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Summary
Meiotic recombination is not only fundamental to the adaptation of sexually reproducing

eukaryotes in nature but increased recombination rates facilitate the combination of favourable

alleles into a single haplotype in breeding programmes. The main objectives of this study were to

(i) assess the extent and distribution of the recombination rate variation in cultivated barley

(Hordeum vulgare L.), (ii) quantify the importance of the general and specific recombination

effects, and (iii) evaluate a genomic selection approach’s ability to predict the recombination rate

variation. Genetic maps were created for the 45 segregating populations that were derived from

crosses among 23 spring barley inbreds with origins across the world. The genome-wide

recombination rate among populations ranged from 0.31 to 0.73 cM/Mbp. The crossing design

used in this study allowed to separate the general recombination effects (GRE) of individual

parental inbreds from the specific recombination effects (SRE) caused by the combinations of

parental inbreds. The variance of the genome-wide GRE was found to be about eight times the

variance of the SRE. This finding indicated that parental inbreds differ in the efficiency of their

recombination machinery. The ability to predict the chromosome or genome-wide recombina-

tion rate of an inbred ranged from 0.80 to 0.85. These results suggest that a reliable screening of

large genetic materials for their potential to cause a high extent of genetic recombination in their

progeny is possible, allowing to systematically manipulate the recombination rate using natural

variation.

Introduction

The reciprocal genetic exchange between homologous chromo-

somes is termed crossover (CO), and it is required for the proper

chromosomal segregation during the first meiotic division (Mor-

gan, 1916). This genetic reshuffling in addition to the independent

segregation of chromosomes enables meiosis to produce new

allelic combinations in the resulting gametes. This process is called

meiotic recombination. Consequently, the rate and distribution

pattern of recombination events along the genome determine the

effectiveness of selection in removing deleterious mutations and

increasing the frequency of beneficial allele combinations (Hen-

derson, 2012). This makes meiotic recombination a fundamental

element not only for the adaptation of sexually reproducing

eukaryotes in nature but also for stacking many favourable alleles

into a single haplotype in breeding schemes (Nachman, 2002; Tiley

and Burleigh, 2015). The manipulation of the factors influencing

the rate and distribution of recombination events along the

genome, therefore, has the potential to accelerate plant and

animal breeding (Choi and Henderson, 2015).

Studies on model plants have increased our knowledge about

the mechanism and regulation of recombination considerably (for

review, see Mercier et al., 2015; Wang and Copenhaver, 2018).

While this has opened up possibilities for the manipulation of

genetic recombination by environmental factors such as temper-

ature (Arrieta et al., 2020; Higgins et al., 2012), an even higher

impact is expected from approaches that rely on altering the

genetics of recombination (Taagen et al., 2020). The use of

genome-editing approaches that induce double-stranded breaks

(DSBs) or modify epigenomes at the desired sites of recombina-

tion (Hayut et al., 2017; Underwood et al., 2018), and the

manipulation of CO factors (Mieulet et al., 2018; Sarno et al.,

2017; Tam et al., 2011) are increasingly applicable for achieving

this goal. However, such approaches still face technical challenges

such as to the genotype-specific efficiency of genetic transfor-

mation to be effectively applied (Altpeter et al., 2016; Hayta

et al., 2019). In addition to technical challenges, a constraint for

the adoption of gene-edited crops is government regulation

(Taagen et al., 2020). As an alternative to controlled recombina-

tion via genome editing, the utilization of natural variation

remains a possible way to manipulate recombination in plants.

The meiotic recombination rate is known to vary within and

among species (Nachman, 2002). Over the last years, several

studies have examined the intraspecific variation of recombina-

tion rate in animals (Booker et al., 2017; Chan et al., 2012; Coop

et al., 2008; Dumont et al., 2009; Fledel-Alon et al., 2011; Hunter

et al., 2016; Kong et al., 2010; Meznar et al., 2010; Petit et al.,

2017; Sandor et al., 2012) and plants such as Arabidopsis (Kim

et al., 2007; Salomé et al., 2012; Ziolkowski et al., 2017), maize

(Bauer et al., 2013; McMullen et al., 2009; Rodgers-Melnick

et al., 2015), wheat (Darrier et al., 2017; Gardiner et al., 2019;

Jordan et al., 2018), rice (Marand et al., 2019), cotton (Shen
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et al., 2019), and Eucalyptus (Gion et al., 2016), which showed

high extent of variation in the frequency and distribution of

recombination events across the genomes among genotypes of

the same species. Until now, the recombination rate variation in

barley (Hordeum vulgare L.) was examined in crosses between

wild and cultivated barley (Dreissig et al., 2020), which may be

due to the structural variants (SVs) between both genomes, thus

not fully representative of intraspecific variation. In this sense,

information about the intraspecific recombination rates for

cultivated barley, which is an important crop species and a

model for the Triticeae tribe, is lacking.

The most robust approach to assess the recombination rate

variation is to examine the co-segregation pattern of alleles at

linked loci in populations with known pedigree relatedness (Petit

et al., 2017; Salomé et al., 2012). The pedigrees that were

examined in an animal genetic context were designed such that

one female was mainly recombined with one male (e.g. Smeds

et al., 2016; Weng et al., 2014). Similarly, the nested association

mapping designs that were used for evaluating the recombina-

tion rate variation among plants consist of progenies derived from

the crosses between a diverse set of genotypes and a common

parent (Dreissig et al., 2020; Jordan et al., 2018; McMullen et al.,

2009). Such pedigrees, however, do not allow to assess whether

a high recombination rate in the progenies is due to the general

parental effect or from the specific combination of both parental

genotypes. This information is crucial for designing experiments

to alter the recombination rate systematically.

The idea to exploit the natural recombination rate variation

to construct highly recombinogenic genotypes was proposed

more than 30 years ago (Cederberg, 1985). Despite the

dramatic advances in genotyping technology and the availability

of new resources for genetic mapping (Beyer et al., 2008; Lee

et al., 2002; Yu et al., 2008), such highly recombinogenic

genotypes have not yet been developed in any crop species.

This might be explained by the fact that the assessment of

recombination properties requires considerable experimental

efforts to generate and genotype one to several segregating

populations for each accession of interest. Genomic selection

approaches employ all available markers across the genomes to

predict genotypic values and are nowadays used in most animal

and crop breeding programmes because of their high predic-

tion accuracy (Meuwissen et al., 2001). To our knowledge, no

previous study has evaluated the potential of genomic selection

(GS) to predict the genome-wide and local recombination rate

variation. These approaches may permit the development of

highly recombinogenic lines in recurrent genomic selection

programmes.

The main objectives of this study were to (i) assess the extent

and distribution of recombination rate variation in cultivated

barley, (ii) quantify the importance of the general and specific

recombination effects, and (iii) evaluate a genomic selection

approach’s ability to predict the recombination rate variation.

Results

Genetic variation and parental segregation among the
DRR populations

A principal coordinate analysis (PCoA) was performed for the

diversity panel, three ssp. spontaneum and one ssp. agriocrithon

accessions, and Morex (Figure 1b). The first axis separated the

two rows from the six-row genotypes, where the four wild

barley accessions clustered with the latter. The result of the

PCoA suggested that the parents of the double round-robin

(DRR) populations well represent the genotypic space of the

diversity panel. In the PCoA of the DRR populations and their

parental inbreds, the inbreds of each DRR population clustered

together in between the position of their parental inbreds

(Figure 1c), thereby illustrating the absence of pedigree errors.

The assessment of segregation distortion (SD) demonstrated that

for 38 of the 45 DRR populations, one or several genome

regions were observed with an allele frequency that significantly

(P < 0.05) deviated from 0.5. Several of the observed SD

regions were found to be large with up to 300 Mbp (Figure S1).

Interestingly, some of the DRR populations exhibited shared

segregation trends depending on the parental inbred. Allelic

segregation favoured the allele of IG128216 in chromosome 5H

(50–350 Mbp) of the populations HvDRR30 and HvDRR31.

Contrastingly, the allelic segregation on chromosome 6H (390–
530 Mbp) of the populations HvDRR43, HvDRR44, HvDRR45,

and HvDRR46 disfavoured the allele of Kombyne. Because the

reported regions were long, many genes might have been

responsible for the segregation bias.

The intraspecific recombination variation in cultivated
barley

The high-density linkage maps that were constructed for the 45

DRR populations comprised 6,569–12,962 single-nucleotide

polymorphisms (SNPs) (Figure S2). This resulted in genetic maps

with average distances between adjacent bins varying from 0.88

to 3.17 cM and the median of the longest gap across all

populations being 23.99 cM. The median of Pearson’s correlation

coefficient between the genetic and physical map position was

0.9 across all populations. This, together with the median fraction

of 0.008 of the SNPs that were at a threshold of 5 cM non-

collinear to the physical map in each DRR population, indicated

high collinearity between the obtained genetic maps and the

reference genome.

The previously described genetic maps were the basis for the

assessment of the recombination rates (Figures S3 and S4). The

recombination rate per chromosome observed on average across

all populations ranged from 0.37 (4H) to 0.58 cM/Mbp (5H)

(Figure 2a). The same pattern of recombination rate along the

chromosomes was also noted for the different populations

(Figure 3a,b). Similar to what has been widely observed in species

with large genomes such as grasses (Melamed-Bessudo et al.,

2016), the recombination rate was consistently found to be

almost negligible in the pericentromeric region, while an increase

was noticed in the distal regions. As a result, the recombination

rate was found to be positively correlated with gene density

(P < 0.001). The same trend was detected in the analysis of

historical recombination in the diversity panel (Figure 3c). This

was supported by the observation of a significant (P < 0.05)

correlation coefficient between the historical and meiotic recom-

bination rate assessed on a consensus map basis that ranged from

0.81 to 0.93. The variability of the genome-wide recombination

rate among populations was higher compared with that observed

among the chromosomes, and it ranged from 0.31 to 0.73 cM/

Mbp (median = 0.45 cM/Mbp). Local differences in the recom-

bination rate were detected among populations with a median of

4.5-fold variation in 10 Mbp windows, although some windows

showed up to even a 198-fold variation among populations

(Figure 2c). The differences in the recombination rate among
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populations were particularly large in the distal regions, where

the recombination rates varied between 1.21 and 6.45 cM/Mbp.

However, when correcting for the mean differences in recombi-

nation rate across the genome by calculating the coefficient of

variation, a higher recombination rate variation among popula-

tions was observed in the pericentromeric region compared with

the distal regions. In addition, distal and pericentromeric regions

were found distinctively correlated with the genome-wide

recombination rate (P < 0.001) (Figure 4). This trend was also

detected when evaluating the general recombination effect (GRE)

values (Figure S5).

The extent to which the above-explained differences in

recombination rates among DRR populations were due to the

GRE of each of the two parental inbreds compared to the specific

recombination effect (SRE) of the combination of the two

involved inbreds was quantified by comparing their variances.

The variance of the phenotypic estimated GRE (GREP) values

calculated genome-wide (σ2GREP ) was about eight times the

variance of the SREs (σ2SREP ) (Table 1). The ratio between σ2GREP

and σ2SREP was observed to be even higher for some of the

chromosomes and examined windows. The proportion of recom-

bination rates’ variation that was due to genetic differences was

measured using broad-sense heritability (H2) and was 0.37 on a

genome-wide level. For individual chromosomes, H2 had values

between 0.30 and 0.37, which is slightly lower compared with

that for the genome-wide recombination rate variation. Regard-

less of the analysed scale level, the inbreds with the largest

GREP were ItuNative, CM67, Ancap2, Lakhan, and HOR12830

(Figure 2b).

The potential reasons for the considerable differences among

the GREP values were examined. The GREP values of the parental

inbreds were found to be significantly (P < 0.001) and positively

(0.68) correlated with the average temperature of the geograph-

ical area where they originated from. The inbreds with the highest

recombination rates originated from regions with high mean

temperatures, and they were mostly six-row types (P < 0.05). In

contrast, annual precipitation and germplasm type were not

found to be significantly correlated with GREP. Additionally, the

Figure 1 (a) The crossing scheme underlying the double round-robin populations of barley. The number of recombinant inbred lines available per

population is indicated below each population’s name. (b) Principal coordinate analysis of the diversity panel, Morex and three ssp. spontaneum and one

ssp. agriocrithon accessions based on 36,077 SNP markers. PC 1 and PC 2 are the first and second principal coordinate, respectively, and the number in

parentheses refers to the proportion of variance explained by the principal coordinates. (c) Principal coordinate analysis of the double round-robin (DRR)

populations and their parental inbreds based on 36,077 SNP markers. PC 1 and PC 2 are the first and second principal coordinate, respectively, and the

number in parentheses refers to the proportion of variance explained by the principal coordinates. Parental inbreds are indicated by black triangles.

Individuals from the same DRR population are indicated with dots of the same colour.
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sequence divergence between the parental inbreds was evaluated

as a factor contributing to the recombination rate variation. No

significant correlation was observed between the recombination

rate and allelic parental similarity neither on a population basis

averaged across the genome (P = 0.423) nor on a genome basis

averaged across the populations (P = 0.510; Figure S6). Across

the pericentromeric region, such correlation was not significant

(P = 0.06) on a population basis, while on a genome basis, a high

negative correlation (P < 0.001) was observed.

QTL analysis of CO counts

The genome-wide CO counts ranged from 7 to 59 per DRR

population with a median of 20 COs (Figure 2d). Pearson’s

correlation coefficient between the average CO count per

population and their recombination rates was with 0.52 highly

significant (P < 0.001). The 1.44-fold variation found between

the populations with the lowest and highest CO count is

consistent with the respective 1.35-fold variation found for the

recombination rate. On a chromosomal level, the CO counts

ranged from 0 to 14 with a median between 2 and 3 COs

depending on the chromosome. COs per chromosome were

noted to be significantly (P < 0.001) correlated with the chro-

mosomes’ physical length. Across the 8 examined CO counts, 16

quantitative trait loci (QTLs) were detected using a multi-

population analysis (Table S1). Although each detected QTL was

significant (P < 0.05) in at least five populations (Figures S7–S10),
it explained <3% of the total phenotypic variance.

The genomic prediction of recombination-related
estimates

The ability to predict recombination-related estimates for individ-

ual populations using the genome-wide SNP profiles (Figure S11)

Figure 2 (a) Heat map of the chromosome-wide recombination rates for the 45 double round-robin populations. (b) Heat map of the chromosome-wide

phenotypic-estimated general recombination effect (GREP) for the 23 parental inbreds. Darker colours indicate higher recombination rates or GREP values.

On the y-axis, populations and inbreds are ordered according to their hierarchical complete clustering based on Euclidean distances of recombination rates

and GREP values per chromosome respectively. (c) Histogram of the number of 10 Mbp windows by the fold range of recombination rate variation. (d)

Boxplot of the number of counted genome-wide crossovers (CO) for all DRR populations.

Figure 3 (a) Marey map and (b) meiotic recombination rate (c) landscape across the seven chromosomes of the three double round-robin populations with

the highest and lowest genomic recombination rates. (c) Historical recombination estimates ρw (/Mbp, black-dashed line) for the diversity panel and

consensus meiotic recombination rate c (cM/Mbp, grey-solid line) across all DRR populations along the seven barley chromosomes. The vertical line indicates

the position of the centromere in the reference map and the shadow denotes the pericentromeric region. r is Spearman’s correlation coefficient between

the historical recombination estimate ρ̂w and the consensus (c) across 10 Mbp windows.
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of the parental inbreds was assessed. When using all DRR

populations as the training set, the genomic best linear unbiased

prediction (GBLUP) model resulted in high prediction abilities

concerning the recombination rate with values between 0.74 and

0.94 for the entire genome and the individual chromosomes

(Figure 5a). Cross-validation (CV) approaches were utilized to

obtain unbiased prediction abilities. The fivefold CV approach led

to prediction abilities with values between 0.40 and 0.53, about

Figure 4 Pearson’s correlation coefficient between the 45 double round-robin populations’ recombination rate values for 10 Mbp physical windows and

their respective genome-wide recombination rate values across the seven barley chromosomes.
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40% lower than that observed without CV. A further reduction in

the training set (TS) size from 36 to 27 or even 18 lessened the

ability to predict genome-wide recombination rate by only 0.03

and 0.11, respectively, but it was slightly more pronounced for

the recombination rate of the individual chromosomes. A second

CV approach was implemented to test the model’s ability to

predict the recombination rate for populations that were unre-

lated by pedigree with the populations of the TS. The prediction

ability observed in these two scenarios was about 0.1 lower than

those in the first CV approach with a comparable TS size.

In the same way, the ability to predict the GRE of parental

inbreds was evaluated. The same trends outlined previously were

also valid for the predicted GRE values (Figure 5b). However, the

general level of the prediction ability was 13% higher compared

with that concerning the recombination rate of the populations.

The aforementioned analyses were also performed for the

recombination rate in 10 Mbp physical windows. The model’s

ability to predict recombination across individual windows was

more variable and consistently lower than for entire chromo-

somes or genome-wide predictions (Figure S12). In addition, the

model was utilized to predict the genomic estimated GRE (GREG)

of the 3,959 DRR recombinant inbred lines (RILs). The predicted

GREG values of the RILs and the resulting genomic estimated

breeding value (GEBV) of all 7,838,820 possible RILs’ hybrid

combinations were observed to represent the recombination

variation in parental inbreds and the DRR populations respectively

(Figures 6a,b).

The ability of the model to predict the recombination of

individual populations decreased by 0.02, 0.03, and 0.05 on

average across the scenarios when randomly sampling a uniform

distribution of SNPs across the physical map with 1 SNP per 1, 5,

and 10 Mbp respectively (Figure S13). The reduction to predict

the GRE of parental inbreds with the three reduced marker

densities was of similar size with 0.03, 0.04, and 0.05.

Discussion

Recent advances in understanding the mechanisms and regula-

tion of recombination opened up biotechnological possibilities to

manipulate genetic recombination (Mercier et al., 2015). The use

of genome-editing approaches that induce DSBs or modify

Table 1 The variances for the phenotypic estimated general (σ2GREP )

and specific (σ2SREP ) recombination effects as well as the phenotypic

estimated broad-sense heritability (H2) for recombination rate

variation.

Molecular level σ2GREP σ2SREP H2

Genome-wide 0.00229 0.00028 0.37

Chromosomes

1H 0.00222 0.00104 0.32

2H 0.00174 0.00107 0.30

3H 0.00302 0.00116 0.32

4H 0.00193 0.00014 0.38

5H 0.00544 0.00048 0.37

6H 0.00238 0.00040 0.36

7H 0.00223 0.00031 0.36

Windows

Min 0.00000069 0 0.21

Max 0.17 0.14 0.63

Figure 5 Genomic prediction ability concerning the recombination rate variation of individual chromosomes and the genome-wide level, using different

approaches. (a) Pearson’s correlation coefficient between the observed recombination rate and genomic estimated breeding values of the double round-

robin (DRR) populations, rPG. (b) Pearson’s correlation coefficient between the phenotypic and genomic estimated general recombination effects of the

parental inbreds, rGREPGREG . Cross-validation (CV) scenarios for genomic prediction are detailed in the table, where the number of populations per validation

set (Npop VS), the number of parents involved in the populations in each validation set (Npar VS), the number of populations per training set (Npop TS), and

the number of parents involved in the populations in each training set (Npar TS) are given.
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epigenomes at desired sites (Hayut et al., 2017; Underwood

et al., 2018) and the manipulation of CO factors (Mieulet et al.,

2018; Sarno et al., 2017; Tam et al., 2011) are increasingly

applicable for achieving this goal. However, the utilization of

natural variation explored in the present study remains an

alternative way to the mentioned approaches to manipulate

recombination.

The intraspecific variation of recombination rate in
cultivated barley

At the genome-wide level, the observed meiotic recombination

rate ranged from 0.31 to 0.73 cM/Mbp (median = 0.45 cM/

Mbp) among DRR populations (Figure 2a). Populations with the

highest and lowest genome-wide recombination rates were also

among the most frequent extreme recombining populations

when ranking them according to the recombination rate per

individual 10 Mbp window (data not shown). This indicates that

the observed genome-wide recombination rates are not due to

the effect of a few windows with a particularly high or low

recombination rate in a population but because of the genome-

wide tendency.

The observed level of recombination rate variation in the DRR

populations was higher than that reported in populations derived

from crosses between domesticated and wild barley accessions

(Dreissig et al., 2020). Moreover, it was also higher than most

observations for other plant species such as Arabidopsis (Salomé

et al., 2012; Ziolkowski et al., 2017), maize (Bauer et al., 2013),

and wheat (Gardiner et al., 2019; Jordan et al., 2018), but it was

lower than the values observed in the animal kingdom (Booker

et al., 2017; Chan et al., 2012; Fledel-Alon et al., 2011; Meznar

et al., 2010). The high recombination rate variation observed in

this study is presumably due to the high extent of genetic

variation among the parental inbreds, which represent most of

the genetic variation of cultivated barley (Figure 1c). A previously

reported nested association mapping (NAM) population that

comprised a vast genetic diversity of cultivated maize was also

found to show a high variation in recombination rates among

populations (McMullen et al., 2009).

The considerable differences noticed in the genome- and

chromosome-wide recombination rates among the DRR popula-

tions led to the question of whether they are caused by the effect

of parental inbreds (GRE) or the specific combination of two

parental inbreds (SRE); being this work the first to report them.

The general effect of parental inbreds on recombination was

found to be about eight times higher than the specific effect of

parental combinations across the different analysed scale levels.

This finding suggested that the examined parental inbreds differ

in the efficiency of their recombination machinery. The segrega-

tion of structural variants in the individual DRR populations, which

has been described to influence the extent and distribution of

recombination events (Muñoz-Amatriaı́n et al., 2013; Rowan

et al., 2019; Saxena et al., 2014), was determined in this study as

part of the SRE. This is because the same SVs will not segregate in

all populations in which a common parent is involved.

Because of the high importance of the GRE in relation to the

SRE in determining the recombination rate variation, it was

interesting to understand the causes of the variation in GRE

observed among the 23 parental inbreds. The environmental

conditions at the stage of meiosis have the potential to influence

the recombination rate (Wang and Copenhaver, 2018). In

particular, the effect of temperature on meiosis has been studied

for a long time in Drosophila (Plough, 1917) and plants (Dowrick,

1957), revealing that the rate of formation and distribution of

COs varies depending on the temperature, as recently demon-

strated in Arabidopsis (Choi et al., 2013; Lloyd et al., 2018;

Modliszewski et al., 2018), barley (Higgins et al., 2012; Phillips

Figure 6 (a) Frequency distribution of the genome-wide general recombination effects (GREG) of the diversity panel, double round-robin (DRR)

populations’ parental lines, and DRR recombinant inbred lines (RILs) predicted by GBLUP. The GREG for the parental inbreds of the three DRR populations

with the respective lowest and highest recombination rate is displayed. (b) Frequency distribution of the genomic estimated breeding values (GEBVs)

concerning the genome-wide recombination rate for the DRR populations and for all possible populations derived from the DRR RILs. The GEBVs for the

three DRR populations with the lowest and highest genome-wide recombination rate are displayed.
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et al., 2015), and other plants (Wang and Copenhaver, 2018),

with no common trends across species. In this sense, the observed

GRE and SRE might be a result of the recombination plasticity of

the studied inbreds interacting with the particular environmental

conditions where our crossing experiment took place. These

conditions might have uncovered the different temperature

responses of the examined inbreds, making those detectable as

recombination rate variation. However, that is unlikely because

the controlled environmental conditions under which the exper-

iment took place are standard for barley cultivation.

Nevertheless, the GREP values of the parental inbreds were

found to be significant (P < 0.001) and positively correlated with

the average temperature of the geographic areas where they

originated from. This observation was in agreement with a

previous report (Dreissig et al., 2019). Other environmental

factors were not significantly (P < 0.05) correlated with the

observed GREP values.

In addition to environmental factors, the importance of genetic

factors in determining the recombination rate variation was

explored. As proposed in previous studies, a QTL analysis using

the number of CO of each RIL as the dependent variable was

performed (Esch et al., 2007; McMullen et al., 2009). To identify

shared controllers of recombination across the genetic diversity of

cultivated barley, a multi-population analysis was performed, and

16 QTLs were detected. Eight of the detected QTLs were located

on different chromosomes than where the CO count used as

phenotype was assessed. In addition, three loci were found to be

responsible for genome-wide effects. Both observations are in

accordance with reports on other plant (Dreissig et al., 2020; Esch

et al., 2007; Jordan et al., 2018; Yandeau-Nelson et al., 2006;

Ziolkowski et al., 2017) and animal species (Fledel-Alon et al.,

2011; Kong et al., 2010), suggesting the existence of trans-acting

control of recombination. This result supports the previous

explanation that the high importance of the GRE relative to the

SRE in determining the recombination rate variation suggests that

the barley inbreds used in this study differ in the efficiency of their

recombination machinery. However, each of the detected QTLs

explained <3% of the phenotypic variance (Table S1). This result

is in agreement with previous studies on the genetics of

intraspecific recombination in maize, wherein no shared con-

trollers of recombination have been detected (McMullen et al.,

2009). Furthermore, it suggests that meiotic recombination has a

polygenic inheritance. The same conclusion can be drawn from

the observation of a rather uniform distribution of marker effects

across the genome when fitting genomic prediction models to

the recombination rate estimates (Figure S11).

Finally, it must be considered that, in addition to allelic variation

at the single nucleotide level, epigenetics factors are also known

to play a role in the recombination of the plant genome

(Henderson, 2012). In particular, recombination rate is negatively

associated with the level of DNA methylation and nucleosome

density (Apuli et al., 2020; Choi et al., 2013; Rowan et al., 2019),

which partly explains the suppression for recombination in the

centromeric region of chromosomes in plants where the content

of heterochromatin is high (Choi et al., 2018). However, further

research is needed to understand the effect of methylation on the

recombination rate variation among different genotypes.

Breeding for recombination rate

The amount of genetic variation generated per meiosis is

determined by the extent of the recombination rate (Henderson,

2012). Therefore, recombination influences the population size as

well as the number of generations required to stack multiple

favourable alleles in any breeding programme (Choi and Hen-

derson, 2015). Developing genotypes that carry alleles providing

high recombination will, thus, increase the gain of selection

(Jordan et al., 2018). The present study provides an evaluation of

the procedure required to perform selection for increased

recombination rates.

The considerable differences observed among the recombina-

tion rate of individual DRR populations, and especially among the

GRE of parental inbreds (Figures 2a,b) as well as the moderate

heritabilities (Table 1), indicate the high potential for using

natural variation to manipulate the rate and distribution of

recombination in the genome by systematic breeding. This

approach requires the evaluation of the genetic material for its

recombination properties. The high relative importance of GRE

compared with SRE in determining the recombination rate

variation observed in this study suggests that the recombination

properties of genetic materials do not need to be evaluated in

crosses with several other parental genotypes but can instead be

evaluated in a resource-efficient manner by crossing them with

only one other parent. However, such approaches still require the

generation of segregating material from each of the genotypes of

interest, which, even with today’s genotyping and sequencing

techniques, is a task that demands considerable resources. As an

alternative, the prediction of recombination-related estimates

based on genome-wide SNP profiles was evaluated for the first

time in the present study. The GBLUP model using genome-wide

SNP profile data has been shown to provide a high ability to

predict recombination-related estimates (e.g. GRE) as well as the

observed meiotic recombination (Figure 5). The observed predic-

tion abilities were on a similar level to those concerning

agronomic and quality traits (Haile et al., 2018; Heffner et al.,

2011), where genomic prediction is routinely used in many

commercial breeding programmes.

To evaluate if the observed predictive abilities were determined

by the fact that the SNPs used to calculate the genetic

relationship matrix were mainly located in genome regions with

a high recombination rate (Figure S11), resampling simulations

have been performed. Only a mild reduction in the model’s

predictive ability was observed when using uniformly distributed

SNPs across the genome compared to the original set of SNPs

(Figure S13). That illustrates that the observed high predictive

abilities are not due to the overrepresentation of those regions of

the genome with high recombination rates when estimating the

genetic relationship of the parental inbreds.

The impact of TS size on the prediction ability of the model was

assessed through cross-validation. As expected, the prediction

ability of the model significantly decreased with smaller TS sizes in

both the CV approaches performed in this study (Figure 5), which

is consistent with what was previously observed in genomic

selection studies in animals (VanRaden et al., 2009) and plants

(e.g. Heffner et al., 2011; Lorenzana and Bernardo, 2009;

Technow et al., 2013). However, the high prediction ability

obtained with TS sizes of 27 or 18 segregating populations

suggests that it is still possible to accurately select genotypes for

their recombination properties using datasets that are consider-

ably smaller than the one used in our study.

An aspect that is very important for the design of breeding

programmes was examined: the ability of the model to predict

the recombination rate of segregating populations derived from

new inbreds, i.e., inbreds for which no other segregating

populations are available in the TS. For these scenarios, only
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about 10% lower prediction abilities were observed compared

with the CV scenarios wherein related segregating populations

were in the TS of similar size (Figure 5). This finding indicates that

even for new inbreds, recombination properties can be predicted

reasonably well. To illustrate it further, the genome-wide GREG of

different sets of new inbreds was predicted (Figure 6a), in

addition to the GEBVs of populations derived from such new

inbreds (Figure 6b). The high variation among predicted GEBVs

demonstrates that the proposed method makes it possible to

screen and select highly recombinogenic genotypes based on

their SNPs’ profiles. These are then evaluated and recombined in

the next step of recurrent selection schemes for altered recom-

bination properties. In such a breeding scheme, the genotyped

individuals are used not only to quantify the recombination rate

of the parental genotypes but also to start the next cycle of a

breeding programme. This, however, would not be possible when

using high-throughput pollen sequencing (Dreissig et al., 2015;

Drouaud et al., 2013) instead of genotyping individual plants.

When considering the standard deviation in recombination

rates among populations across the genome, it might be

concluded that no variation among populations exists in the

pericentromeric region (Figure 3b). However, when adjusting the

variation of recombination rate among populations using the

mean recombination rate in a window, to consider the coefficient

of variation, a higher recombination rate variation among

populations in the pericentromeric region than in the distal

regions was detected. This indicated that also the recombination

rate variation near the centromere should be considered when

selecting genotypes for recombination.

The potential impact of increasing genetic variation in the

pericentromeric region on barley breeding is particularly high, as a

big portion of barley’s functional genes is present in this region

(Mascher et al., 2017; Phillips et al., 2015). Therefore, the ability

to predict recombination properties was evaluated not only on a

genome- or chromosome-wide scale but also in smaller windows

across the genome. The prediction abilities observed for the

recombination rate in 10 Mbp windows were considerably lower

compared with that on a chromosome- or genome-wide level

(Figure S12). However, the ability of the model to predict the GRE

for individual windows was on average >0.5 after cross-

validation, which suggests that an alteration of recombination

properties in individual windows is possible.

Nevertheless, very low prediction abilities were noticed in some

windows, presumably because of the low extent of variation

among the GREP of the parental inbreds for these windows. The

pairwise correlations among the GREP of individual windows and

the genome-wide GREP were calculated to investigate if the

inbreds with high genome-wide GREP were also those that cause

a high recombination rate in the pericentromeric regions of their

progenies. In this analysis, strong positive correlations were

detected in the distal regions of all chromosomes, whereas most

correlations in the pericentromeric region were considerably

lower (Figure S5). This suggests that the mechanisms influencing

recombination rate variation in distal regions differ from those in

the pericentromeric region of barley chromosomes, as demon-

strated in Arabidopsis (Choi et al., 2018; Rowan et al., 2019) and

rice (Marand et al., 2019).

One aspect that could prevent breeders from employing our

proposed procedure is if the increased recombination rate

variation is negatively correlated with other important agronomic

characters. However, such correlations were not observed for the

barley inbreds used in this study (Table S2).

Conclusion

The present study revealed a considerable recombination rate

variation among segregating populations of the model species

barley. In addition, this variation was observed to be mainly due

to the general effects of individual parental inbreds, and only to

about 12% of the variance was caused by combinations of both

parents. Furthermore, we suggested a route and characterized

the required methods to systematically manipulate recombination

rates by using natural variation that might serve as an alternative

or complement to controlled recombination via transgenesis.

Experimental procedures

Plant materials and genotypic characterization

In this work, two different genetic materials were analysed. On

the one hand, 23 inbreds were selected from a diversity panel as

parental inbreds of the DRR population. The inbreds were

selected based on the maximal combined genotypic and pheno-

typic richness index (Weisweiler et al., 2019). The parental inbreds

were then crossed following the DRR design (Stich, 2009) to

initiate biparental populations (Figure 1a). Within each of the 45

populations, randomly chosen genotypes in the F2 generation

underwent subsequent selfing generations to produce 35–146
RILs per population. This resulted in a total set of 3,959 RILs across

45 biparental populations, hereafter referred to as DRR popula-

tions. The cultivation of the parental inbreds to make the crosses

for the F1 generation and the subsequent selfing generations,

until S4 of each RIL, were carried out under identical environ-

mental conditions in a greenhouse.

On the other hand, the diversity panel of 224 unrelated inbreds

from which the parental inbreds were selected was analysed. It

mostly consisted of landraces and improved varieties, represent-

ing the worldwide genetic diversity of cultivated spring barley

(Haseneyer et al., 2009). In addition, the inbred Morex, three ssp.

spontaneum (HID 4, HID 64, and HID 369), and one ssp.

agriocrithon (HID 382) accessions were added to the analysis.

The RILs of the DRR populations were genotyped at the S4

generation as the occurrence of recombination events after this

generation can hardly be detected because of the high degree of

homozygosity. Both the RILs of the DRR populations and the

inbreds from the diversity panel were genotyped by TraitGenetics

GmbH (Gatersleben, Germany) using the 50K Illumina Infinium

iSelect SNP genotyping array that includes 40,040 SNP markers

(Bayer et al., 2017).

Statistical analysis

Characterization of the recombination rate in segregating
populations

Estimation of the meiotic recombination rate. The details of

the data cleaning process and the procedure employed to

construct the DRR populations’ linkage maps are provided in

the supporting information section (Methods S1 and S2). The

positions of the SNPs on the genetic maps were used together

with their positions on the reference physical map (Monat et al.,

2019) to establish a Marey map (Chakravarti, 1991) for each

chromosome–DRR population combination. SNPs that did not

generate a monotonously increasing trend were removed from

the map but those with 2 cM diversions were tolerated (Bauer

et al., 2013). Afterwards, a cubic spline model was fit to the

coordinates of the Marey map for each chromosome–DRR
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population combination. Model parameters were subsequently

adjusted to smooth the curve when needed (Berloff, 2002;

Perperoglou et al., 2019). The meiotic recombination rate (c, cM/

Mbp) (Falconer and Mackay, 1996; Petit et al., 2017) was

calculated as the slope of the fitted curve on a 10 Mbp window

basis. In case a Marey map had no SNPs in any of the extreme

windows of the respective chromosome, the recombination rate

for that window was estimated by deriving the predicted curve

value of the average position of the five nearest SNPs.

The average recombination rate for each chromosome was

calculated as the average of the recombination rates in the 10

Mbp windows of that particular chromosome. The genome-wide

recombination rate for a given population was calculated as the

average recombination rate across the seven chromosomes.

The pairwise genetic similarity between both parental inbreds

of each population was calculated as the fraction of shared SNP

alleles on a 10 Mbp window basis. The parental similarity was

correlated with the recombination rate on a genome basis (i.e.

the population-based recombination rates were averaged per

physical window) as well as a population basis (i.e., the window-

based recombination rates were averaged per population). The

recombination rate per physical window was correlated with the

gene density in each respective window using the gene annota-

tion provided by Monat et al. (2019).

Consensus map. A consensus map based on the 45 linkage

maps of the DRR populations was developed based on the

following approach: First, the average recombination rate per

window across all 45 DRR populations was calculated. Then, the

physical distances in Mbp between the adjacent markers (Monat

et al., 2019) in each window were converted into cM according

to the average recombination rate for that particular window. In

our study, the pericentromeric region of each chromosome was

defined as the continuous region surrounding the centromere for

which the average recombination rate across the 45 DRR

populations was 20-fold lower than the average across the barley

genome (cf. Baker et al., 2014). Since the pericentromeric region

mostly represent the proximal region in this species, the regions

of the chromosome which do not belong to the pericentromeric

region were designated distal regions.

Calculation of historical recombination and comparison with
the meiotic recombination

Historical recombination rates (ρ) were estimated using PHASE

version 2.1 (Li and Stephens, 2003) for the diversity panel of 224

inbreds. To allow that the effective population size Ne can vary

along the genome, the estimation of the historical recombina-

tion rate (ρ = 4Nec) was performed in 2.5 Mbp windows, with

an overlap of 200 Kb with neighbouring windows to avoid

border effect. PHASE was evaluated with different priors of the

mean historical recombination parameters (μ = 0.000002,

0.00001, 0.00002, and 0.001). Because of the observed high

correlation coefficient among ρ, PHASE was finally used with the

default parameter settings. The number of main iterations was

increased to obtain 1,000 posterior samples (-X10), as recom-

mended by the authors for more accurate recombination

estimates. In addition, all individuals were used in the estima-

tions to obtain the posterior distribution for the historical

recombination rate for each window (ρ̂w ). ρw was set to NA for

windows with <2 variants for the diversity panel. The median of

the 1,000 posterior samples of ρw was used as the point

estimate (ρ̂w ).

To compare the patterns of meiotic (c) and historical recom-

bination (ρ) across the barley genome, Spearman’s correlation

coefficient between the average meiotic recombination rate (c)

across the 45 DRR populations and ρ̂w of the diversity panel was

assessed across the 10 Mbp physical windows.

QTL analysis of crossover counts

The number of COs for each chromosome of each RIL as well as

the sum of genome-wide COs was the basis for this analysis. To

ensure genotypic data’s quality, SNPs with a GenTrain score lower

than 0.7 were excluded. In each DRR population, SNPs with

missing data >10% were also discarded. In addition, RILs with

>10% residual heterozygosity or missing data were discarded

from each population. The CO count of each RIL was estimated

using the function ‘countXO’ of the ‘R/qtl’ package (Broman

et al., 2003). Any RIL with a CO count that exceeded by 2 COs,

the last consecutive bin of its population’s frequency distribution

was considered as an outlier and excluded from the analysis. A

multi-population QTL analysis was conducted using the R

package ‘mppR’ (Garin et al., 2015), and a cross-specific QTL

effect model was considered. The significance threshold above

which a position can be selected as QTL was determined as the

0.95 quantile of the null distribution created by performing 1,000

permutations.

Genomic prediction of the recombination rate

Genetic estimates of the recombination rate. The average

recombination effect of a parental inbred in a series of different

populations was defined as the general recombination effect

(GRE), and the recombination effect of a particular population

adjusted for the GRE of both involved parental inbreds was

defined as the specific recombination effect (SRE). In this sense,

the recombination rate cij in a population created by crossing the

parental inbreds i and j was modelled as:

cij ¼ μþ GREi þ GRE j þ SREij , (1)

where μ is the intercept, GREi and GREj are the GRE effects of the

ith and jth parental inbred, respectively, and SREij is the SRE effect

of the population between parental inbred i and j.

In the present study, two ways to estimate the GRE were

evaluated: the genomically estimated GRE (GREG) and phenotypic

estimated GRE (GREP) whose estimation procedure is described

below. When the text refers to GRE without specifying whether it

is genomic or phenotypic estimated, it refers to both. The

estimation of SRE as well as the nomenclature of SREG and SREP
were in analogy to that of GRE.

BLUP model. The meiotic recombination rate (c) was modelled

using best linear unbiased prediction (BLUP)

c ¼ 1nμþ ZGREuGRE þ ZSREuSRE þ e, (2)

where c is the vector of the recombination rates for the 45 DRR

populations; 1n is the unit vector of length n, where n is the

number of DRR populations; μ is the general mean; uGRE and uSRE

are the vectors of GRE and SRE effects; and e is the vector of

random residuals. ZGRE and ZSRE are the incidence matrices of the

GRE and SRE effects, relating c to the additive (A) and dominance

(D) genomic relationship matrices respectively. It is assumed

that uGRE ∼ N 0, Aσ2a
� �

, uSRE ∼ N 0, Dσ2d
� �

, and e ∼ N 0, Iσ2E
� �

,

where σ2a is the additive genetic variance, σ2d is the dominance

variance, and σ2e is the residual variance. For the calculation of
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GREP and SREP, A and D were identity matrices, as was I. The

model fit and variance compound estimation based on REML

were performed using the ‘sommer’ package (Covarrubias-

Pazaran, 2016).

GBLUP model. For the calculation of GREG and SREG, A and D

were matrices from genome-wide SNP markers, thus turning the

BLUP into a GBLUP model. The SNP effect’s profiles were

calculated using ridge regression best linear unbiased prediction

(RR-BLUP) (Meuwissen et al., 2001).

Prediction ability of the GBLUP model. The aforementioned

model was tested to predict the GREP of parental inbreds and the

recombination rate of a population at three different scales:

genome-wide, individual chromosomes, and 10 Mbp physical

windows. The ability of the model to predict the GREP of parental

inbreds was calculated using Pearson’s correlation coefficient

between the phenotypic and the genomic estimated GRE of the

parental inbreds (rGREPGREG ).

Moreover, the ability of the model to predict the recombination

rate of a population was calculated using Pearson’s correlation

coefficient between the DRR population’s recombination rate (c)

and the GEBV of the DRR population’s recombination rate (rPG).

The latter was calculated using the model [1]. Differences

between the correlations were tested for their significance using

the approach proposed by Zou (2007). The broad-sense heri-

tability (H2) for recombination rate was calculated as:
σ2
GREP

þσ2
SREP

σ2
GREP

þσ2
SREP

þσ2e

Additionally, the GREG of each RIL of each DRR population

was predicted using the model [2]. The GEBV of all possible

combinations among DRRs’ RILs was calculated using the

model [1].

Prediction ability evaluated by cross-validation. Two different

CV procedures were employed, with one comprising three

scenarios and the other having two. The first approach was

intended to evaluate the ability to predict the recombination

rate of new segregating populations from parental inbreds for

which already segregating populations are available. In this

sense, a fivefold cross-validation was performed by randomly

dividing the full set of DRR populations into five disjoint subsets

of equal size. For each of the five possible runs, one subset was

left out to be used as the validation set (VS), whereas the other

four subsets were used as the training set (TS). This procedure

was repeated 100 times resulting in 500 cross-validation runs in

total. In addition, scenarios with different TS sizes (Npop) were

evaluated by reducing the number of subsets in the TS from

four (Npop = 36) to three (27) and two (18).

The second CV approach focussed on the ability of the model to

predict the GRE of new inbreds for which no segregating

populations are available yet. In this approach, all populations

derived from three randomly selected inbreds (Npar = 3) were used

asVSandall other populations as TS. This procedurewasperformed

1,000 times. This analysis was also performed for Npar = 5.

The median of Pearson’s correlation coefficients across all runs

of each scenario was reported and compared using a t-test. The

aforementioned CV approaches were performed at three differ-

ent scale levels: genome-wide, individual chromosomes, and 10

Mbp windows across the genome.

The impact of the number and distribution of SNPs on the

prediction ability of the model was evaluated by repeating the

above-described procedure but using different subsets of

uniformly spaced SNPs in every CV run. Three different distribu-

tions were tested: 1 SNP per 1, 5, and 10 Mbp.

Correlation between the recombination estimates and the
characteristics of inbreds

Pearson’s correlation coefficient between the GREP values and the

variables characterizing the inbreds (such as row type, germplasm

type, and geographic origin) was calculated in addition to the

environment of their locations of origin (such as annual precip-

itation and temperature). Information about annual precipitation

and the average temperature was estimated for the region of

origin of each parental inbred based on historical data (1901–
2016) from the World Bank’s database (The World Bank, 2020).

Furthermore, Pearson’s correlation coefficient between the GREP
values and phenotypic trait scores of the parental inbreds was

calculated. Procedures employed to assess phenotypic traits in

field experiments are described in the supporting information

section (Method S3).

Acknowledgements

Computational infrastructure and support were provided by the

Centre for Information and Media Technology at Heinrich Heine

University Düsseldorf. The authors give thanks to the IPK for

providing the seeds of the diversity panel. We thank our former

colleagues Andrea Lossow, Nicole Kliche-Kamphaus, Nele Kaul,

Isabelle Scheibert, Marianne Haperscheid and George Alskief, as

well as our present colleague, Florian Esser, for their technical

assistance in creating and maintaining the DRR populations. In

addition, we thank Franziska Wespel from Saatzucht Breun and

her team for performing field experiments in Quedlinburg. Finally,

we thank Raphael Mercier for his valuable suggestions to improve

this manuscript. This research is funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation)

under Germany’s Excellence Strategy (EXC 2048/1, Project ID:

390686111).

Conflict of interest

The authors declare no conflict of interest.

Author contributions

FC performed all analyses related to meiotic recombination, DVI

performed the analyses related to historical recombination and

the consensus map, and contributed phenotypic information,

MW contributed to SNP data analysis, JL created the segregating

populations, BS designed and coordinated the project. FC, DVI,

and BS wrote the manuscript. All authors read and approved the

final manuscript.

Data availability statement

The genotypic data utilized in this study, as well as the genetic

maps and crossover counts, are available at https://doi.org/10.

5281/zenodo.5495951.

References

Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky,

V., Conrad, L.J. et al. (2016) Advancing crop transformation in the era of

genome editing. Plant Cell, 28, 1510–1520.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 20, 676–690

Genomic prediction of recombination rate 687

https://doi.org/10.5281/zenodo.5495951
https://doi.org/10.5281/zenodo.5495951


Apuli, R.P., Bernhardsson, C., Schiffthaler, B., Robinson, K.M., Jansson, S.,

Street, N.R. and Ingvarsson, P.K. (2020) ‘Inferring the genomic landscape of

recombination rate variation in European Aspen (Populus tremula). G3:

Genes - Genomes - Genetics, 10, 299–309.
Arrieta, M., Willems, G., DePessemier, J., Colas, I., Burkholz, A., Darracq, A.,

Vanstraelen, S. et al. (2020) The effect of heat stress on sugar beet

recombination. Theor. Appl. Genet. 13, 81–93.
Baker, K., Bayer, M., Cook, N., Dreißig, S., Dhillon, T., Russell, J., Hedley,

P.E. et al. (2014) The low-recombining pericentromeric region of barley

restricts gene diversity and evolution but not gene expression. Plant J. 79,

981–992.
Bauer, E., Falque, M., Walter, H., Bauland, C., Camisan, C., Campo, L., Meyer,

N. et al. (2013) Intraspecific variation of recombination rate in maize.

Genome Biol. 14, R103.

Bayer, M.M., Rapazote-Flores, P., Ganal, M., Hedley, P.E., Macaulay, M.,

Plieske, J., Ramsay, L. et al. (2017) Development and evaluation of a barley

50k iSelect SNP array. Front. Plant Sci. 8, 1792.

Berloff (2002) Physical and genetic maps. J. Comput. Biol. 9, 465–475.
Beyer, P., Morell, M., Mackay, I. and Powell, W. (2008) From mutations to

MAGIC: resources for gene discovery, validation and delivery in crop plants.

Curr. Opin. Plant Biol. 11, 215–221.
Booker, T.R., Ness, R.W. and Keightley, P.D. (2017) The recombination

landscape in wild house mice inferred using population genomic data.

Genetics, 207, 297–309.
Broman, K.W., Wu, H., Sen, S. and Churchill, G.A. (2003) R/qtl: QTL mapping in

experimental crosses. Bioinformatics, 19, 889–890.
Cederberg, H. (1985) Recombination in other chromosomal regions than the

interval subjected to selection, in lines of Neurospora crassa selected for high

and for low recombination frequency. Hereditas, 103, 89–97.
Chakravarti, A. (1991) A graphical representation of genetic and physical maps:

the Marey map. Genomics, 11, 219–222.
Chan, A.H., Jenkins, P.A. and Song, Y.S. (2012) Genome-wide fine-scale

recombination rate variation in Drosophila melanogaster. PLoS Genet. 8,

e1003090.

Choi, K. and Henderson, I.R. (2015) Meiotic recombination hotspots – a

comparative view. Plant J. 83, 52–61.
Choi, K., Zhao, X., Kelly, K.A., Venn, O., Higgins, J.D., Yelina, N.E., Hardcastle,

T.J. et al. (2013) Arabidopsis meiotic crossover hot spots overlap with H2A.Z

nucleosomes at gene promoters. Nat. Genet. 45, 1327–1338.
Choi, K., Zhao, X., Tock, A.J., Lambing, C., Underwood, C.J., Hardcastle, T.J.,

Serra, H. et al. (2018) Nucleosomes and DNA methylation shape meiotic DSB

frequency in Arabidopsis thaliana transposons and gene regulatory regions.

Genome Res. 28, 532–546.
Coop, G., Wen, X., Ober, C., Pritchard, J.K. and Przeworski, M. (2008) High-

resolution mapping of crossovers reveals extensive variation in fine-scale

recombination patterns among humans. Science, 319, 1395–1398.
Covarrubias-Pazaran, G. (2016) Genome-assisted prediction of quantitative

traits using the R package sommer. PLoS One, 11, e0156744.

Darrier, B., Rimbert, H., Balfourier, F., Pingault, L., Josselin, A.A., Servin, B.,

Navarro, J. et al. (2017) High-resolution mapping of crossover events in the

hexaploid wheat genome suggests a universal recombination mechanism.

Genetics, 206, 1373–1388.
Dowrick, G.J. (1957) The influence of temperature on meiosis. Heredity. 11,

37–49.
Dreissig, S., Fuchs, J., Cápal, P., Kettles, N., Byrne, E. and Houben, A. (2015)

Measuring meiotic crossovers via multi-locus genotyping of single pollen

grains in barley. PLoS One, 10, 1–10.
Dreissig, S., Mascher, M., Heckmann, S. and Purugganan, M. (2019) Variation

in recombination rate is shaped by domestication and environmental

conditions in barley. Mol. Biol. Evol. 36, 2029–2039.
Dreissig, S., Maurer, A., Sharma, R., Milne, L., Flavell, A.J., Schmutzer, T. and

Pillen, K. (2020) Natural variation in meiotic recombination rate shapes

introgression patterns in intraspecific hybrids between wild and domesticated

barley. New Phytol. 228, 1852–1863.
Drouaud, J., Khademian, H., Giraut, L., Zanni, V., Bellalou, S., Henderson, I.R.,

Falque, M. et al. (2013) Contrasted patterns of crossover and non-crossover

at Arabidopsis thaliana meiotic recombination hotspots. PLoS Genet. 9,

e1003922.

Dumont, B.L., Broman, K.W. and Payseur, B.A. (2009) Variation in genomic

recombination rates among heterogeneous stock mice. Genetics, 182, 1345–
1349.

Esch, E., Szymaniak, J.M., Yates, H., Pawlowski, W.P. and Buckler, E.S. (2007)

Using crossover breakpoints in recombinant inbred lines to identify

quantitative trait loci controlling the global recombination frequency.

Genetics, 177, 1851–1858.
Falconer, D.S. and Mackay, T.F.C. (1996) Introduction to Quantitative Genetics,

4th ed. Essex, UK: Longman.

Fledel-Alon, A., Leffler, E.M., Guan, Y., Stephens, M., Coop, G. and Przeworski,

M. (2011) Variation in human recombination rates and its genetic

determinants. PLoS One, 6, e20321.

Gardiner, L.J., Wingen, L.U., Bailey, P., Joynson, R., Brabbs, T., Wright, J.,

Higgins, J.D. et al. (2019) Analysis of the recombination landscape of

hexaploid bread wheat reveals genes controlling recombination and gene

conversion frequency. Genome Biol. 20, 1.

Garin, V., Wimmer, V. and Malosetti, M. (2015) mppR: an R package for QTL

analysis in multi-parent populations using linear mixed models. R Vignette.

https://cran.r-project.org/package=mppR/vignettes/mppR_vignette.pdf

Gion, J.M., Hudson, C.J., Lesur, I., Vaillancourt, R.E., Potts, B.M. and Freeman,

J.S. (2016) Genome-wide variation in recombination rate in Eucalyptus. BMC

Genom. 17, 1–12.
Haile, J.K., N’Diaye, A., Clarke, F., Clarke, J., Knox, R., Rutkoski, J., Bassi, F.M.

et al. (2018) Genomic selection for grain yield and quality traits in durum

wheat. Mol. Breed. 38, 75.

Haseneyer, G., Stracke, S., Paul, C., Einfeldt, C., Broda, A., Piepho, H.-P.,

Graner A. et al. (2009) Population structure and phenotypic variation of a

spring barley world collection set up for association studies. Plant Breed. 129,

271–279.
Hayta, S., Smedley, M.A., Demir, S.U., Blundell, R., Hinchliffe, A., Atkinson, N.

and Harwood, W.A. (2019) An efficient and reproducible Agrobacterium-

mediated transformation method for hexaploid wheat (Triticum aestivum L.).

Plant Methods, 15, 1–15.
Hayut, S.F., Bessudo, C.M. and Levy, A.A. (2017) Targeted recombination

between homologous chromosomes for precise breeding in tomato. Nat.

Commun. 8, 15605.

Heffner, E.L., Jannink, J.L., Iwata, H., Souza, E. and Sorrells, M.E. (2011)

Genomic selection accuracy for grain quality traits in biparental wheat

populations. Crop Sci. 51, 2597–2606.
Henderson, I.R. (2012) Control of meiotic recombination frequency in plant

genomes. Curr. Opin. Plant Biol. 15, 556–561.
Higgins, J.D., Perry, R.M., Barakate, A., Ramsay, L., Waugh, R., Halpin, C.,

Armstrong, S.J. et al. (2012) Spatiotemporal asymmetry of the meiotic

program underlies the predominantly distal distribution of meiotic crossovers

in barley. Plant Cell, 24, 4096–4109.
Hunter, C.M., Huang, W., Mackay, T.F. and Singh, N.D. (2016) The genetic

architecture of natural variation in recombination rate in Drosophila

melanogaster. PLoS Genet. 12, 1–31.
Jordan, K.W., Wang, S., He, F., Chao, S., Lun, Y., Paux, E., Sourdille, P. et al.

(2018) The genetic architecture of genome-wide recombination rate variation

in allopolyploid wheat revealed by nested association mapping. Plant J. 95,

1039–1054.
Kim, S., Plagnol, V., Hu, T.T., Toomajian, C., Clark, R.M., Ossowski, S., Ecker,

J.R. et al. (2007) Recombination and linkage disequilibrium in Arabidopsis

thaliana. Nat. Genet. 39, 1151–1155.
Kong, A., Thorleifsson, G., Gudbjartsson, D.F., Masson, G., Sigurdsson, A.,

Jonasdottir, A.A., Walters, G.B. et al. (2010) Fine-scale recombination rate

differences between sexes, populations and individuals. Nature, 467, 1099–
1103.

Lee, M., Sharopova, N., Beavis, W.D., Grant, D., Katt, M., Blair, D. and Hallauer,

A. (2002) Expanding the genetic map of maize with the intermated B73 x

Mo17 (IBM) population. Plant Mol. Biol. 48, 453–461.
Li, N. and Stephens, M. (2003) Modeling linkage disequilibrium and identifying

recombination hotspots using single-nucleotide polymorphism data.

Genetics, 165, 2213–2233.
Lloyd, A., Morgan, C., Franklin, F.C.H. and Bomblies, K. (2018) Plasticity of

meiotic recombination rates in response to temperature in arabidopsis.

Genetics, 208, 1409–1420.

ª 2021 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 20, 676–690

Federico Casale et al.688

https://cran.r-project.org/package=mppR/vignettes/mppR_vignette.pdf


Lorenzana, R.E. and Bernardo, R. (2009) Accuracy of genotypic value

predictions for marker-based selection in biparental plant populations.

Theor. Appl. Genet. 120, 151–161.
Marand, A.P., Zhao, H., Zhang, W., Zeng, Z., Fang, C. and Jianga, J. (2019)

Historical meiotic crossover hotspots fueled patterns of evolutionary

divergence in rice. Plant Cell, 31, 645–662.
Mascher, M., Gundlach, H., Himmelbach, A., Beier, S., Twardziok, S.O., Wicker,

T., Radchuk, V. et al. (2017) A chromosome conformation capture ordered

sequence of the barley genome. Nature, 544, 427–433.
McMullen, M.D., Kresovich, S., Villeda, H.S., Bradbury, P., Li, H., Sun, Q., Flint-

Garcia, S. et al. (2009) Genetic properties of the maize nested association

mapping population. Science, 325, 737–740.
Melamed-Bessudo, C., Shilo, S. and Levy, A.A. (2016) Meiotic recombination

and genome evolution in plants. Curr. Opin. Plant Biol. 30, 82–87.
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