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Summary
We present an easy-to-reproduce manual miniaturized full-length RNA sequencing (RNAseq)

library preparation workflow that does not require the upfront investment in expensive lab

equipment or long setup times. With minimal adjustments to an established commercial

protocol, we were able to manually miniaturize the RNAseq library preparation by a factor of up

to 1:8. This led to cost savings for miniaturized library preparation of up to 86.1% compared to

the gold standard. The resulting data were the basis of a rigorous quality control analysis that

inspected: sequencing quality metrics, gene body coverage, raw read duplications, alignment

statistics, read pair duplications, detected transcripts and sequence variants. We also included a

deep dive data analysis identifying rRNA contamination and suggested ways to circumvent these.

In the end, we could not find any indication of biases or inaccuracies caused by the RNAseq

library miniaturization. The variance in detected transcripts was minimal and not influenced by

the miniaturization level. Our results suggest that the workflow is highly reproducible and the

sequence data suitable for downstream analyses such as differential gene expression analysis or

variant calling.

Introduction

Next-generation sequencing (NGS) technologies have been

evolving rapidly in the last two decades and continue to do so

(Mardis, 2011; McCombie et al., 2019). NGS can be used for a

variety of different applications and is nowadays an integral part

of many genetic research projects. This became possible in part by

steadily decreasing sequencing costs (Wetterstrand, 2021).

This development not only enhanced the possibilities of whole

genome sequencing (Auton et al., 2015; Chung et al., 2017;

Harris and Wailan Alexander, 2021; Linderman et al., 2016) but

also mRNA sequencing projects (Li, 2021; Stark et al., 2019).

Because the transcriptome size is relatively consistent between

species, the sequencing costs for species with large genomes

benefit greatly by focusing on the protein-coding part of the

genome. Additionally, targeting only the mRNA for sequencing is

a useful complexity reduction when investigating the genotype–
phenotype relationship (Jehl et al., 2021; Piskol et al., 2013;

Shomroni et al., 2022; Wang et al., 2021). The relatively low

complexity of mRNA libraries and the increased read output of

large sequencing platforms expanded the multiplexing potential

in RNA sequencing (RNAseq) projects allowing for 384+ samples

to be pooled and sequenced in the same sequencing reaction.

This results in a cost distribution shift, making the library

preparation step the most expensive part of many RNAseq

projects. The pressure to reduce the costs of this step is therefore

rising and many approaches have been developed to do exactly

that (Alpern et al., 2019; Bagnoli et al., 2018; Foley et al., 2019;

Hashimshony et al., 2016; Hou et al., 2015; Islam et al., 2012;

Kumar et al., 2012; Pallares et al., 2019; Picelli et al., 2013;

Shishkin et al., 2015). One way to save costs during the

preparation of RNAseq libraries is to switch from commercial

protocols to previously published custom protocols. The latter

often implement novel techniques to optimize the procedure and

save costs. If these approaches are successful enough, commer-

cial adaptations are developed, as was the case with the examples

mentioned below.

The traditional protocols create RNAseq libraries using full-

length mRNA molecules (Hou et al., 2015; Islam et al., 2012;

Kumar et al., 2012; Picelli et al., 2013; Shishkin et al., 2015). A

more cost-efficient alternative is to create libraries of the 30 or 50

end of the mRNA exclusively (Foley et al., 2019; Macosko

et al., 2015; Pallares et al., 2019; Vahrenkamp et al., 2019). Some

protocols employ early multiplexing to further reduce hands-on

time and costs within the prime end enriched library preparation

methods (Alpern et al., 2019; Bagnoli et al., 2018; Hashimshony

et al., 2016; Soumillon et al., 2014). In most full-length mRNA

protocols, the multiplex bar code is part of the adapter sequence

which is added to the library fragments late in the library

preparation workflow and the sample pooling is conducted after

amplification and clean-up. When utilizing early multiplexing, a

unique bar code is added to the sequences in one of the initial

steps of the protocol. This enables early multiplexing and reduces

the number of samples handled during the remaining library

preparation steps. While both strategies are a good way to reduce

costs, they limit the application of the resulting data for further

analyses for example, genomic variant calling or novel transcript

identification. Additionally, early multiplexing strategies make it

impossible to re-sequence individual samples.

A different approach is most commonly known as miniaturi-

zation. It involves the reduction of the utilized reagent volume

during the library preparation using commercial protocols. Most
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described workflows use full-length mRNA protocols combined

with liquid handling automatization (e.g. Jaeger et al., 2020;

Mayday et al., 2019; Mildrum et al., 2020; Mora-Castilla

et al., 2016). Adding automatization to the miniaturization

workflow has two major advantages. First, all automated

preparation steps reduce hands-on time and therewith labour

costs. Second, the inherent reduction in sample-to-sample

variance by replacing the less error-prone hands-on steps

increases the level of accuracy and precision (Tegally

et al., 2020). However, the investment costs of acquiring all the

lab equipment required for an automated library preparation

workflow are high and, thus, not feasible for many research

groups. To our knowledge, with the exception of Li et al. (2019),

who miniaturized the DNA library preparation of E. coli genomes,

no studies are available on the capabilities of manual

miniaturization.

While it is possible to reduce the costs of the library preparation

step in many different ways as was outlined above, it is crucial

that the quality of the resulting data sets is not impaired and has

no negative impact on downstream analyses (Aigrain et al., 2016;

Alberti et al., 2014; Dabney and Meyer, 2012; McNulty

et al., 2020; Romero et al., 2014). However, to the best of our

knowledge, no comprehensive characterization of library com-

plexity and biases was performed for manual library preparation

miniaturizations.

Here we present an easy-to-reproduce, manual miniaturized

full-length mRNA sequencing library preparation workflow that

does not require the upfront investment in expensive lab

equipment. A miniaturization level of up to 1:8 was tested which

reduced the library preparation costs significantly. In addition, we

provide the results of a wide set of quality control analyses,

evaluating the impact of the miniaturization on the resulting

sequencing data.

Results

To evaluate the success of the library preparation miniaturization

workflow, 96 samples were preparedwithout miniaturization (1:1,

V100) and the miniaturization levels 1:2 using 50% of all reagents

(V050), 1:4 using 25% of all reagents (V025), 1:6 using 17% of all

reagents (V017) and 1:8 using 13% of all reagents (V013)

(Figure 1). Five different genotypes from three different recom-

binant inbred line (RIL) populations were used to evaluate the

miniaturization workflow. Two of the five RIL (DR8 and DR9) were

included in all miniaturization levels to allow orthogonal compar-

isons. DR10 and DR12 were prepared using different RNA

extraction methods and DR1 was used to analyse the potential

impact of plant material coarseness on the workflow. The

sequencing results were analysed with regards to library quality

and its properties in common downstream analyses.

RNA extraction and library pool

All total RNA samples except the TRIzol-96 RNA extractions were

evaluated using the Fragment Analyzer. The average RNA quality

(a)

(b)

Figure 1 Overview of experimental design and

miniaturization levels of the 96 samples. (a) Five

different recombinant inbred lines (RIL) were

cultivated and harvested (diamond). For all RILs

except DR1, a single plant material preparation

was used for one or more total RNA extractions

using different methods (white: TRIzol, red:

TRIzol-96, blue: Phenol:Chrloroform (P:C)),

resulting in a total of 14 different total RNA

samples (triangle). The DR1 plants were used to

create coarse (Prep. 1) and fine (Prep. 2) ground

plant material. (b) We tested the library

preparation miniaturization levels 1:1 (V100,

original), 1:2 (V050), 1:4 (V025), 1:6 (V017) and

1:8 (V013). The PCR cycles were reduced from 10

(PCR 10) to 8 (PCR 8) for a subset of the samples.

For each RIL in each miniaturization and number

of PCR cycles, 2–3 RNA extraction and library

preparation replicates were created. In total, 96

RNA sequencing libraries were created (circles)

and combined to a single library pool (square).
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number (RQN) score for the Phenol:Chloroform extraction

method was the lowest with an average of 5.1 (coefficient of

variation (CV) 0.13). The TRIzol extractions have an average RQN

score of 7.4 (CV 0.04) (Figure S1). We also used the Fragment

Analyzer to characterize the size distribution of the final library

pool that was sequenced. While the fragments were with a peak

at 392 bp smaller than aimed for, the size distribution itself was

as expected (Figure S2).

Sequencing and library quality assessment

To evaluate the impact of the miniaturization on the sequencing

process itself, we compared the mean per sequence quality score

of all reads and did not find any difference between samples and

miniaturizations in that regard (Figure 2a). The same was true for

the per base n count, sequence length distribution, the per base

sequence content and the adapter content (Figure S3). In

addition, no negative trend in the trimming rates was observed

between miniaturizations (Figure 2b). The mean read pair

duplication rate was 7.1%. The highest read pair duplication

ratio and significantly (P < 0.001) different from the remaining

miniaturization levels in both RIL was observed for V013 (12.9%)

(Figure 2c). For one of the two RIL, the miniaturization level V017

was significantly (P < 0.001) different from the rest. We assessed

whether a general 50 gene body coverage bias existed in our data

set, but could not find one. The distribution did also not differ

between miniaturizations (Figure 2d). Random RNA fragmenta-

tion was tested by comparing the nucleotide compositions

around the fragmentation site for all miniaturization levels

(Figure S4). Significant (P < 0.001) differences between un-

miniaturized samples and miniaturized samples were observed.

However, these were not consistent between RILs DR8 and DR9

with the exception of eight positions comparing the miniaturiza-

tion levels V100 and V013.

The number of transcripts detected per sample ranged

between 24 500 and 25 000 and did not significantly

(P > 0.05) differ between miniaturizations (Figure 2e) when

comparing random sub samples with 2 million reads. Pearson

correlation coefficients of the read counts between pairs of

miniaturization levels were calculated for DR8 and DR9. For both

RIL, the highest similarity was observed between the V025 and

(a)

(b)

(e)

(c)

(d)

Figure 2 Overview of sequencing and library quality metrics. (a) Mean per base quality score for all 94 samples coloured by miniaturization level. (b)

Percentage of reads after trimming (dark colour) per miniaturization level. The mean rate of remaining reads per miniaturization level shown as red line. (c)

Total percentage of read pair duplicates by miniaturization. Miniaturization marked by the same letter are not significantly (a = 0.05) different from each

other. (d) Gene body coverage for the highly expressed genes (>90 transcript expression quantile) shown as percentage of reads located in each of the 100

gene segments starting at the 50 end across all 94 samples coloured by miniaturization. (e) Number of unique transcripts detected by miniaturization.
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V050 samples (DR8: r = 0.9977; DR9: r = 0.9964) (Table S1). The

least similar sample groups were V100-V013 for DR8 (r = 0.9613)

and V100-V017 for DR9 (r = 0.9655). We detected a high

similarity between the read counts of replicates. The Pearson

correlation coefficients for DR8 and DR9 were calculated for each

miniaturization and replication type separately. The library

replicates ranged from 0.999 to 0.977 and for RNA extraction

replicates from 0.999 to 0.991 (Table S2).

While we focused on evaluating the impact of the miniatur-

ization on the libraries, we also examined the impact of the

number of PCR cycles, RNA extraction method and degree of

plant material grinding. Therefore, we looked for differences in

the rate of duplicated read pairs and the number of detected

transcripts in these categories. Two of the six tests resulted in a

significant (P < 0.05) difference in at least one group. First, the

custom phenol:chloroform (HTP96) extraction method resulted in

a significantly (P < 0.001) lower number of detected transcripts

compared to the TRIzol method (0.77%). Secondly, the coarse

grinding of plant material resulted in a significantly (P < 0.001)

lower number of detected transcripts compared to the fine

grinding of plant material (0.81%).

Increased variability in highly miniaturized samples

When comparing the rate of raw read duplications, we observed an

increased variability between the samples within miniaturization

levels above 1:4. Without miniaturization (V100) or a minimal

miniaturization level (V050), the number of unique reads

varied between 67.1% and 72.6% (Table S3). With higher

miniaturization levels (V025, V017, V013) the variability between

samples increased. For these samples, the rate of unique reads was

between 45.2% and 75.3% (Figure 3a). The average rate of unique

reads for DR8 and DR9 dropped from 69% (�0.68%) at V100 to

59% (�5.70%) for V013. Furthermore, the rate of uniquely aligned

reads was highest for V100 (78% � 1.22%) and lowest for V013

(66% � 9.29%) and did therefore show the same trend as the rate

of raw read duplications (Figure 3b). The overall alignment

rate increased slightly with increasing miniaturization levels from

V100 (92% � 0.31%) to V013 (95% �0.63%). The proportion of

reads that were not properly aligned (once or multiple times) was

similar across all miniaturizations (Table S4). The correlation

coefficient between the raw read duplicates and read pair

duplicates (r = 0.52, P < 4.46e-08) was lower than the correlation

coefficient between raw read duplication rate and multi-alignment

rate (r = 0.93, P < 2.2e-16) (Figure 3c). We also observed an

impact of the genotype on the rate of multi-aligned reads

(Figure 3d). In all miniaturizations, RIL DR9 had lower rates than

DR8 but the differences were not significant (P > 0.05). The

proportion of duplicated sequences with more than 10 identical

duplicates was considerably increased for V025, V017 and V013

compared to V100 and V050 (Figure S5a). Additionally, for V017

and V013 the proportion of duplicated reads with more than 100

identical duplicates was further increased compared to the other

miniaturizations.

Characterizing the multi-aligned reads

To further investigate the increased between-sample variability

that was detected in V025, V017 and V013 miniaturizations, we

created two data subsets. First, we subsetted the alignment

results including only reads that were mapped multiple times

during the alignment. Those read IDs were used to create the

(a)

(b)

(c) (d)

Figure 3 Correlation between read duplication

rate and multi-alignment rate. (a) Trimmed read

duplication rate of a subset with 1 million reads of

all 94 samples coloured by uniqueness and

grouped by miniaturization (Unique reads:

bottom, dark grey; unique duplicated reads:

middle, grey; remaining duplicated reads: top,

light grey). (b) Alignment statistics for each sample

grouped by miniaturization and coloured by

alignment type. (c) Pearson correlation between

multi-alignment rate and trimmed read

duplication rate. (d) Comparison of multi-

alignment rate between recombinant inbread

lines (RIL) DR8 and DR9 for each miniaturization

level.
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subset of multi-aligned reads. Comparing the rate of raw read

duplications between the subset of multi-aligned reads and the

total data set showed that the mean duplication rate increased by

36% in the subset (Figure S6a). For a considerable portion of

these duplicates, more than 10 reads of the same sequence were

present (Figure S5b). The mean proportion of all duplicated reads

included in the subset of multi-aligned reads was around 40%,

compared to only 7% of all unique reads (Figure S6b).

The origin of the multi-aligned reads was analysed by

investigating gene annotation, transposable elements (TEs)

sequence overlap and rRNA contamination. A GO term enrich-

ment analysis between the subset of multi-aligned reads and the

total data set resulted in multiple significantly underrepresented

genes related to TE activity (biological process: ‘RNA-dependent

DNA biosynthetic process’; molecular function: ‘RNA-directed

DNA polymerase activity’, ‘RNA–DNA hybrid ribonuclease activ-

ity’). The most overrepresented genes were related to photosyn-

thesis (various biosynthetic process, cellular compartment and

molecular function annotations) and transcription (biological

process: ‘regulation of transcription by RNA polymerase II’;

cellular compartment: ‘mediator complex’) (Figure S7).

On average, more than 55% of the multi-aligned reads could

not be assigned to an annotated transcript (no feature, NF). This

was significantly higher (P < 0.001) than the 16% of reads in the

total data set (Figure S8a). The rate of NF reads in the subset of

multi-aligned reads did not correlate well with the multi-

alignment rate (Figure S8b). While the proportion of NF reads

that were multi-aligned varied (82.4%–20.2%), the number of

uniquely aligned NF reads remained constant between all 94

samples (4.4% � 1.0%) (Figure S8c).

The rate of TE reads between the subset of multi-aligned reads

and the total data set was significantly increased (P < 0.001)

(Figure S9a). The rate of TE reads was positively correlated with

the multi-alignment rate (Figure S9b). Nevertheless, on average

17% of TE reads were not multi-aligned (Figure S9c). The

variability between samples was highest for the TE reads that

aligned multiple times (9.6% � 7.1%).

Lastly, two different rRNA reference sequence libraries were

created and the subset of multi-aligned reads was aligned against

them. The Hordeum vulgare rRNA reference library showed the

highest overall alignment rate with most read pairs aligning

multiple times against the reference sequences (Figure S6c,d). For

both rRNA reference sequence libraries, the subset of multi-

aligned reads showed a significantly higher alignment rate

(P < 0.001) than the total data set (Figure 4a). The Pearson

correlation coefficient between the rRNA alignment rate and the

multi-alignment rate was 0.999 for the subset of multi-aligned

reads and 0.996 for the total data set (Figure 4b). While the

proportion of multi-aligned reads that were of rRNA origin varied

(93.9%–16.5%), the number of multi-aligned non-rRNA reads

remained constant between all 94 samples (3.6% � 0.5%)

(Figure 4c). Additionally, only a small proportion of rRNA reads

were uniquely aligned (1.9% � 2.2%).

Variant calling and differential expression analyses

While the miniaturization did not considerably change the overall

number of detected SNPs, the ratio between reference SNPs and

alternative SNPs changed in many but not all miniaturization

scenarios in favour of an increase in alternative SNPs in higher

miniaturizations. However, the change was not consistent and no

clear trend was observed when increasing the miniaturization

level (Table S5).

We used a principal component analysis (PCA) to examine the

data set’s capability to cluster the samples based on genetic

differences. When using read count data, the first two principal

components explained 33.7% of the variance (Figure 5a). When

using the SNP data set, the first two principal components

explained 58.6% of the variance (Figure 5b). Based on both data

sets, we could show that all samples of the same population

clustered together. Additionally, the SNP data differentiated each

of the five RILs. The samples which were prepared using the same

miniaturization level did not cluster together across RIL

(Figure S10).

The mean proportion of detected transcripts between minia-

turizations for DR8 and DR9 in a 2 million read subset were very

similar (30%–31%). V100 had the lowest proportion of detected

transcripts with 30.0% which was significantly (P = 0.042) less

then V050 (30.5%). We created lists of consensus transcripts

separately for each miniaturization of DR8 and DR9. The resulting

number of detected transcripts within replicates of RIL DR8 and

DR9 for each miniaturization level varied between 15 428 (V100,

DR9) and 16 930 (V025, DR8). Lastly, we characterized the

overlap between the transcripts of each group resulting in 81.2%

and 80.8% of all detected transcripts present in all miniaturiza-

tions for DR8 and DR9, respectively (Figure 6). For both RIL the

second biggest group of transcripts was detected in all

miniaturization levels except V100. Only 159 (DR8) and 143

(DR9) transcripts were exclusively present in V100.

Discussion

The workflow we describe in this manuscript reduces RNA library

preparation costs by miniaturizing the process by up to 1:8 of the

original reagent volume of the commercial kit. However, in order

to ensure that the proposed modifications to the commercial

protocol did not decrease the quality of the resulting library, an

in-depth characterization was required. While many automated

miniaturizations have been shown to have negligible impact on

the library quality (Jaeger et al., 2020; Kong et al., 2019; Mildrum

et al., 2020; Mora-Castilla et al., 2016), we used a procedure

without automation. Therefore one has to investigate the

practicality of the workflow considering the potentially increased

pipetting error variance and potentially decreased reproducibility

by manually handling <2 lL volumes.

Quality control: Library complexity and biases

In a first step, we had to make sure that our modifications to the

protocol had no negative impact on the sequencing process.

The per sequence quality scores, per base n content and

sequencing length distribution of V100 did not significantly

(P > 0.05) out-perform miniaturized samples (Figures 2a and S3).

Additionally, the proportion of reads that were discarded by

trimming was comparable between all samples regardless of the

miniaturization level (Figure 2b). These observations led to the

conclusion that the miniaturization did not have a negative

impact on the sequencing process itself.

Next, we investigated additional quality metrics that charac-

terize the library properties directly. Particularly, the library

complexity and the potential library biases were investigated.

Library complexity, or the number of unique molecules in

solution, represents the potential of the given library to produce

a complete picture of the genome or transcriptome and unravels

potential problems during the library preparation, for example, if

a significant number of unique molecules was lost. One way to
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assess library complexity is to compare read pair duplication rates

(Alberti et al., 2014). A reduced number of unique molecules

statistically increases the number of PCR duplicates included in

the sequencing pool and therefore increases the probability for

read pair duplication in the resulting sequencing data and at the

same time reduces the number of unique transcripts that can be

discovered. Alternatively, when analysing RNA sequencing data,

the number of detected genes can be evaluated (Mereu

et al., 2020). In our results, the mean read pair duplication was

7.1% with only the V013 miniaturizations showing significantly

(P < 0.001) increased duplication rates for both RIL (Figure 2c).

Therefore, V025 is an attractive miniaturization factor which

makes most efficient use of the sequencing while at the same

time resulting in a major cost decrease in the library preparation

costs. Nevertheless, the overall read pair duplication rate

observed for all miniaturization levels was comparable to those

of previous studies (Bansal, 2017; Fu et al., 2018; Parekh

et al., 2016). The number of unique detected transcripts did not

differ significantly (P > 0.05) between all miniaturization levels

(Figure 2e) and both V017 and V013 did not separate in our PCA

using read count data. This indicated that the overall library

complexity was not notably impacted and, thus, also our V017

and V013 libraries remain suitable for read count analyses despite

the significantly increased mean read pair duplication for the

V013 miniaturization. Both miniaturization factor V017 and V013

have in common that all reagents were diluted to match the

V025 volume. We are not aware of any published research

examining similar aspects and can therefore only speculate about

a potential link between dilution and read pair duplication. If

there is a relationship, the most likely reason would be a

decreased effectiveness of the cDNA synthesis step in the library

preparation prior to the PCR amplification. The decreased

effectiveness could have led to a slight decrease in library

complexity which in return could have caused an increase in

duplicates created by the PCR amplification.

We evaluated non-random RNA fragmentation as a potential

cause for a library bias and tested for it by looking at the

nucleotide base ratios on both sides of the library fragmentation

site. Only at eight positions, one or more bases were significantly

(P < 0.001) changed between un-miniaturized and miniaturized

samples for both RIL DR8 and DR9 (Figure S4). All eight positions

were found in the comparison between V013 and V100. We

(a) (b)

(c)

Figure 4 Investigation of the rRNA origin in the

subset of multi-aligned reads. (a) Comparison of

rRNA alignment rates using the Horedum vulgare

rRNA reference library between the subset of

multi-aligned reads and the total data set

(recombinant inbred line (RIL) DR8 in grey and

DR9 in white). (b) The correlation between the

multi-alignment rate and the rRNA alignment rate

for the subset of multi-aligned reads (multi, grey)

and the total data set (total, red). (c) The

proportion of filtered reads (white), uniquely

aligned non-rRNA reads (light grey)/rRNA reads

(light purple) and multi-aligned rRNA reads (dark

purple)/non-rRNA reads (dark grey).

(a) (b)

Figure 5 Principal component analysis based on

RNA sequencing data of the five recombinant

inbred lines (RIL). (a) Normalized read counts used

as a basis. (b) Filtered and imputed SNPs used as a

basis. PC 1 and PC 2 are the first and second

principal component, respectively, and the

number in parentheses refers to the proportion of

variance explained by the principal components in

percent.
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suspect that the significant changes are caused by changes in

sequence composition in samples with a high number of

duplicates. However, these differences did not lead to a 50 gene
body coverage bias in any sample with no considerable difference

between the different miniaturization levels (Figure 2d). All the

above-mentioned results indicate that our modification to

the library preparation workflow did not negatively impact the

library complexity and did not introduce biases.

Quality control: Increased variability among replicates

Two aspects that were significantly (P < 0.001) changed by the

miniaturization were (1) the proportion of raw read duplications

and (2) the rate of multi-aligned reads. First, the increase in raw

read duplications for the miniaturizations V025, V017 and V013

compared to V50 and V100 coincided with an increased

variability among replicates within these miniaturization levels

(Figure 3a). The number of raw read duplications can change

based on differences in transcriptome composition between

genotypes (Bansal, 2017). However, both RIL that were included

in all examined miniaturization levels showed the same trend

(Table S3) and, therefore the genotype was only partially able to

explain the observations.

It is unclear if the remaining duplicated reads were introduced

by sampling biological duplicates based on the redundancy of

mRNA molecules or were technical duplicates created during PCR

amplification. Expanding the workflow to include unique

molecular identifiers (UMIs) would make the distinction between

these two cases possible, but also increases the cost (Kivioja

et al., 2011). However, UMIs are also reported to increase the

accuracy of transcript quantification, which could justify

the added cost under certain circumstances (Fu et al., 2018).

Results of previous studies suggested that the number of usable

reads can be increased by up to 40% by deduplication using UMIs

(Collins et al., 2015; Fu et al., 2018; Girardot et al., 2016).

However, the selection of commercial kits that use adapters with

UMI is limited when the number of multiplexed samples is bigger

than 96. At the time of writing, we are not aware of any dual

indexed UMI adapter kits that would have been compatible with

our library preparation kit and have the capability of a 384-sample

multiplex.

The raw read duplicates were further characterized by

estimating the multiplication levels of the duplicated sequences.

The number of unique duplicates, defined as the number of

unique sequences that were duplicated, was consistent between

all samples and miniaturization levels and did not reflect the

variability in raw read duplicates (Figure S5a). This indicated that

the sample-dependent copy number increase of a relatively small

number of sequences was responsible for the observed variability.

Secondly, the number of properly paired unique alignments

was reduced and the variability increased for the miniaturization

levels V025 and above compared to V050 and V100 (Figure 3b).

This observation cannot be fully explained by the difference

between RILs (Figure 3d). In addition, the rate of multi-aligned

reads and the rate of raw read duplications were strongly

correlated on a sample-by-sample basis (Figure 3c). The

connection between these two measures was not clear to us,

which is why we further investigated their nature.

The origin of the increased variability

We began by thoroughly examining the relationship between the

rate of multi-aligned reads and the rate of raw read duplications

on a read-by-read basis, comparing the rate of raw read

duplications between the subset of only multi-aligned reads and

all reads in the total data set. The average proportion of

duplicated reads was increased by 36% in the subset of multi-

aligned reads and included up to 73% of all duplicates. This

observation indicated that many multi-aligned reads are also

duplicated reads (Figure S6a,b). To better understand the source

of multi-aligned reads, we investigated their biological origin. One

biological reason for the occurrence of multi-aligned reads are

gene duplication events (Deschamps-Francoeur et al., 2020).

Therefore, we have examined genomic features that are

classically connected to genome duplications and repetitiveness

such as rRNA, histone gene family and transposable elements

(Deschamps-Francoeur et al., 2020; Magadum et al., 2013;

Rooney and Ward, 2005).

Figure 6 Co-occurrence of detected transcripts

between miniaturization levels. Overlap of

detected transcripts was calculated based on a

subset of 2 million reads of the two recombinant

inbred lines (RIL) DR8 (a) and DR9 (b), respectively.
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When checking the positional overlap of our reads with TEs in

barley, the overlap in the subset of multi-aligned reads was higher

than in the total data set (Figure S9a). This indicated that at least a

part of the variance of the multi-alignment rate across samples

can be explained by a sample-dependent increase in TEs. At the

same time, a GO term enrichment analysis between the subset of

multi-aligned reads and the total data set indicated a reduction in

GO terms associated with retrotransposon activity. The same GO

term enrichment analysis resulted in no significant (P > 0.05)

changes in GO terms connected to the synthesis, modification or

regulation of histones (Figure S7). Importantly, only a small

proportion of the subset of multi-aligned reads was included in

the analysis, because most of the reads could not be assigned to a

gene (Figure S6a). This favours a non-gene-related explanation

for the variance of multi-alignment rates like TE read or rRNA

contamination.

From a technical perspective, the contamination with rRNA

would be the most plausible explanation for the variance of multi-

alignment rates. We tested for rRNA by using available rRNA

annotation data in Hordeum vulgare to search for

rRNA sequences in our multi-aligned read subset. The mean

overall alignment rate for the read subset was considerably higher

than for the total data set (Figure 4a). We could show that the

increase in multi-alignments was strictly correlated with an

increase in rRNA reads (Figure 4b). The rate of multi-aligned

reads that could not be identified as rRNA was low (3.6%) and

remained constant across all 94 samples (Figure 4c). Additionally,

on average less than 2% of rRNA sequences were not aligning

multiple times. These observations strongly suggested that the

increase in multi-alignments as well as the increase in raw read

duplications in the miniaturizations V025, V017 and V013

compared to V050 and V100 was caused by rRNA contamination.

The origin and consequences of rRNA contamination

We speculate that the rRNA contamination is caused by

incomplete separation during the mRNA capture process at the

beginning of the library preparation. This is the first and one of

the most crucial magnetic bead separation steps, which are in our

experience the most error-prone steps and very susceptible to the

decrease in volume caused by the miniaturization (Figure S11).

Depending on the planned usage of the RNA sequencing data,

an increased rRNA sequence content leads to a decrease in useful

sequencing read output. This in return requires the number of

sequenced reads to be increased, which inflates the costs. When

accounting for the highest difference in multi-aligned read rates

that was observed in our study for a single sample with 35%, the

increased sequencing depth added 6 Euro to the overall costs.

This was considerably lower than the overall cost reduction of the

miniaturized library preparation by 21 Euro realized in our study

(Table 1). Therefore, even accounting for the highest possible

rRNA sequence content detected in this study, the cost-saving

potential of miniaturized library preparation remains attractive.

To prevent rRNA contamination, the poly-A mRNA capture

method in our workflow could be replaced by an rRNA depletion

step, which was shown to have higher success in removing rRNA

than poly-A capture methods (Kumar et al., 2017). This would

presumably decrease the number of rRNA molecules and

consequently the number of raw read duplications and multi

alignments in our data set. However, the addition of an rRNA

depletion step would greatly reduce the cost saving potential of

the workflow and therefore only rarely be a reasonable

alternative. Alternatively, for reaction volumes below 30 lL that

include magnetic beads, a special low-elution 96-well magnet

plate can be used to increase the magnetic bond and enable

more reliable molecule selection. When this study was performed,

a low-elution 96-well magnetic plate was not available to us and

we were using a standard magnetic plate (96S Super Magnet,

Alpaqua Engineering, USA). This most likely caused the mRNA

capture and therefore the rRNA exclusion success to vary when

handling smaller volumes in the higher miniaturizations.

Workflow modifications

The here described workflow is compatible with state-of-the-art

liquid handling automatization solutions. The labour and time

intensive magnetic bead separation steps would greatly benefit

from the integration of an automated liquid handler designed for

working with 96-well plates. The steps that would benefit are: the

poly-A tail capture, size selection and all library fragment clean-

ups. The other steps would require a liquid handling device that is

able to accurately transfer small volumes (e.g. positive displace-

ment instruments, acoustic droplet ejection instruments). This

would potentially enable miniaturization factors beyond the ones

examined in this study.

When using different types of plant material, the requirements

to the workflow could change. We see a potential need to adjust

the RNA extraction method depending on the material used. We

showed that our miniaturization workflow produces high-quality

data with multiple types of extraction methods. While the

extraction methods can slightly alter the overall costs of

the workflow, it does not affect the validity of the miniaturization

as a cost saving measure. After successfully extraction of high-

quality total RNA, our preliminary data do not indicate that the

later steps of the workflow will be affected by the type of input

material.

Data application: Sequence variation and read counts

We picked two common use cases to examine the suitability of

the RNA sequencing data generated with our workflow. First, the

potential of the data sets to identify sequence variants and

second, the ability to describe differential expression using read

Table 1 Summary of workflow costs. The relative costs comparison

for the RNA isolation, RNA library preparation (RNA library prep.) and

RNA sequencing between all miniaturization factors. The costs are

relative to a standard workflow defined as: RNA extraction using

RNeasy Plant Mini Kit (Qiagen, Germany) and library preparation using

TruSeq RNA Library Prep Kit v2 (Illumina, USA). In comparison, the

miniaturization workflow used: TRIzol-96 RNA isolation, VAHTS

Universal V6 RNA-seq Library Prep Kit for Illumina library preparation.

Both workflows aimed to sequence 10 million reads using the

DNBSEQ-G400 platform. The sequencing depth was increased to

compensate for multi-aligned reads according to the maximum multi

alignment rate for each miniaturization factor. The multi alignment

rate of the standard workflow was set to 0%

Workflow

Miniaturization factors

V100 V050 V025 V013

RNA isolation 31.47% 15.74% 15.74% 15.74%

RNA library prep. 30.66% 15.33% 7.66% 3.83%

RNA sequencing 111.95% 115.32% 135.41% 147.07%

Total 44.39% 32.19% 29.70% 28.72%
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counts. The capabilities of the data set to call sequence variation

and the potential influence the miniaturization had on it, were

investigated by comparing the mean number of detected SNPs.

The total number of SNP for DR8 and DR9, respectively did

not change significantly (P > 0.05) between miniaturizations

(Table S5). This finding was in agreement with the observation

made in the PCA we conducted using filtered imputed SNP data

(Figure 5). The results showed a high percentage of the variance

between samples that matched the genetic structure of the

samples, while the miniaturization was not shown to explain any

variance and therefore could not be shown to have a systematic

effect on the generated data (Figure S10). This makes the

workflow capable of detecting sequence variances, which then

could be used for example, in genome-wide association studies

(Rodriguez et al., 2020).

When further examining the read counts, between 85%–92%
of the consensus transcripts (expressed at least once per

miniaturization) were found in all miniaturizations and the

overlap between V100 and V025 was >97% (Figure 6). This

illustrates the high consistency between miniaturizations which

was further underpinned by Pearson correlation coefficients of at

least 0.9613 for the RIL DR8 and DR9 among the miniaturization

levels (Table S1). The correlation coefficient was even higher

when comparing RNA extraction and library preparation repli-

cates for both RIL (Table S2). These observations suggested that

the miniaturization did not affect the ability to capture the

transcriptome and all levels are capable of being used for

comparative read count analyses for example, in differential gene

expression (Cantalapiedra et al., 2017; Kintlov�a et al., 2021).

Conclusions

With minimal adjustments to an established commercial RNAseq

library preparation protocol, we were able to manually miniatur-

ize the library preparation by a factor of up to 1:8. This leads to

cost savings of up to 54.5% compared to the same library

preparation protocol without miniaturization and up to 86.1%

compared to the gold standard. The rigorous quality control

analysis of the resulting sequencing data and its application did

not result in any indication of biases or inaccuracies caused by the

library miniaturization. All libraries created in this study can be

considered high quality and are ready to be used in a wide range

of projects. The observed rRNA contamination did not affect the

quality of the library itself and can be addressed by workflow

adjustments, for example, using low elution volume magnetic

plates. As shown by our cost projections even the potential

efficiency decrease caused by the increase in multi-aligned reads

did not change the fact that the method proposed here is an

uncomplicated way to reduce the cost of RNAseq library

preparation without a long set-up time or the need for scarcely

available lab automation equipment. While in our study only a

single commercial RNAseq library preparation kit was evaluated,

we are confident that the general principle of miniaturization as

well as observed unbiased results can be applied to a wide range

of kits.

Materials and methods

Genetic material

Our study was based on five barley RIL from three HvDRR sub-

populations (Casale et al., 2021). The HvDRR population was

developed from pairwise crosses among 23 diverse parental

inbreds (Weisweiler et al., 2019) using the double round robin

(DRR) mating design (Stich, 2009).

Experimental design

The experimental design was set up such that it is possible to

statistically test the effect of the miniaturization, RNA extraction

method, number of PCR cycles and degree of plant tissue

grinding on library complexity and biases (Figure 1). A total of 96

samples were examined. Five different genotypes were used:

from HvDRR sub-population #28 line #33 (DR1), #46 (DR12) and

#57 (DR10), from HvDRR sub-population #27 line #40 (DR8)

and from HvDRR sub-population #13 line #29 (DR9). The libraries

were prepared without miniaturization (1:1, V100), the minia-

turization levels 1:2 using 50% of all reagents (V050), 1:4 using

25% of all reagents (V025), 1:6 using 17% of all reagents (V017)

and 1:8 using 13% of all reagents (V013). Two of the five RIL

(DR8 and DR9) were included in all miniaturization levels to allow

orthogonal comparisons. Depending on the miniaturization level,

two or three RNA extraction replicates and library preparation

replicates each was present. RNA extraction replicates were

distinct RNA extractions and library preparations using the same

plant material. Library preparation replicates were distinct library

preparations using the same extracted RNA. For the miniaturiza-

tion levels 1:4, 1:6 and 1:8, the library of line DR8 was amplified

using 8 PCR cycles and 10 PCR cycles. For the remaining

miniaturization levels, only 10 PCR cycles were used. DR1 libraries

were only prepared using 1:4 miniaturization but with plant

material being either coarsely or finely ground as the basis for

RNA isolation. Finally, 1:4 miniaturization libraries for the lines

DR10 and DR12 were prepared using different RNA extraction

methods.

Plant cultivation

A total of 15 seeds from each of the five RIL were sterilized with

sodium hypochlorite (13%) for 10 min. All seeds of a single RIL

were placed in a rectangular (12 9 12 cm) Petri dish between

two sheets of filter paper (12 9 12 cm) supplied with tap water.

The seeds were lined up in the lower half of the Petri dish on top

of the water-soaked first filter paper. A second water-soaked

filter paper was placed above the seeds, starting 1 cm above the

seeds so that the lower third of the paper was reaching out of

the Petri dish (Figure S12). This ensured that both filter paper

sheets do not dry out over time. The Petri dishes were then

stacked and placed in a vertical orientation in a plant tray

(40 9 60 cm). This way, the space requirements per RIL were

minimized and when filling the tray with water (approx. 3 L) the

seedlings can grow for more than 7 days without further

maintenance. The seedlings were cultivated for 7 days in a

reach-in growth chamber under the following conditions: 70%

relative humidity, 16 h of light (6:00–22:00), 22 degrees (day)/20

degrees (night) and light intensity of 400 lmol m�1 s�1. The time

of day for the cultivation start and the harvest was similar (within

2 h) for all samples. The RIL DR8, DR9 and DR10 were cultivated

at the same time, while DR1 and DR12 were each cultivated at

different dates.

Plant material processing

The whole seedlings of one Petri dish were harvested by transfer

into a collection tube and immediately freezing them in liquid

nitrogen. Afterward, they were ground by using steel beads and a

paint shaker until the plant material was powdery (fine).

Additionally, half of the plant material from DR1 was only
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ground until it was flaky (coarse). Afterward, 50 mg or 100 mg

of plant material was transferred into different collection tubes

depending on the extraction method and stored at �80 degrees

until RNA extraction started.

RNA extraction

Three different total RNA extraction methods were applied. First,

a custom Phenol:Chloroform extraction optimized for high

throughput extraction in 96-well plates (Box et al. (2011);

Phenol:Chloroform, P:C). Second, a TRIzol reagent (Thermo

Fisher Scientific) based RNA extraction following the manufac-

tures instructions (TRIzol). For the third RNA extraction, TRIzol

reagent (Thermo Fisher Scientific) was used in a 96-well format

with an adapted protocol (TRIzol-96). The input plant material

and all reagents for the TRIzol-96 extraction were halved

compared to the standard protocol. The final washing step in

75% ethanol was repeated one time to assure that all the

remaining phenol was removed. All other steps were executed as

proposed by the manufacturer. The first two methods used

100 mg and the third method 50 mg of frozen fresh plant

material as input. The total RNA concentration was quantified

using a NanoPhotometer NP 80 (Implen, Germany). All samples,

except the TRIzol-96 extractions, were evaluated using the

Fragment Analyzer (Agilent).

Library preparation

The mRNA was selected based on a poly-A tail mRNA capture

method (Vazyme, China) using 1 lg total RNA as input. The full-

length mRNA library was constructed using the VAHTS Universal

V6 RNA-seq Library Prep Kit for Illumina (Vazyme, China). We

miniaturized the kits by reducing the reagent volume to 50%

(V050), 25% (V025), 17% (V017) and 13% (V013) of the

original. The reaction volume for V017 and V013 were kept at

25% of the original volume to avoid pipetting volumes below

1 lL. The remaining reaction volume was filled up with RNase-

free water, which resulted in a dilution for the miniaturizations

V017 (1:1.5) and V013 (1:2). Size selection and clean-up were

performed using magnetic DNA Clean Beads (Vazyme, China). In

that step, the reaction volume and reagents were reduced to the

respective miniaturization level with the exception of V017 and

V013 for which the V025 reaction volume and reagents were

used. Apart from these changes, the manufacturer’s protocol was

followed aiming for 250–450 bp long inserts. The 96 separate

libraries were prepared in a 96-well plate with each miniaturiza-

tion level occupying two to four columns. The order of the

columns was randomized starting with the library preparation.

The costs of our experimental workflow were compared to a gold

standard which includes RNA extraction using RNeasy Plant Mini

Kit (Qiagen, Germany) and library preparation using TruSeq RNA

Library Prep Kit v2 (Illumina, USA).

Sequencing, read processing and alignment

The sequencing was performed by BGI on the DNBSEQ-G400

platform. All 96 samples were pooled and a total of 1.42 billion

150 bp paired-end reads were sequenced with an average of

14.8 million read pairs per sample. Two samples did have less

than 2 million reads sequenced and were excluded from all

further analyses. Both samples were from RIL DR8, RNA

extraction replicate #1 and miniaturization levels V013 and

V017, respectively. Various quality statistics of the raw sequenc-

ing reads were calculated using FastQC (Andrews, 2019) and

afterward trimmed with trimmomatic (ILLUMINACLIP:TruSeq3-

PE:2:30:10:1:TRUE SLIDINGWINDOW:4:15 LEADING:3 TRAIL-

ING:3 MINLEN:36) (Bolger et al., 2014). The trimmed reads were

then aligned to the Morex V3 reference sequence (Mascher, 2019)

using Hisat2 (�no-softclip –max-seeds 1000) (Kim et al., 2019).

Alignment against rRNA reference libraries

In an effort to learn about the origin of multi-aligned reads, a read

subset was created including only reads flagged as multi-mapped

in the primary alignment against the reference sequence Morex.

The total data set and the subset of multi-aligned reads were then

aligned against two different rRNA reference libraries to estimate

the percentage of reads originating from rRNA.

The rRNA reference libraries were created using HISAT2

without exon and splice site information. The sequences were

searched for and downloaded as .fasta files from the RNA Central

Expert Database using the following search criteria: (1) Hordeum

vulgare subsp. vulgare rRNA (search term: taxonomy: “112509”

AND rna_type: “rRNA”) (1399 sequences) and (2) Ensembl Plant

database rRNA (search term: rna_type: “rRNA” AND expert_db:

“Ensembl Plants”) (14 880 sequences). The much larger Ensembl

Plant library includes rRNA sequences from many different plant

species (e.g. Arabidopsis thaliana, Oryza sativa Japonica, Triticum

aestivum, Hordeum vulgare) was used to evaluate the Hordeum

vulgare library capability to create a comprehensive rRNA

sequences alignment.

Variant calling and SNP analyses

Variant calling was performed using bcftools mileup (filter: -q 20 -

Q 20) and call functions (Li et al., 2009). The variants were filtered

based on the QUAL score (≥10), the median read depth per

sample (≥5) and the total depth per variant (≥30). The raw variant

call data was imputed using Beagle 5.4 (Browning et al., 2021)

based on standard settings without a reference sequence. In the

resulting SNP data set, all monomorphic and triallelic SNP and all

SNP with more than 30% heterozygosity were removed. The

remaining heterozygote SNP were set to NA and afterward

median imputed. The SNP count comparisons of filtered and

imputed variants used mean SNP counts of each miniaturization

and were based on a 2 million read subset.

Read count analysis

The sorted and filtered alignments were then used to determine

the read count per gene with the help of htseq count (�mode

union) (Anders et al., 2015). The read counts were filtered and

the Trimmed Mean of the M-values (TMM) method was used to

apply a between-sample normalization using the R package

edgeR (Robinson et al., 2009). The mean Pearson correlation was

calculated for all pairwise library replicate combinations within

each RNA extraction replicate. Each DR8 and DR9 library replicate

was averaged for each miniaturization level. For calculating the

correlation between the RNA extraction replicates, the mean of

the read counts across the library preparation replicates was used.

Afterward, the mean of the correlations was calculated for both

DR8 and DR9. Pearson correlations were also calculated between

miniaturizations using the mean read counts of all available

replicates. Read counts were not only calculated for the total data

set but also for the subset of multi-aligned reads. Here we had to

allow for non-unique alignments to be included using the ‘–
nonunique all’ option of the htseq count function. The number of

detected transcripts was calculated based on raw read counts
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of 2 million read subsets of all samples. For the estimation of the

number of consensus transcripts, transcripts with read counts

below 10 were set to 0 in all samples. Afterward, the number of

transcripts present was counted for all combinations of minia-

turization levels.

Gene body coverage

In order to estimate the relative gene body coverage, a non-

random subset of gene-associated reads was evaluated based on

their relative position within the gene. We divided each transcript

into 100 equally sized windows and counted the number of

overlapping reads for each window. Each read was allowed to be

counted multiple times. This analysis was performed for all

expressed transcripts and afterward, the mean number of reads

per sample for each window was calculated. The means were

adjusted to accommodate for varying numbers of total reads per

sample and rescaled to the range [0, 1] using general minimum

and maximum read counts. Because of limitations of the

Rsamtools R-library, only transcripts in the first 536 870 912

bases of each chromosome were included in the analysis.

Additional data analyses

To evaluate, if miniaturization leads to non-random fragmenta-

tion, the rate of each of the four nucleotide bases was calculated

for the first nine bases before and after a fragmentation site. The

first base of each forward read was defined as the first base after

a fragmentation site. Unless the read start was equal to a

transcript start. The first nine bases after the fragmentation site

were therefore the first nine bases of a forward read and the nine

bases before a fragmentation site were the last nine bases of a

reverse read. A GO term enrichment analysis was conducted

between the total data set and the subset of multi-aligned reads.

Statistical differences were calculated using the Fisher exact test.

The P-values were adjusted for multiple testing using the

Benjamini–Hochberg procedure.

The rate of TE reads in the total data set and the subset of

multi-aligned reads was estimated by calculating the rate of reads

that overlap with genome positions annotated as TEs. Significant

differences between groups (e.g. miniaturization levels) were

assessed with post hoc Tukey’s honestly significant difference

tests. A PCA of the filtered, imputed variants across all samples

was performed. A similar analysis was conducted on the TMM-

normalized read counts. All metrics ascertained during the

general sequencing data processing were aggregated using

multiQC (Ewels et al., 2016). The significance threshold for all

statistical tests in this study was set to 0.05.
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