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Abstract  

Background  

Cardamine chenopodiifolia is an amphicarpic plant that develops two fruit morphs, one above and the 

other below ground. Above-ground fruit disperse their seeds by explosive coiling of the fruit valves, 

while below-ground fruit are non-explosive. Amphicarpy is a rare trait that is associated with polyploidy 

in C. chenopodiifolia. Studies into the development and evolution of this trait are currently limited by 

the absence of genomic data for C. chenopodiifolia.  

Results  

We produced a chromosome-scale assembly of the octoploid C. chenopodiifolia genome using high-

fidelity long read sequencing with the Pacific Biosciences platform. We successfully assembled 32 

chromosomes and two organelle genomes with a total length of 597.2 Mbp and an N50 of 18.8 kbp 

(estimated genome size from flow cytometry: 626 Mbp). We assessed the quality of this assembly using 

genome-wide chromosome conformation capture (Omni-C) and BUSCO analysis (97.1% genome 

completeness). Additionally, we conducted synteny analysis to infer that C. chenopodiifolia likely 

originated via allo- rather than auto-polyploidy and phased one of the four sub-genomes. 

Conclusions 

This study provides a draft genome assembly for C. chenopodiifolia, which is a polyploid, amphicarpic 

species within the Brassicaceae family. This genome offers a valuable resource to investigate the under-

studied trait of amphicarpy and the origin of new traits by allopolyploidy. 
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Introduction 

Cardamine chenopodiifolia Pers. (NCBI:txid 3101730) is an annual flowering plant that belongs to the 

Brassicaceae family and is native to, and widespread in, South America (Cabrera, 1967; Cheplick, 1983; 

Gorczyński, 1930; Persoon, 1807). C. chenopodiifolia is amphicarpic, meaning it bears fruit both above 

and below ground, with two very distinctive modes of seed dispersal (Fig. 1). Exploding seed pods are 

produced above ground and disperse their many, small seeds by explosive coiling of the fruit valves. 

Another type of seed pod develops below ground. The few, large seeds produced by each of these fruits 

are dispersed underground. The flowers on the main shoot of C. chenopodiifolia are positively geotropic 

and immediately grow towards the soil. These reduced flowers self-pollinate while growing through the 

soil and develop fruit that set seed underground. In contrast, the axillary shoots of C. chenopodiifolia 

grow away from gravity and produce flowers that typically self-pollinate, but can also be cross 

pollinated, and develop explosive fruit. The unique biology of C. chenopodiifolia makes it an ideal 

species to study the development and evolution of the unusual trait of amphicarpy.  

Cardamine is one of the largest genera in the Brassicaceae with more than 200 species (Al-Shehbaz, 

1988; Marhold et al., 2018), among which 58% are described as polyploids (Kučera et al., 2005). Based 

on chromosome counts, C. chenopodiifolia has been described almost 100 years ago as an octoploid 

(Manton, 1932). Another octoploid species in this genus, C. occulta, was recently sequenced as a model 

for ruderal weeds (Li et al., 2023). The diploid species C. hirsuta is commonly used as an experimental 

system for comparative studies with its relative Arabidopsis thaliana (Baumgarten et al., 2023; Hay and 

Tsiantis, 2016; Hay et al., 2014; Hofhuis et al., 2016; Monniaux et al., 2018; Vlad et al., 2014). The 

reference genomes and vast array of genetic tools in these two model plants make it attractive to develop 

emerging model species within this phylogenetic neighborhood. This provides another motivation to 

assemble the octoploid genome of C. chenopodiifolia as a valuable tool for comparative studies and 

polyploidy research. 

Here, we report the first whole-genome assembly for C. chenopodiifolia using single-molecule real-time 

sequencing technology from Pacific Biosciences (PacBio HiFi), and Omni-C technology. We show that 

the C. chenopodiifolia genome is octoploid and comprised of four sub-genomes, each with eight 

chromosomes. One sub-genome was more distinct than the others, allowing us to phase this set of 

chromosomes by gene tree topology analysis. 

Material and methods 

Growth conditions 

Cardamine chenopodiifolia seeds (Ipen: XX-0-MJG-19—35600) were obtained from the Botanic 

Garden of the Johannes Gutenberg University, Mainz, Germany, and self-pollinated for five generations 
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to ensure homozygosity. Aerial seeds were germinated in long-day conditions on ½ Murashige and 

Skoog (MS) plates after 7 days of stratification, then 1-week-old seedlings were transferred to soil and 

grown in a walk-in chamber (16h light, 20 °C; 8h dark, 18°C; 65% humidity). Cardamine hirsuta, 

herbarium specimen voucher Hay 1 (OXF), was cultivated on soil in long-day conditions (LD; days: 20 

°C, 16 h; nights: 18 °C, 8 h) after stratification on soil at 4°C in the dark for 7 days. 

Chromosome spreads 

Mitotic chromosome spreads were performed as previously described (Cromer et al., 2019) with minor 

modifications. Inflorescences were immediately fixed in fresh 3:1 Clarke’s fixative (3 vol. absolute 

ethanol: 1 vol. acetic acid). Fixative was refreshed 3 times. After fixation, inflorescences were dissected 

under a binocular, and white closed buds were collected (no pollen present). Samples were washed twice 

2 min in deionized water, and twice 2 min in 10 mM trisodium-citrate buffer (pH4.5, adjusted with HCl). 

Samples were digested for 1 hour 45 min at 37°C (digestionmix: 0.3% (w/v) Pectolyase Y-23 (MP 

Biomedicals), 0.3% (w/v) Driselase (Sigma), 0.3% (w/v) Cellulase Onozuka R10 (Duchefa), 0.1% 

sodium azide in 10 mM tri-sodium-citrate buffer). Three to six buds were transferred on a clean slide in 

a drop of water and dilacerated with a thin needle until it formed a suspension. 10 µl of 60% acetic acid 

was then delicately incorporated into the suspension with a hooked needle, and then the slide was heated 

on a hot block at 45°C for 1 min while slowly stirring. Another 10 µl of 60% acetic acid was added as 

the drop started to evaporate and stirred for a supplementary minute. To mount the slide, ice-cold fresh 

fixative solution was pipetted as a boundary around the droplet and allowed to invade the slide. Then, a 

jet of ice-cold fixative was applied twice directly onto the center of the circle. After the removal of 

excess fixative by tilting, the slide was dried at room temperature. Once dried, 8 µl of DAPI solution (2 

µg/ml in antifade mounting medium Citifluor AF1, Agar Scientific) was added onto a coverslip and 

mounted on the slide. Imaging was performed using a Zeiss Axio Imager Z2 microscope and Zen Blue 

software. Images were acquired with a Plan-Apochromat 100×/1.40 Oil M27 objective, Optovar 1.25× 

Tubelens. The excitation and detection windows for DAPI were set as follows: emission, 335–385 nm, 

detection, 420-470 nm. 

Flow cytometry 

Flow cytometry was performed according to a modified protocol from Doležel et al. (1992). To release 

nuclei, newly expanded leaves of C. hirsuta and C. chenopodiifolia were chopped with a sharp razor 

blade on a petri dish containing 300 µL of Galbraith’s buffer (45 mM MgCl2, 20 mM MOPS, 30 mM 

sodium citrate, 0.1 % (v/v) Triton X-100) (Galbraith et al., 1983) and including 50 mg/L RNAase. Nuclei 

suspensions were passed through 50 µm CellTrics® filters and stained with propidium iodide (PI) at a 

final concentration of 50 mg/L for 1 h on ice in darkness. Stained nuclei of C. hirsuta were analyzed 

separately and in combination with C. chenopodiifolia in a CytoFLEX (Beckmann Coulter) platform 

using the excitation and emission parameters for PI. 10 000 events were recorded for each sample and 
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gating was employed to exclude doublets and debris. Gating, analysis, and plotting were performed 

using the manufacturer’s software (CytEXPERT).  

Estimated genome size was calculated with the following formula where GS = genome size, 2C = mean 

peak position (PI-area):  

GS!.#$%&'(')**+',*- = GS!.$*./01- ∗
2C!.#$%&'(')**+',*-

2C!.$*./01-
 

DNA extraction, library construction, and sequencing 

For genome sequencing, high-molecular-weight (HMW) DNA was isolated from 2 g fresh, shock-frozen 

seedlings (liquid nitrogen) with the NucleoBond HMW DNA kit (Macherey Nagel, Düren, Germany) 

and DNA quality was assessed by capillary electrophoresis (Agilent FEMTOpulse). For PacBio library 

preparation, the HMW DNA was fragmented with g-tubes (Covaris) to get 20 kbp fragments and then a 

library was prepared according to the recommendations of the SMRTbell Express Template Prep Kit 2.0 

(Pacific Biosciences). Next, a size selection was applied to enrich for >=10 kbp fragments (BluePippin, 

Sage Sciences), followed by long-read sequencing on four SMRT cells on a Sequel II device with Sequel 

II Binding kit 2.0, Sequel II SMRT 8M cells, and Sequel II Sequencing Plate 2.0 chemistry for 30 hours 

and a final concentration of 110 pmolar on plate. Sequencing was performed at the Max Planck Genome-

centre Cologne. In parallel, a chromatin-capture library (Omni-C, Dovetail) was prepared according to 

recommendations from the vendor, followed by 2 x 150 paired-end sequencing on an Illumina NextSeq 

2000 device at Max Planck Genome-centre Cologne resulting in 71599541 reads. 

Assembly of C. chenopodiifolia genome 

We used GALA (gap-free long-read assembly tool, version 1.0.0) for de novo assembly of the C. 

chenopodiifolia genome (Awad and Gan, 2023). Since GALA uses preliminary assemblies to cluster 

long reads into multiple groups for chromosome-by-chromosome data analyses, three draft assemblies 

were constructed using 85× coverage PacBio Hifi reads using HiCanu v2.1 (Koren et al., 2017), Flye 

v2.4 (Kolmogorov et al., 2019) and Hifiasm 0.5-dirty-r247 (Cheng et al., 2021). Assembly was 

conducted using default parameters and an expected genome size of 600 Mbp. 

The straightforward application of GALA generated 35 scaffolding groups. Among them, two 

scaffolding groups were assembled into single contigs with telomeric motifs at one end, indicating each 

group represented a chromosome arm. We thus merged these two groups into a single scaffolding group 

and performed single-chromosome assembly using the LGAM module of GALA. The assembly of 

GALA was gap-free and complete, containing 32 pseudomolecules and 2 organelle chromosomes.  

We then polished the GALA assembly to enhance the assembly correctness. The HiFi raw reads were 

mapped to the GALA assembly using minimap2 v. 2.17-r941 and the command 'minimap2 -x asm20' 
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(Li, 2018). Then, we used an in-house genome polisher to enhance the correctness of the assembled 

genome. 

Minimap2 was used with the command-line option “-ax asm5” to map the final assembly of C. 

chenopodiifolia against the published reference genome of C. hirsuta (Gan et al., 2016) to phase the 32 

assembled chromosomes into four representative sub-genomes.  

Assembly quality validation 

Assembly contiguity was assessed with a Python script (see code availability). Assembly completeness 

was assessed by Benchmarking Universal Single-Copy Orthologs (BUSCO v.3.0.0) (Seppey et al., 

2019) with the dataset Embryophyta_odb9. To assess correctness, we used 'minimap2 -x asm20' to map 

the HiFi reads to the final assembly. Then, we collected the mapping statistics from samtools-stats 

(Danecek et al., 2021; Li et al., 2009). Finally, we called the variants and collected the variant calling 

statistics using BCFtools (Li, 2011). To evaluate collapsing, we collected the depth information using 

samtools depth and marked all the regions with depth = average depth*2 as collapsed regions. Finally, 

we used Python to plot the average value of window size 5000 bp. The Omni-C data were analysed with 

Juicer v1.6 (Durand et al., 2016b) and the contact map was visualized in Juicebox (Durand et al., 2016a). 

Alignment to C. chenopodiifolia transcriptome 

C. chenopodiifolia long and short read transcripts (obtained from 

https://www.ebi.ac.uk/ena/browser/view/PRJEB69676) were aligned to the C. chenopodiifolia 

assembly using HISAT2 v2.1.0 (Kim et al., 2019). 

Synteny analysis 

We assessed the large-scale similarity of chromosomes in the assembly using the wgd v2.0.22 pipeline 

(Chen and Zwaenepoel, 2023) with a draft annotation obtained from the Helixer web interface 

(https://www.plabipd.de/helixer_main.html). We made the required CDS sequence file (as well as the 

proteome file for further analyses with OrthoFinder) using the AGAT v1.0.0 GFF parser 

(agat_sp_extract_sequences.pl). We clustered these sequences into gene families using the wgd dmd 

command, calculated the synonymous substitution rate between family members with wgd ksd, and 

visualized these Ks values on a self-synteny map made by i-AdHoRe v3.0 (Proost et al., 2012) using 

wgd syn. We visualized the results using R v4.2.2 with the tidyverse v2.0.0 data manipulation suite 

(Wickham et al., 2019). Some repetitive tasks were sped up with GNU parallel (Tange, 2011). All 

software was run under default settings. 

Paralog divergence analysis 

We used the output of wgd ksd to visualize the distribution of paralog divergence in the C. 

chenopodiifolia genome, filtering out pairs of genes found on the same chromosome or having an 
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alignment coverage (alignment length divided by the larger gene length) ≤0.5 in order to reduce the 

noise from small-scale gene duplications and mis-grouped genes. This set of gene pairs was split into 

two parts, one with pairs involving the “most diverged” sub-genome (as inferred by gene tree analysis, 

see Results) and another with the remaining gene pairs.  

Gene tree topology analysis 

Taking the Crucihimalaya himalaica proteome (Zhang et al., 2019) as an outgroup, we inferred the 

rooted orthogroup gene trees for Cardamine chenopodiifolia and Crucihimalaya himalaica proteomes 

using OrthoFinder v2.5.5 (Emms and Kelly, 2019). We used these trees to find the most frequently 

observed relationships between the homeologs using Newick Utilities v1.1.0 (Junier and Zdobnov, 

2010) and gotree v0.4.5 (Lemoine and Gascuel, 2021). For this purpose, the tips of each tree were 

generalized to the chromosome where the gene is located using nw_rename, and redundant tips were 

then collapsed using nw_condense. Among the condensed trees, for each of the eight sets of four 

homeologous chromosomes (as found by synteny analysis) we counted trees matching each of 15 

possible rooted four-leaf topologies using nw_match. 

Data availability 

The PacBio and Omni-C raw read data and the genome assemblies generated by GALA in this study 

have been deposited at European Nucleotide Archive (ENA) PRJEB71776. 

Code availability 

The script for assessing assembly contiguity is available at:  

https://github.com/mawad89/assembly_stats. The source code of GALA is available from GitHub at 

https://github.com/ganlab/GALA under the MIT license.  

Results 

C. chenopodiifolia genome is octoploid 

To verify the ploidy of the C. chenopodiifolia plants used for sequencing, we performed chromosome 

spreads using mitotic cells of flower buds and counted 64 chromosomes (Fig. 2A). This suggests that C. 

chenopodiifolia has 8 sets of 8 chromosomes, typical of the ancestral crucifer karyotype (Lysak et al., 

2006). We then estimated genome size by flow cytometry, comparing the nuclei DNA contents of C. 

chenopodiifolia with C. hirsuta as standard reference. C. hirsuta has a genome size of 255 Mbp (Gan et 

al., 2016) and its nuclei were separated into five peaks representing a DNA content of 2C, 4C, 8C, 16C, 

and 32C (Fig. 2D-E). Pooling nuclei from both species for flow cytometry allowed us to compare their 

relative DNA content. We identified 3 peaks belonging to C. chenopodiifolia, representing DNA content 

of 2C’, 4C’ and 8C’ (Fig. 2B-C). The first 2C’ peak of C. chenopodiifolia had a mean position (PI-area 
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= 159474.8) slightly lower than the 8C peak of C. hirsuta, suggesting that its genome is octoploid (Fig. 

2B, D). We estimated the genome size of C. chenopodiifolia to be 626 Mbp (225 Mbp × (159474.8 / 

57315.6), see Methods). 

C. chenopodiifolia chromosome-level genome assembly 

To ensure homozygosity, C. chenopodiifolia plants were self-pollinated for 5 generations by single seed 

descent using aerial seeds, before sequencing. High molecular weight DNA was extracted from 

seedlings and sequenced using the PacBio Sequel II platform. We generated 103 Gb of raw DNA 

sequence (corresponding to 85× coverage) comprising 2978449 reads with a mean read length of 17.28 

kbp (Table 1, Fig.3A). Long reads were pre-assembled with HiCanu, Flye and Hifiasm softwares. We 

used these draft assemblies with GALA (Awad and Gan, 2023) to obtain a final assembly by 

chromosome-to-chromosome analysis without the need of Omni-C data. This resulted in an almost 

complete chromosome-level genome of 597 Mbp with N50 value of 18.8 kbp (Table 2). We obtained 32 

chromosomes, one mitochondrial genome, and one plastid genome. Only one gap was left in the 

centromeric region of chromosome 9 (Table 2). 

HiFi reads 

Total bases (Gb)  103  

Total reads  2978449  

Read N50 (kbp) 17.19  

Read mean (kbp)  17.28  

Read L50  1225263  

Coverage  85 x 

Table 1: PacBio HiFi dataset parameters 

Parameters Values 

Genome size (bp) 597’266’279  

Chromosomes 32 + 2 organelles  

N50 (kbp)  18.80  

L50  15  

N75 (kbp)  16.99  

L75  23  

Longest Chr (kbp)  24.07  

Gaps  1  

Ploidy  Octoploid  

Table 2: Statistical data for the Cardamine chenopodiifolia genome 

Assessment of genome quality  
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Hi-C technology allows chromosomal structure to be linked directly to genomic sequence and can, 

therefore, be used to achieve chromosome-scale scaffolding. Since our initial assembly had already 

resolved the 32 chromosomes of C. chenopodiifolia, we used our Omni-C data to assess its quality: 

71599541 raw Omni-C reads were mapped to the genome assembly using Juicer to generate a contact 

matrix. The contact maps results showed 32 unambiguous chromosomes with no obvious mis-

assemblies (Fig. 2B). 

We also evaluated the completeness of the genome assembly using Benchmarking Universal Single-

Copy Ortholog (BUSCO). 97.1% of the 1,440 conserved core Embryophyta genes were identified as 

complete (28.7% as single-copy genes and 68.3% as duplicated genes). Additionally, 0.6% of the genes 

were recognized as fragmented (Table 3). 

 Number of genes 

Complete BUSCOs  1397 (97.1%) 

Single-copy BUSCOs  414 (28.7%) 

Duplicated BUSCOs  983 (68.3%) 

Fragmented BUSCOs  8 (0.6%) 

Missing BUSCOs  35 (1.7%) 

Table 3: Benchmarking Universal Single-Copy Orthologs (BUSCO) 

When we mapped PacBio HiFi reads to the genome assembly with minimap2, we found the overall 

mapping rate was 99.98%, indicating that most of the sequencing data was represented (Table 4). We 

plotted the distribution of coverage depth for the whole genome (Figs. S1, S2). The coverage was regular 

along all chromosomes except for some regions with lower coverage on chromosomes 4, 5, 14, and 32, 

and with higher coverage on chromosomes 9, 12, and 28, indicating extended and collapsed sequences, 

respectively. 

To test the correctness of our assembly, we used BCFtools for variant calling (Table 4). A low number 

of variants is usually a sign of a correctly assembled genome. We obtained only 20800 variants, most of 

them being insertions or deletions, suggesting that our genome assembly is generally correct and is 

highly homozygous. 

Test Item Assembly 

Mapping statistics Mapped reads  2978150 (99.98)  

Unmapped reads 299 (1.00e-4)  

Mismatches 139046575 (2.70e-3)  

Insertions 84999110 (1.65e-3)  

Deletions 42298726 (8.21e-4)  

Indels 127297836 (2.47e-3)  
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Variant Calling statistics Total variants  20800 

SNPs 140 

Indels 20660 

Multiallelic sites 282 

Multiallelic SNPs  0 

Table 4: HiFi read mapping and variant calling 

Additionally, we used HISAT2 to align RNA-seq data from C. chenopodiifolia to the genome assembly. 

The transcriptome data comprised of Illumina short reads and PacBio Iso-Seq long reads 

(https://www.ebi.ac.uk/ena/browser/view/PRJEB69676). Short reads aligned from 91.64 to 94.04% 

while long reads aligned from 93.08% to 97.56%. 

C. chenopodiifolia is likely to be an allooctoploid 

In an attempt to group the chromosomes from our genome assembly into sub-genomes, we first 

compared C. chenopodiifolia chromosomes to C. hirsuta chromosomes by mapping our final assembly 

to the published reference genome of C. hirsuta (Gan et al., 2016). We obtained eight sets of four 

chromosomes, with each set mapping to one of the eight C. hirsuta chromosomes (Table 5). This 

suggests that the C. chenopodiifolia genome is composed of four sub-genomes, but does not elucidate 

their relationships. 

Polyploids have more than two sets of chromosomes and are typically classified as auto- or 

allopolyploids, depending on their evolutionary history. Autopolyploids arise by whole genome 

duplication within a single species. In contrast to this, allopolyploids are the result of a hybridization 

event between different species (Stebbins, 1947; Van de Peer et al., 2017). To investigate ploidy and 

distinguish between these two scenarios in C. chenopodiifolia, we first assessed the large-scale similarity 

of chromosomes by synteny analysis (Fig. 3C). We observed profound structural variation among all 

homeologs, which shows that different homeologs are unlikely to recombine and thus supports 

allopolyploidy. For example, there were instances where one of the four homeologs had a private big 

inversion, as seen in Chr28 as compared to Chr4, Chr12 and Chr20 (Fig. 3C). 

We then aimed to find the most frequently observed relationships between homeologous chromosomes. 

Therefore, we generated rooted orthogroup gene trees for C. chenopodiifolia and Crucihimalaya 

himalaica (outgroup) proteomes (Zhang et al., 2019). We found that in each of the eight sets of 

homeologs, one chromosome was preferentially resolved as sister to the three other chromosomes, 

suggesting that it belongs to the most diverged sub-genome (Fig.4A). Three tree topologies matching 

that condition were almost equally frequent in most of the homeologous groups. This means that 

although the four sub-genomes are dissimilar, as suggested by the synteny analysis, their relationships 
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are poorly resolved beyond the early-diverged sub-genome. Re-running OrthoFinder with the more 

sensitive IQ-TREE v2.2.2.1 tree inference software (Minh et al., 2020) did not improve the resolution.  

The divergence spectrum of paralogous genes appeared to form a single peak (Fig. 4B), contrary to the 

expectation of distinct sub-genome divergence events suggested from the synteny analysis above. 

However, the pairs involving the “most diverged” sub-genome, as found by tree topology analysis, 

formed a peak with the maximum slightly shifted towards higher divergence, corroborating the lower 

similarity of this sub-genome to the others, and suggesting that the one visible peak might be formed by 

a few smaller overlapping peaks produced by comparisons of similarly diverged sub-genomes (Fig. 4B).  

In conclusion, the C. chenopodiifolia genome is composed of four different sub-genomes. We could 

confidently phase one sub-genome and show it comprised chromosomes 1, 26, 11, 12, 21, 22, 7 and 16, 

with a one-to-one correspondence to chromosomes 1 to 8 of C. hirsuta, respectively (Table 5). 

 C. chenopodiifolia chromosomes 

C. hirsuta chromosomes  Phased sub-genome Unphased sub-genomes 

Chr1  Chr1  Chr9, Chr17, Chr25 

Chr2  Chr26  Chr2, Chr10, Chr18 

Chr3  Chr11 Chr3, Chr19, Chr27 

Chr4  Chr12  Chr4, Chr20, Chr28 

Chr5  Chr21 Chr5, Chr13, Chr29 

Chr6  Chr22 Chr6, Chr14, Chr30 

Chr7  Chr7 Chr15, Chr23, Chr31 

Chr8  Chr16  Chr8, Chr24, Chr32 

Table 5: Correlation of the C. chenopodiifolia chromosomes to the closest C. hirsuta chromosome. One 

sub-genome was phased by tree topologies and paralog divergence analysis (Fig. 4). 

Discussion 

Under-studied species are an important resource in light of climate change and biodiversity challenges. 

Investigation of trait diversity requires the characterization of unconventional model organisms and the 

establishment of genomic tools in these species. The Brassicaceae family is rich in species characterized 

by very diverse traits and different ecological adaptations (Nikolov et al., 2019). Moreover, this family 

contains the model species Arabidopsis thaliana and many other species with sequenced genomes, thus 

providing rich genomic resources for comparative studies. This motivated us to develop the polyploid 

species Cardamine chenopodiifolia as an emerging model organism in the Brassicaceae to study the 

unusual trait of amphicarpy. 
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We provide here a chromosome-level genome assembly for C. chenopodiifolia. Using the PacBio 

platform, we generated a 597.2 Mbp octoploid genome assembly composed of 32 chromosomes (2n = 

64), with an N50 length of 18.8 kbp. Both the estimated ploidy and genome size from this assembly 

agreed well with our results from cytology and flow cytometry. 

We used this C. chenopodiifolia genome assembly to investigate its polyploid origin. Octoploids are 

usually expected to arise from the whole genome duplication of a tetraploid, or by the hybridization of 

two different auto- or allotetraploid species. These scenarios are considered more likely due to the 

challenges inherent to successful meiosis in a newly formed polyploid (Bomblies and Madlung, 2014). 

Our synteny analysis revealed many rearrangements between C. chenopodiifolia homeologous 

chromosomes, which is an unexpected scenario for an autopolyploid with random chromosome pairing. 

In addition, there was no clear pattern of pairwise similarity as expected from a merger of two divergent 

autotetraploid genomes. Therefore, we think that C. chenopodiifolia might have four dissimilar sub-

genomes, resulting, for example, from the merger of two allotetraploids with non-overlapping parental 

species.  

Polyploids make up more than half of the large number of species in Cardamine (Kučera et al., 2005; 

Marhold et al., 2018), and hybridization between species has been previously reported for a number of 

these polyploids. For example, the allotriploid C. insueta and the allotetraploid C. flexuosa, are hybrids 

between C. amara and C. rivularis, and C. amara and C. hirsuta, respectively (Akiyama et al., 2021; 

Sun et al., 2020). Differences between the sub-genomes of C. chenopodiifolia, coupled with low 

heterozygosity in this selfing plant, might have facilitated the chromosome-level haploid assembly that 

we produced with minimal involvement of Hi-C scaffolding. As suggested by gene trees and the paralog 

divergence spectra, one of the sub-genomes is sister to the three other sub-genomes, whose relationships 

could not be resolved confidently. Future work will focus on phasing the remaining three sub-genomes 

and providing an annotation for the assembly. This is likely to help identify possible progenitors of C. 

chenopodiifolia.  

Polyploidy is thought to be a mechanism by which plants can adapt to stressful conditions, providing 

increased genetic variation and a better chance to evolve beneficial adaptations (Van de Peer et al., 2021, 

2017). Amphicarpic species are reported to grow in disturbed habitats (Cheplick, 1987), raising the 

possibility that polyploidy might have contributed to the de novo evolution of amphicarpy in C. 

chenopodiifolia as an adaptation to this stressful environment. Alternatively, geocarpy might have been 

a trait inherited from a progenitor species, contributing to the evolution of amphicarpy as a bet-hedging 

strategy for seed dispersal in variable conditions. Although geocarpy has not been reported in other 

Cardamine species, this trait is present in the distantly related species Geococcus pusillus J. Drum. in 

the Brassicaceae family (Cheplick, 1987). Whether a very wide cross, or an as yet undescribed geocarpic 

species in Cardamine, contributed to the origin of C. chenopodiifolia, are questions to be addressed in 
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future studies. In this regard, the C. chenopodiifolia genome is a valuable genomic resource to study the 

evolution and development of amphicarpy. 
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Figure and Legends 

 

Figure 1: C. chenopodiifolia is an amphicarpic species 

Amphicarpic plants bear aerial and subterranean fruit with distinct dispersal strategies and reproductive 

characters. 
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Figure 2: C. chenopodiifolia is octoploid and has 64 chromosomes 

(A) Metaphase spreads in an aerial C. chenopodiifolia flower cell stained with DAPI. Two examples are 

shown. (B-E) Flow cytometry analysis of a mixture of C. hirsuta and C. chenopodiifolia (B-C) or C. 

hirsuta alone (D-E). (B, D) The X-axis indicates the area of the signal from propidium iodide (PI-A) on 

a logarithmic scale. The Y-axis indicates the number of nuclei recorded (Count). Segments were drawn 

manually to cover each peak. Blue: C. hirsuta. Red: C. chenopodiifolia. The percentage of events 

corresponding to each peak over the total events is indicated. XC indicates the endopolyploidy level 

(e.g.: 2C - nuclei in a diplophasic state). (C, E) Single nuclei events were discriminated and by assessing 

propidium iodide fluorescence area (PI-A) versus height (PI-H). 
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Figure 3: Assembly of 32 gap-free chromosomes 

(A) HiFi Read density. (B) Omni-C contact matrix showing no mis-assembly. (C) Self-collinearity 

dotplot of the C. chenopodiifolia assembly. Each dot represents a pair of highly similar genes, the color 

reflecting their divergence (expressed in a number of synonymous substitutions per synonymous site, or 

Ks). Dark lines at Ks < 1 reflect the genome multiplication that happened in the Cardamine ancestors of 

C. chenopodiifolia. Thick lines delimit four groups of homeologous chromosomes. Note the large 

private inversions in some homeologs, e.g. in Chr28 as compared to Chr4, Chr12, and Chr20. 
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Figure 4: C. chenopodiifolia is allooctoploid 

(A) Relative frequency of five tree topology categories (columns) among eight sets of homeologous 

chromosomes (rows). In each row, there is one dominant topology category that suggests the existence 

of one most divergent chromosome. (B) Distribution of paralog divergences (expressed in number of 

synonymous substitutions per synonymous site, or Ks) in the C. chenopodiifolia genome. The dataset 

from the entire paranome (green) is split into pairs including the most divergent sub-genome (orange) 

and the combinations of genes from other sub-genomes (purple). 
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