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Editorial on the Research Topic
Pattern formation in biology

Cells can self-organize in time and space forming biological patterns [1]. Examples of pattern
formation in biology are very diverse and can be found in a wide variety of tissues and organisms.
For instance, the segmentation process along the longitudinal axes of vertebrates and invertebrates
[2, 3], the fine-grainedmixtures of different cell types appearing in both plant and animal tissues [4],
the regular arrangement of organs along the plant shoot [5], and the cell polarity patterns appearing
in multiple cell types [6], among many others. Pattern formation arises from the coordination and
interplay of several mechanisms and processes across molecular, cellular and tissue scales. At the
cellular level, growth, cell fate specification,migration and cell–cell interactions can be important and
influence each other during the formation of a tissue. All these processes are finely orchestrated in
space and time by gene expression, which in turn can also be affected by these processes. Over the
past two decades, the study of pattern formation in biology has attracted the attention of many
scientists fromdiversefields, ranging fromdevelopmental biology, cell biology and synthetic biology,
to physics, mathematics and computer science. Quantitative and interdisciplinary approaches have
become essential for understanding these challenging phenomena [7, 8].

This Research Topic contains a collection of articles and reviews that use quantitative and
interdisciplinary perspectives to understand the underlying mechanisms driving biological pattern
formation.Modelingmorphogenetic processes, gene regulatory network dynamics andmorphogen
gradients link the articles of this Research Topic, with a focus on three research areas: 1) underlying
mechanisms of patterning processes; 2) cross-talk of morphogenetic and pattern formation
processes, and 3) mathematical methods for modeling and quantifying biological patterning
and morphogenesis. Below, each of the present Research Topic papers is briefly discussed.

One of themost celebratedmechanisms to explain self-organizing spatial structures is known as
the Turing instability [9–13]. Lacalli’s review provides a history of the application of Turing’s ideas in
developmental biology, which he has been a part of since the 1970’s. In particular, Lacalli emphasizes
the progress that can be made by investigating and understanding the role of such physicochemical
systems that canmake patterns de novowithin the context of evolved biochemical or gene regulatory
networks and that confer some degree of “programmatic assembly” on developmental phenomena.
Lacalli details ways in which the relative contribution of de novo and programmatic elements may
manifest in the generation of robust body and brain structures, including consciousness.

Certainly, although today there are no doubts about the Turing instability as a source of
symmetry breaking in biological patterning, the molecular mechanisms behind Turing
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remain difficult to validate experimentally, as many of the kinetic
parameters cannot be reliably assessed in biological tissues.

Experiments and modeling have continued to reveal new
extensions or alternatives to Turing for periodic pattern
formation. The spatial patterns driven by Turing instabilities are
stable structures historically associated with stable fixed points of the
system [9–12]. However, exploring a known morphogenetic model
[14], Guisoni and Diambra find that Turing patterns can also exist
associated to unstable fixed points, enabling in this case the
emergence of transient and also metastable spatial patterns.

In line with Turing ideas, Casanova-Ferrer et al. describe former
and more recent quantitative modeling studies of heterocyst
patterning in filamentous cyanobacteria in an in-depth review. In
this case, in addition to an activator-inhibitor system, a particular
type of Turing system, there exists another inhibitor gen, hetN,
whose production is restricted to the heterocysts. This cell–cell scale
inhibition provides an additional dynamics in the pattern formation,
extending the diffusion-based Turing mechanism.

Iber and Mederacke offer a detailed state-of-the-art report on
tracheal ring formation, reviewing recently elucidated molecular
regulatory interactions. Despite these advances, the mechanism
forming periodic rings in the trachea remains poorly understood. In
this regard, the authors describe several putativemechanisms that could be
better explored, such as chemotaxis, differential adhesion, and differential
growth of two adjacent tissue layers, in addition to Turing instabilities.

A classic example of patterning is the periodic structure formed
during somitogenesis resulting from the interplay of oscillatory gene
expression and a maturation wavefront [2]. Carraco et al. provide an
extensive bibliography on the embryonic clock of vertebrates over the
last 25 years, with special emphasis on the understanding of species-
specific oscillation periods, where similar gene architectures produce
different periods in different contexts. Fernández Arancibia et al.
propose a modified reaction wavefront model [15] which sequentially
produces segments in the zebrafish notochord in a periodic manner,
even in the presence of noise. In particular, the new model adds a
reaction wavefront that sequentially activates the chemical reactions
of the FitzHugh–Nagumo model [12].

Besides mechanisms based on biochemical interactions, there is
a great deal of interest in how mechanical cues also drive biological
patterning [16, 17]. Song et al. study the formation of the
gastrovascular canal network in jellyfish through a combination
of anatomical studies and mechanical modeling. The authors
propose that mechanical stress acts as a trigger of differential
growth of the canal network. Contraction during swimming is
different for different parts of the tissue, and depends on the
stiffness of the canal network itself. In this way, differential
stiffness influences the growth direction of the canals and biases
the connectivity of the canal network, affecting morphogenesis.

In addition, Moreno and Alonso address the interaction between
pattern formation and locomotion at the cellular level. They performed
a numerical analysis of a model of amoeboid cell morphology dynamics
proposed in [18] and found that polarization, based on bistability, is
sensitive to changes in parameter values. The authors introduce mass
conservation constraints to increase the robustness of the model.

How cells are geometrically organized and packed in space is
crucial in the formation of tissues and organs. Iber and Vetter review
and discuss the physical principles driving 3D cellular organization and
packing in tissues, focusing on the case of pseudostratified epithelia, a

type of epithelia found in animal tissues where nuclei are positioned
along the apical–basal axis. The authors propose a new geometrical
shape, which they term “punakoid”, whose irregular shape is
reminiscent of the rocks at the beach of Punakaiki in New Zealand.

Finally, adequatemathematical tools andmethodologies are critical
for ensuring robust and reliable predictions from biological patterning
models. From a more methodological and theoretical perspective,
Mjolsness presents a fundamental study about dynamical graph
grammars. In this work, the author extends the framework
introduced in [19] and proposes a general expression that reduces
products of rewrite rule operators to sums of such operators, resulting in
two theorems that comprise a general modeling framework. Mjolsness
presents an application of this multiscale mathematical method for
modeling microtubule dynamics of the cytoskeleton in plant cells.

The spatial patterns of Min proteins on bacterial cells have been
extensively studied with respect to pattern-formation mechanisms [20].
However, the transient and irregular nature of these patternsmakes image
processing and extraction of pattern quantities, such as wavelength,
challenging. Meindlhumer et al. introduce a new analysis pipeline that
quantifies temporal and spatial information from data images, which
could provide a more reliable support for model development.

Pattern formation has been classically modeled and simulated in
systems that are continuous in space [9, 10]. Yet, it has been increasingly
important to have computational frameworks that can simulate biological
pattern formation taking into account the underlying cellular spatial
structure [7, 21] a feature that is limited in continuous models. In the last
few years, several agent-based modeling frameworks have emerged, in
which cells are treated as individual agents whose dynamics are governed
by rules. Pleyer and Fleck discuss the use of agent-based modeling on
cellular systems and multicellular pattern formation, and review different
available computational frameworks of interest.

We hope this Research Topic will stimulate further studies from
mathematical biologists and theoreticians interested in modeling
biological patterning.
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