naturally occurring variant of MLA subfamily 2
CNL receptors

To molecularly isolate Scs6, we applied the MutChromSeq
approach (Steuernagel et al., 2017) (Fig. 1a). We first mutagen-
ized seeds of the susceptible barley cultivar Bowman with ethyl
methanesulfonate (EMS; Williams et al., 1992) and screened M2

families derived from c. 1500 M1 plants by inoculation of the
seedlings with B. sorokiniana isolate ND90Pr (BsND90Pr) (Fig. 1a;
Materials and Methods section). A total of seven resistant M2

families (EMS14, EMS494, EMS621, EMS623, EMS787,
EMS1317 and EMS1473) were identified, each characterized by
drastically reduced cell death lesion formation in BsND90Pr-
inoculated leaves compared to WT Bowman (Fig. 1b). Next, we
flow-sorted chromosome 1H from five of the resistant EMS
mutants and WT Bowman (Fig. S3), performed multiple displa-
cement amplification (MDA) and BGISEQ-500 DNA sequen-
cing of the 1H chromosomes (Table S2). We mapped sequence
reads of each mutant line to the Bowman 1H assembly using the
MutChromSeq pipeline and identified only one Bowman scaf-
fold (scaffold_4918245 with a length = 23 130 bp) that was
mutated in four mutant lines (EMS14, EMS621, EMS1317 and
EMS1473) or deleted (the whole 23 130 bp sequence was miss-
ing) in one mutant (EMS494) (Table S3). The four mutant lines
(EMS14, EMS621, EMS1317 and EMS1473) each carry differ-
ent nonsynonymous single nucleotide substitutions in a single
gene (Fig. 1c). These substitutions are consistent with EMS alky-
lating activity on guanine residues and result in either premature
stop codons or deduced single amino acid substitutions in the 5 0

coding region of a candidate Scs6 gene (Fig. 1c). Targeted geno-
mic DNA resequencing of this gene, amplified by PCR from all
seven mutant lines, validated the MutChromSeq analysis and
identified two additional EMS mutant lines, EMS787
and EMS623, each carrying unique nonsynonymous single
nucleotide substitutions that resulted in a premature stop codon
in the 5 0 or a deduced single amino acid substitution in the 3 0

coding region, respectively, making it likely that the correspond-
ing WT gene is Scs6 (Fig. 1c). The deduced protein of candidate
Scs6 consists of 959 amino acids with a tripartite domain organi-
zation typical of canonical CNL-type immune receptors, that is
an N-terminal coiled-coil domain (CC), a central nucleotide-
binding domain (NB), and C-terminal leucine-rich repeats
(LRRs) (Fig. 1c). Protein sequence alignment with MLA/RGH1
variants found in multiple wild barley populations identified the
candidate SCS6 as a novel member of the MLA receptor

subfamily 2 (Maekawa et al., 2019). This subfamily differs from
MLA subfamily 1 mainly by polymorphisms in the CC domain,
but both subfamilies have an overall high protein sequence simi-
larity of at least 88%.

Scs6 is necessary and sufficient to confer susceptibility to
BsND90Pr in barley

To further confirm that the candidate Scs6 confers susceptibility
to BsND90Pr in barley, we generated transgenic plant lines in
BsND90Pr-resistant barley cultivar Golden Promise (GP) and bar-
ley line SxGP DH-47 (DH47) using two binary vectors that carry
the coding sequence of candidate Scs6 flanked either by the maize
Ubi promotor and NOS terminator sequences or by 5 0 and 3 0 reg-
ulatory sequences of barley Mla6, respectively (Fig. S2). The Scs6
transgenic plants obtained from both GP and DH-47 genetic back-
grounds showed a strong susceptibility reaction to BsND90Pr when
Scs6 transgene copies were present (Figs 2, S4; Table S4), validating
that the candidate gene is Scs6. We monitored the gene expression
of Scs6 in Bowman, EMS14 as well as in the transgenic Scs6 line
DH4704659-8-4 upon pathogen challenge or without pathogen
infection. We observed Scs6 expression in both pathogen-inoculated

Fig. 2 Scs6 is necessary and sufficient to confer susceptibility to Bipolaris

sorokiniana ND90Pr in barley. (a) Representative images of infection
responses of Golden Promise (GP) and derived transgenic Scs6 T1 plants to
B. sorokiniana ND90Pr, 7 d after inoculation. (b) Representative images of
infection responses of SxGP DH47 (DH47) and derived transgenic Scs6 T3
plants to B. sorokiniana ND90Pr, 7 d after inoculation. + indicates the
presence of Scs6; � indicated the absence of Scs6. See also Supporting
Information Figs S1, S2, S4, S5 and Table S4.
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and noninoculated Bowman plants, indicating that Scs6 expression
is not induced by pathogen infection (Fig. S5). Expression profiles
of Scs6 were similar in Bowman and EMS14 after inoculation with

BsND90Pr or its NPS1 mutant (Dnps1 KO#3), suggesting that Scs6
expression is not impacted by mutations at Scs6 or pathogen chal-
lenge regardless of the NPS1-derived effector (Fig. S5). However,
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the expression profile of Scs6 in the transgenic Scs6 line
DH4704659-8-4 was different from those in Bowman and EMS14
after pathogen inoculation (Fig. S5). This could be due to different
genetic background (DH47) or promoter (Mla6 promoter) used
for driving the Scs6 expression or a combination of the two factors.
Taken together, we conclude that Scs6 is not only necessary for sus-
ceptibility to BsND90Pr in cultivar Bowman but also sufficient to
confer susceptibility to the fungal pathogen when introduced as
transgene in both tested resistant barleys lacking the receptor.

Barley SCS6 is activated by a BsND90Pr nonribosomal
peptide effector to induce cell death in barley and
N. benthamiana

In previous studies, we identified two fungal genes in BsND90Pr

which encode a nonribosomal peptide synthetase (NRPS; NPS1)
and a 4 0-phosphopantetheinyl transferase (PPTase), respectively
(Leng & Zhong, 2012; Condon et al., 2013). Both NPS1 and
PPTase are necessary for BsND90Pr to become virulent and induce
necrotic lesions in Bowman leaves, and PPTase is required for
activation of the NRPS enzyme (Leng & Zhong, 2012; Condon
et al., 2013). We inoculated the barley lines Bowman, Golden
Promise, DH47 as well as the Scs6 transgenic lines GPT1-3 and
DH4704659-8-4 with two independent NPS1 mutants (Dnps1
KO#3 and Dnps1 KO#9). The results confirmed that Scs6-
mediated susceptibility to BsND90Pr depends on NPS1 (Fig. S1).
We hypothesized that BsND90Pr synthesizes and delivers a nonri-
bosomal peptide effector inside barley cells to induce SCS6-
mediated cell death thereby facilitating its necrotrophic growth.
We attempted to produce the effector by in vitro culture of
BsND90Pr in nutrient-limited media, but the fungal culture fil-
trates did not elicit necrotic symptoms after infiltration into Bow-
man leaves (data not shown). We reasoned that the fungus might
produce the effector during infection in planta. Therefore, we
inoculated Bowman seedlings with WT BsND90Pr and collected
Intercellular Washing Fluid (IWF) from leaves seven days after
the inoculation (denoted IWFND90Pr). When IWFND90Pr was
infiltrated into healthy leaves of susceptible Bowman, resistant
ND B112, resistant EMS14 and previously characterized double-
haploid (DH) progeny derived from a cross between susceptible

Bowman and resistant Culicuchima (Leng et al., 2018), only sus-
ceptible barley lines harboring Scs6 developed necrotic lesions at
the sites of IWF infiltration (Figs 3a, S6a,b). This indicates that
susceptibility to isolate BsND90Pr and cell death activity of
IWFND90Pr both depend on the presence of Scs6. IWF collected
from barley leaves inoculated with two independent NPS1
knockout mutants (BsND90Pr Dnps1 KO#3 and KO#9 with the
corresponding IWF denoted as IWFDnps1 KO#3 and KO#9,
respectively) failed to induce necrotic leaf lesions in Scs6-
containing barley lines (Fig. 3a). Cell death activity of
IWFND90Pr on Bowman was retained upon prolonged heat treat-
ment of the IWF but lost after proteinase K incubation, consis-
tent with an NRPS-derived effector (20 min 95°C; Fig. S6c).
Collectively, these results suggest that BsND90Pr secretes a nonri-
bosomal peptide effector that can be recovered by IWF extrac-
tion, to trigger Scs6-dependent cell death in barley.

To investigate whether SCS6 can serve as a target of the
BsND90Pr-derived NRP effector, we expressed the barley CNL in
leaves of heterologous Nicotiana benthamiana, a dicotyledonous
plant. We delivered WT Scs6 or a scs6 mutant via Agrobacterium
tumefaciens infiltration. Scs6 expression in N. benthamiana caused
a rapid and robust induction of cell death after infiltration of
IWFND90Pr but not IWFDnps1 KO#3 (Fig. 3b). Expression of scs6
present in EMS mutant 623 (SCS6S793F) followed by IWFND90Pr

infiltration failed to result in a cell death response. This is consis-
tent with the finding that the EMS mutant 623 in barley is resis-
tant to isolate BsND90Pr (Fig. 1c), suggesting that the
corresponding single amino acid substitution S793F in the SCS6
LRR domain renders the protein insensitive to the BsND90Pr-
derived effector (Fig. 3b). Expression of a Scs6 variant
(SCS6H502V) resulting from a single amino acid substitution in
the conserved MHD motif of the NB domain rendered SCS6
autoactive, that is SCS6H502V-mediated cell death in N.
benthamiana occurred in the absence of IWFND90Pr (Fig. 3b).
Equivalent substitutions in the MHD motif have been shown to
result in autoactive MLA immune receptors triggering cell death
in planta in the absence of matching Bgh avirulence effector pro-
teins (Bai et al., 2012). WT SCS6 and SCS6S793F accumulated to
similar steady-state levels in N. benthamiana leaf tissue (Fig. 3e).
However, the autoactive SCS6H502V variant was undetectable,

Fig. 3 Bipolaris sorokiniana ND90Pr secretes an effector that activates Scs6 via its LRR region to cause cell death in barley and Nicotiana benthamiana.
(a) Barley genotypes that express Scs6 (Bowman) or negative control (ND B112) were infiltrated with intercellular washing fluid (IWF) that was isolated
from Bowman leaves infected either with wild-type (WT) B. sorokiniana ND90Pr (IWFND90Pr) or mutants B. sorokiniana Dnps1 KO#3 and KO#9 (IWFDnps1
KO#3 and KO#9), as indicated. (b, c) Nicotiana benthamiana plants were transformed transiently, as indicated. Genes were fused in between the 35S
promotor sequence and 4xmyc (receptors) or mYFP (AVRA6 without signal peptide) epitope sequences. Twenty-four hours after Agrobacterium-mediated
gene delivery, IWFND90Pr, IWFDnps1 KO#3 or water was infiltrated, as indicated. Cell death phenotypes were assessed and documented at 2 or 4 d after
agroinfiltration for IWF-triggered cell death or AVRA-triggered cell death, respectively. Representative pictures of at least six biological replicates (indicated
in brackets) are shown and combinations that resulted in cell death are highlighted with a blue box. CC, Coiled-coil domain; EV, Empty vector; LRR,
Leucine-rich repeat domain; NB, Nucleotide-binding domain. (d) Ion leakage assays of cell death in N. benthamiana leaves after agroinfiltration of the
indicated constructs. Results from three independent biological experiments (n = 18, 6 leaf disks for each experiment). Each individual dot represents one
measurement and the colors indicate the corresponding biological replicate. In each box, the top, middle and lower horizontal lines correspond to the
upper quartile, median and lower quartile values, respectively. Whiskers depict the maximum and minimum values, dots above or below the whiskers are
being considered outliers. Letters indicate significant differences (analyzed by one-way ANOVA with Tukey’s multiple comparisons test, adjusted P value
< 0.05). (e) For determination of protein levels of receptor-4xMyc (c. 114 kDa and AVRA6-mYFP (39 kDa)) in Nicotiana benthamiana, leaf tissue was
harvested 2 d post Agrobacterium infiltration. Western Blots are based on at least two replicates. See also Supporting Information Figs S6–S13.
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presumably because little or no protein was produced due to
immediate onset of cell death following Agrobacterium-mediated
delivery of the corresponding gene construct (Fig. 3e). In N.
benthamiana transiently expressing Scs6, IWFND90Pr treated at
95C for 5 min remained active in triggering the cell death, but
lost its activity after the proteinase K treatment (Fig. S6d). Taken
together, these results demonstrate that barley Scs6 expression in
heterologous N. benthamiana is sufficient to recapitulate an
IWFND90Pr-dependent cell death.

BsND90Pr-delivered effector specifically activates SCS6 via
its LRR and NB domains

To further characterize SCS6-mediated cell death in planta, we
constructed a series of hybrid receptors between SCS6 and MLA
subfamily 1 immune receptors MLA6 or MLA1, guided by their
shared modular domain architecture. The respective gene con-
structs were expressed in N. benthamiana following agroinfiltra-
tion and tested for their ability to induce cell death in the
presence of matching Bgh avirulence effectors, AVRA1 or AVRA6,
or IWFND90Pr or IWFDnps1 (Figs 3, S7–S13; Bauer et al., 2021).
MLA1 and MLA6 were activated by cognate avirulence effectors
AVRA1 and AVRA6, respectively, but not IWFND90Pr, indicating
that MLA recognition specificities for the proteinaceous and non-
ribosomal peptide effectors are retained despite receptor overex-
pression. Hybrid receptors constructed through the exchange of
the N-terminal CC domain of MLA1 or MLA6 with the corre-
sponding sequence-diverged CC domain of SCS6 retained the
ability to detect Bgh effectors AVRA1 or AVRA6, respectively
(Figs 3, S7–S13). This is consistent with previous data showing
that recognition specificities of MLA1 and MLA6 for the match-
ing Bgh avirulence effectors are mainly determined by their poly-
morphic C-terminal LRRs (Shen et al., 2003). Similarly, SCS6

hybrids carrying the CC domain of either MLA1 or MLA6
retained the ability for cell death activation upon IWFND90Pr

infiltration (Figs 3, S7–S13). This indicates that the CC domains
of SCS6 and MLA1/MLA6 receptors are functionally inter-
changeable when mediating cell death in N. benthamiana,
although the corresponding MLA subfamilies 1 and 2 are mainly
differentiated by this polymorphic N-terminal CC module.
Recognition of AVRA1 and AVRA6 by SCS6-MLA hybrids
required the presence of both NB and LRR domains from
MLA1/MLA6 receptors. A hybrid receptor carrying MLA6 CC
and NB domains and the SCS6 LRR stimulated cell death upon
IWFND90Pr infiltration, although cell death activity was signifi-
cantly weaker compared to WT SCS6 (M6LRRS6; Fig. 3b,c).
However, when the LRR of MLA1 was exchanged with the SCS6
LRR (M1LRRS6), the resulting hybrid was nonresponsive to
IWFND90Pr (Fig. S10), indicating that both SCS6 NB and LRR
domains are involved in SCS6 activation by the BsND90Pr nonri-
bosomal peptide effector. All tested hybrid receptors accumulated
to similar steady-state levels in N. benthamiana leaf tissue
(Figs 3e, S10b). These findings suggest that a BsND90Pr-released
nonribosomal peptide effector specifically activates SCS6 via its
LRR and NB domains.

Scs6 susceptibility to spot blotch is common in barley

In nature, direct activation of SCS6-mediated cell death might be
a strategy for the spot blotch pathogen to sustain its necrotrophic
growth phase on susceptible barley. Therefore, we investigated
the prevalence of Scs6-mediated susceptibility in domesticated
and wild barley (Fig. 4, Datasets S1, S2). We previously per-
formed BsND90Pr inoculation experiments with 1480 domesti-
cated barley lines (Wang et al., 2017). We extended this dataset
by testing another 571 domesticated and 367 wild barley lines,

Fig. 4 Scs6 susceptibility to spot blotch is
common in wild and cultivated barley.
(a) Summary of inoculation experiments of wild
barley (Hordeum spontaneum) accessions,
including accessions from the Wild Barley
Diversity Collection (WBDC) (Roy et al., 2010;
Maekawa et al., 2019), and a panel of Hordeum
vulgare germplasm with Bipolaris sorokiniana
isolate ND90Pr. (b) Geographic distribution of
surveyed Hordeum spontaneum accessions. The
1–9 disease rating scale described by Fetch &
Steffenson (1999) was used to rate the spot
blotch disease after inoculation of ND90Pr.
Plants with an average disease score of 1 to 3
were classified as resistant, 4 to 5 as moderately
resistant, and 6 to 9 as susceptible. Susceptibility
or resistance and moderate resistance to B.

sorokiniana ND90Pr is indicated in red or blue,
respectively. Scale: 500 km (large map) and
100 km (map section on the left). See also
Supporting Information Datasets S1, S2.
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the latter consisting of 318 accessions from the Wild
Barley Diversity Collection (WBDC) and 49 additional H. spon-
taneum lines belonging to nine populations distributed through-
out the Fertile Crescent (Roy et al., 2010; Pankin et al., 2018).
Among the 346 susceptible domesticated barley accessions, we
confirmed the presence of a Scs6 allele by PCR in 234 lines
tested. Of the latter, we additionally determined full-length Scs6
sequences in 69 lines. In one of the resistant lines in which a Scs6
allele was identified by PCR, DNA sequencing revealed that the
gene encodes a truncated protein (Clho13653, 844 aa instead of
959 aa).

Thirty-two wild barley accessions were susceptible to BsND90Pr

(Fig. 4a). Based on targeted DNA sequencing of twenty acces-
sions and seven previously sequenced wild barley accessions
(Maekawa et al., 2019), we verified that they encode closely
related SCS6 haplotypes (> 97.90% protein sequence identity).
FT170, for example, is highly susceptible and carries FT170-1 as
its sole subfamily 2 member, previously designated Mla18-1
(Maekawa et al., 2019). Barley line FT153 was clearly susceptible
to BsND90Pr although previously only one MLA subfamily 1 var-
iant was annotated at its Mla locus (FT153-1) (Maekawa
et al., 2019), but the DNA sequencing of the corresponding
genomic region detected a Scs6 haplotype (FT153-2) that had
escaped earlier analysis (Maekawa et al., 2019). Thus, susceptibil-
ity of wild and domesticated barley to BsND90Pr spot blotch is
strictly linked to the presence of Scs6, identified here as a member
of MLA subfamily 2.

The SCS6 receptor is likely a Hordeum-specific innovation

To investigate the evolutionary history of SCS6/MLA-mediated
susceptibility to spot blotch, we curated a phylogenetic tree of all
MLA variants found in wild and domesticated barley using
neighbor-net analysis of full-length proteins. This revealed that
SCS6 variants cluster within MLA subfamily 2 (Fig. 5a). In com-
parison to sequence divergence of individual MLA recognition
specificities belonging to subfamily 1, sequence variation between
SCS6 variants appear to be more limited although the corre-
sponding accessions were sampled in distinct geographical
regions and belong to different H. vulgare subsp. spontaneum
populations (Fig. 5a). We examined an array of MLA subfamily
1 and subfamily 2 variants for sensitivity to IWFND90Pr in N.
benthamiana and found that not only SCS6, but also subfamily 2
variants MLA16 and MLA18-1, can mediate effector-induced
cell death and can therefore be considered SCS6 variants
(Fig. 5b). However, sensitivity to the IWF was not shared among
all MLA subfamily 2 members (e.g. MLA25, ScSr50; Fig. 5b–d).
This shows that there is natural genetic variation among all avail-
able MLA subfamily 2 members that accounts for their differen-
tial sensitivity to the BsND90Pr NPS1-derived effector as well as
susceptibility to the pathogen.

We extended our aforementioned phylogenetic analysis, lim-
ited to Hordeum RGH1 variants, by including full-length pro-
teins encoded by Mla orthologs or paralogs in other Triticeae
species, including wheat (Triticum) and rye (Secale), and the wild
grass Dasypyrum villosum (Fig. S14; Z. Huang et al., 2022). MLA

subfamilies 1 and 2 are mainly distinguished by their poly-
morphic CC domains (e.g. 65% identity and 81% similarity for
MLA6 and SCS6 CC domains; Maekawa et al., 2019). The CC
domains of some MLA haplotypes present in D. villosum can be
assigned to MLA subfamily 1, while others are assigned to MLA
subfamily 2 (Fig. S15), indicating that the differentiation of the
CC domain occurred before the speciation of barley and Dasy-
pyrum villosum, that is c. 14.9 million years ago (Ma), which pre-
dates the divergence of wheat and barley 8 Ma (Zhang
et al., 2023). Notably, we did not identify SCS6 homologs in
other grass species, suggesting that SCS6 is likely a Hordeum-
specific innovation. We performed statistical analysis on the cod-
ing sequences of Scs6 variants, MLA subfamily 2 members from
barley, and other Mla subfamily 2 members in the Triticeae to
identify sites under positive selection. Strong signatures of posi-
tive selection in the LRR domain of Triticeae Mla subfamily 2
members are consistent with the observation that some of them
confer resistance to pathogens not only in barley but also in rye,
such as ScSr50 (Fig. S16; Mago et al., 2015; Maekawa
et al., 2019). SCS6 variants may be subject to purifying selection,
which could explain their low-sequence diversity and weak signa-
tures for diversifying selection.

Discussion

We have shown here that barley Scs6 is necessary and sufficient
to confer hyper-susceptibility to necrotrophic B. sorokiniana iso-
late BsND90Pr. SCS6 is encoded at the complex Mla locus on
chromosome 1H, which harbors three highly dissimilar but
physically linked NLR families, Rgh1, Rgh2 and Rgh3 (Wei
et al., 1999, 2002). All characterized disease resistance specifici-
ties at this locus were exclusively assigned to the Rgh1 family
and a survey of wild barley revealed that Rgh1 members are
further sequence-diversified into two subfamilies, termed MLA
subfamily 1 and subfamily 2 (Maekawa et al., 2019). SCS6
shares 82% amino acid sequence identity with MLA6 and 28%
and 24% sequence identity with RGH2 and RGH3, respec-
tively, suggesting that a bona fide RGH1 member is needed for
disease susceptibility of BsND90Pr. Expression of barley Scs6, but
not barley Mla1 or Mla6, in evolutionarily distant N. benthami-
ana reconstitutes a cell death response, specifically triggered by
IWF collected from barley plants infected by BsND90Pr with an
intact VHv1 locus. Taken together with the capacity of autoac-
tive SCS6H502V to mediate cell death in the absence of a patho-
gen effector and the fact that all resistant EMS mutants carry
mutations in Scs6, this indicates that SCS6 acts as a singleton
NLR activated by the NPS1-derived nonribosomal peptide
effector. The deduced function of SCS6 as a virulence target of
a necrotrophic pathogen contrasts with characterized immune
receptors for biotrophic or hemibiotrophic pathogens encoded
by Rgh1. In addition, only SCS6 is activated by a deduced small
molecule, whereas all other RGH1 members are activated upon
sensing proteinaceous pathogen effectors to confer immunity
(Maekawa et al., 2012; Lu et al., 2016; Chen et al., 2017; Saur
et al., 2019; Bauer et al., 2021; Brabham et al., 2023; Cao
et al., 2023).
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Drastically reduced fungal biomass on barley scs6 leaves com-
pared to WT Scs6 Bowman following inoculation with WT
BsND90Pr supports our conclusion that Scs6 is a virulence target

for the fungus. As the reduced fungal biomass is tightly linked to
loss of infection-associated host cell death on scs6 mutants, it
raises the possibility that Scs6-triggered signaling and/or cell
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death promotes the necrotrophic lifestyle of the spot blotch
pathogen. Two deduced NRPSs are encoded at the VHv1 locus
in the BsND90Pr genome and are unique to pathotype 2 strains
(Valjavec-Gratian & Steffenson, 1997b; Condon et al., 2013).
Since deletion of one of the two NRPS genes at VHv1 is sufficient
to abolish high virulence of BsND90Pr on cultivar Bowman (Con-
don et al., 2013), we propose that a nonribosomally encoded
peptide effector produced by the fungus activates the SCS6 recep-
tor. Our data obtained with transgenic barley show that Scs6 is
the only host factor needed to render resistant barley cultivars
lacking this CNL hyper-susceptible to BsND90Pr. This finding
together with the observation that expression of barley Scs6 is suf-
ficient to reconstitute a cell death response in evolutionarily dis-
tant N. benthamiana in response to IWFND90Pr infiltration,
suggest that SCS6 is likely the direct virulence target for the
NRPS-derived effector. However, we cannot exclude the possibi-
lity that the NRPS-derived effector targets an unknown factor
conserved in barley and N. benthamiana, which is needed for
Scs6 activation.

Besides direct binding of pathogen avirulence effectors to the
LRR domain, plant NLR receptors can also indirectly sense
effector-mediated modifications in host proteins that serve as
virulence targets (Cesari, 2018; Burdett et al., 2019; Wang
et al., 2019a,b). In such an indirect activation model for SCS6
one would expect the formation of a preactivation receptor com-
plex through specific association with an unknown barley viru-
lence target for the BsND90Pr-derived effector. As Scs6 is shown
here to be a lineage-specific innovation in barley (Hordeum), it
seems unlikely that a preactivation SCS6 complex can assemble
in heterologous N. benthamiana, as this would imply an excep-
tional degree of evolutionary conservation of a hypothetical viru-
lence target between dicotyledonous and monocotyledonous
plants – species that diverged from each other c. 140 Ma (Chaw
et al., 2004). Thus, our results contrast with the indirect recogni-
tion of the victorin toxin by the LOV1 CNL of A. thaliana
through victorin-mediated disruption of AtTRXh5 activity (Lor-
ang et al., 2012). In agreement with our conclusion, neither the
expression of LOV1 nor AtTRXh5 alone in N. benthamiana leaves
is sufficient to induce cell death after victorin infiltration (Lorang

et al., 2012). If Vb/Pc-2 in oat is the same gene and encodes an
NLR (Mayama et al., 1995; Wolpert & Lorang, 2016), it will be
interesting to test whether this receptor from the natural host of
C. victoriae is directly or indirectly activated by victorin. Finally,
the reconstitution of IWF-triggered and barley SCS6-dependent
cell death in heterologous N. benthamiana suggests that the
BsND90Pr NPS1-derived effector can enter plant cells in the
absence of pathogen infection structures and in the absence of a
potential host species-specific surface receptor or transporter.

Similar to the proposed function of SCS6 as a direct virulence
target for the BsND90Pr NPS1-derived effector, experimental evi-
dence, including structural data from an MLA-effector complex
(Lawson et al., 2024), suggests that several other characterized
barley RGH1 CNLs directly bind to proteinaceous avirulence
effectors delivered by biotrophic B. graminis f sp hordei via the
polymorphic LRR for receptor activation. These include MLA7,
MLA10, MLA13, and MLA22, which respectively bind to
sequence-diversified avirulence effectors AVRA7, AVRA10,
AVRA13 and AVRA22 that share a common structural scaffold
(Saur et al., 2019; Bauer et al., 2021; Cao et al., 2023). Similar to
SCS6, matching pairs of these MLA receptors and AVRA effec-
tors are necessary and sufficient to induce a cell death response in
heterologous N. benthamiana. Additionally, the CNL receptor
encoded by the stem rust resistance gene ScSr50 in wheat, an
orthologue of barley Rgh1 derived from rye chromosome 1R,
assigned here to MLA subfamily 2, appears to bind directly to
the stem rust effector AvrSr50 (Chen et al., 2017; Ortiz
et al., 2022). Collectively, this indicates that RGH1 CNLs may
have a propensity to interact directly with structurally distinct
proteinaceous and even specialized nonribosomal peptide effec-
tors.

One of the EMS-induced mutants encodes a receptor variant
with a single amino acid substitution in the LRR domain,
SCS6S793F, which results in both loss of susceptibility to BsND90Pr

in barley and loss of cell death activity in response to IWFND90Pr

infiltration in N. benthamiana (Figs 1, 3). Based on an
AlphaFold2-generated SCS6 model, the residue S793 has an
outward-facing side chain and is located on the concave side of
the LRR. This, together with our observation that the SCS6 LRR

Fig. 5 Diversity at the barley MLA locus underlies differential sensitivity to the BsND90Pr NPS1-derived effector as well as susceptibility to spot blotch.
(a) Neighbor-Net analysis of 114 MLA protein sequences including 28 previously identified MLA proteins from barley (Seeholzer et al., 2010) 59 sequences
from wild barley (Maekawa et al., 2019), as well as 27 sequences from wild or domesticated barley identified in this study. See also Supporting Information
Datasets S3–S5. MLA subfamily 1 and MLA subfamily 2 members are represented using yellow or blue edges, respectively, based on (Maekawa
et al., 2019) and Fig. S15. See also Fig. S17. Scale bar indicates size of network. No disease resistance activity has yet been identified for Subfamily 2
membersMla16,Mla18 andMla25 (Maekawa et al., 2019). (b) Nicotiana benthamiana plants were transformed transiently, as indicated. Twenty-four
hours after Agrobacterium-mediated gene delivery, IWFND90Pr or IWFDnps1 KO#3 was infiltrated, as indicated. Representative pictures of at least eight
biological replicates (indicated in brackets) were taken 2 d after agroinfiltration and combinations that resulted in cell death are highlighted with a blue box.
OD600 of A. tumefacienswas set to 0.5, except for ScSr50, for which the OD600 was reduced to 0.2 to attenuate auto-activity. (c) Protein accumulation
levels of expressed receptor-4xmyc constructs were determined by a-myc Western blotting using total protein extracted from N. benthamiana leaves, 1 d
after Agrobacterium infiltration. Western Blots are based on at least two replicates. (d) Ion leakage assays of cell death in N. benthamiana leaves after
agroinfiltration of the indicated constructs and infiltration of IWFND90Pr or IWFDnps1 KO#3. Results were from three independent biological experiments
(n = 18, 6 leaf disks for each experiment). Each individual dot represents one measurement and the colors indicate the corresponding biological replicate.
In each box, the top, middle and lower horizontal lines correspond to the upper quartile, median and lower quartile values, respectively. Whiskers depict
the maximum and minimum values, dots above or below the whiskers are being considered outliers. Letters indicate significant differences (analyzed by
one-way ANOVA with Tukey’s multiple comparisons test, adjusted P value < 0.05).
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domain is sufficient to confer IWF responsiveness to the corre-
sponding MLA6 hybrid receptor M6LRRS6, corroborates an
essential role of the SCS6 LRR as direct virulence target for the
fungal-derived NRPS effector. By contrast, in the BsND90Pr-
resistant barley mutants EMS14 and EMS1473, the deduced
inward-facing receptor residues S73 and L183 are substituted by
bulky phenylalanine, which is expected to destabilize the confor-
mation of the CC and NB-ARC domains, respectively. If SCS6
functions similarly to sensor CNLs Sr35 and ZAR1 in wheat and
Arabidopsis, then the latter two single amino acid substitutions
in the SCS6 receptor might abolish the virulence activity of
SCS6 by interfering with receptor oligomerization or Ca2+ pore
formation after binding of the effector to the SCS6 LRR domain
(Bi et al., 2021; F€orderer et al., 2022a). In addition to the LRR,
the NB domain was found to contribute to the specific targeting
of SCS6 by the peptide effector (Fig. S10), suggesting that the
effector might interfere with NB and LRR interdomain interac-
tions for receptor activation.

Although B. sorokiniana isolates are typically generalists that
can infect a wide range of Triticeae species, including wheat, the
isolate BsND90Pr is specialized to barley hosts. This is consistent
with our finding that Scs6 alleles were not detected in wheat or
wheat progenitors, suggesting that Scs6 might be a Hordeum-
specific innovation that evolved after the divergence of the genera
Triticum and Hordeum < 8 Ma (Middleton et al., 2014). This
could explain why BsND90Pr confers hyper-susceptibility only on
Scs6 barley genotypes, raising the possibility that Bs pathotype 2
acquired its unique VHv1 virulence gene cluster during interac-
tions with Hordeum hosts. However, whether VHv1 of BsND90Pr

evolved as a postdomestication event in agricultural environ-
ments or in wild barley pathogen populations and subsequently
spread to North America remains to be clarified.

All characterized Mla powdery mildew disease resistance speci-
ficities in barley belong to Mla subfamily 1, whereas no disease
resistance function has yet been assigned to barley Mla subfamily
2, which includes Scs6. Extensive data support the notion that
functional diversification of MLA subfamily 1 members is driven
by a coevolutionary arms race with the genetically highly diverse
biotrophic Bgh pathogen (Spanu et al., 2010; Pedersen
et al., 2012; Frantzeskakis et al., 2018; Maekawa et al., 2019).
Compared to MLA subfamily 1 members, our sequence analysis
of subfamily 2 members shows low-sequence diversity and weak
evidence for diversifying selection, if any. SCS6 is maintained in
several wild barley populations with an incidence of c. 8%, sug-
gesting a beneficial function for the host. For comparison, the
incidence of MLA subfamily 1 members conferring known pow-
dery mildew resistance in wild barley may be well below 8%, as
none of the 13 molecularly characterized MLA resistance specifi-
cities were found in 50 wild barley accessions representing nine
populations (Seeholzer et al., 2010; Maekawa et al., 2019). Thus,
the widespread occurrence of Scs6 and the ability of autoactive
SCS6H502V to trigger cell death in the absence of a pathogen
effector, makes it likely that the SCS6 CNL confers a fitness ben-
efit against unknown biotrophic or hemibiotrophic pathogens
endemic to barley populations in the Fertile Crescent, by acting
as sensor NLR. In contrast to the powdery mildew fungus, the

postulated pathogen does not currently appear to be engaged in a
rapid coevolutionary arms race with extant Hordeum spontaneum
germplasm.

The hyper-virulent BsND90Pr isolate emerged 6 yr after barley
cultivar Bowman was introduced in North Dakota in 1985.
Unexpectedly, our pathotyping survey shows that Scs6-dependent
susceptibility to BsND90Pr is twice as high in domesticated barley
as in wild barley populations (16% and 8%, respectively).
Domestication and breeding for disease resistance in barley may
have inadvertently resulted in the co-enrichment of Scs6-
dependent disease susceptibility to BsND90Pr, probably due to
linkage drag from another disease resistance gene on barley chro-
mosome 1H. Recently, the Pyrenophora teres f. maculata suscept-
ibility factor Spm1 was mapped to the Mla locus in the cultivar
Baudin (Muria-Gonzalez et al., 2023). Although it remains to be
tested whether Spm1 is also a member of the Rgh1 family, our
results demonstrate that the evolution of allelic variants of a sin-
gle R gene is shaped by contrasting selective pressures exerted by
multiple pathogens with different lifestyles. Elucidating the mole-
cular principles underlying SCS6 activation by the NPS1-derived
effector is likely to be of broader importance, as this could aid
future development and deployment of synthetic NLR receptors
in crops that are less vulnerable to manipulation by economically
important necrotrophic pathogens.
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of Bipolaris sorokiniana.
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isolate ND90Pr and two independent NPS1 mutants (Dnps1
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Fig. S2 Gene constructs used for transformation of barley cv.
Golden Promise and barley line SxGP DH-47.

Fig. S3 Chromosome flow sorting of 1H.

Fig. S4 PCR analysis of Scs6 transgenic barley plants.
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at different time points after inoculation with the wild-type iso-
late ND90Pr or the NPS1 knockout mutant (Dnps1 KO#3).

Fig. S6 Partial characterization of the Bipolaris sorokiniana isolate
ND90Pr NPS1-derived effector.

Fig. S7 Whole leaf pictures of Mla6/Scs6 chimeric receptors co-
expressed with AVRA6.

Fig. S8 Whole leaf pictures of Mla6/Scs6 chimeric receptors
expression and subsequent IWFND90Pr infiltration.

Fig. S9 Whole leaf pictures of Mla6/Scs6 chimeric receptors co-
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Fig. S10 A Bipolaris sorokiniana ND90Pr effector activates SCS6
to cause cell death in N. benthamiana depending on its nucleo-
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Fig. S11 Whole leaf pictures of Mla1/Scs6 chimeric receptors co-
expressed with AVRA1.
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expression and subsequent IWFND90Pr infiltration.
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