
A rice single cell transcriptomic atlas defines the developmental
trajectories of rice floret and inflorescence meristems

Jie Zong1* , Li Wang1* , Lu Zhu1* , Lianle Bian2, Bo Zhang2, Xiaofei Chen1 , Guoqiang Huang1 ,

Xuelian Zhang1 , Junyi Fan1 , Liming Cao3 , George Coupland4 , Wanqi Liang1 , Dabing Zhang1,5

and Zheng Yuan1

1Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong

University, Shanghai 200240, China; 2NovelBio Bio-Pharm Technology Co. Ltd, Shanghai 201114, China; 3Crop Breeding & Cultivation Research Institute, Shanghai Academy of

Agriculture Sciences, Shanghai 201403, China; 4Max Planck Institute for Plant Breeding Research, Cologne D50829, Germany; 5School of Agriculture, Food and Wine, University of

Adelaide, Waite Campus, Urrbrae, SA 5064, Australia

Author for correspondence:
Zheng Yuan

Email: zyuan@sjtu.edu.cn

Received: 18 October 2021

Accepted: 19 January 2022

New Phytologist (2022) 234: 494–512
doi: 10.1111/nph.18008

Key words: axillary meristem, differentiation
trajectory, rice inflorescence, scRNA-seq,
spikelet.

Summary

� Rice inflorescence development determines yield and relies on the activity of axillary meris-

tems (AMs); however, high-resolution analysis of its early development is lacking.
� Here, we have used high-throughput single-cell RNA sequencing to profile 37 571 rice

inflorescence cells and constructed a genome-scale gene expression resource covering the

inflorescence-to-floret transition during early reproductive development. The differentiation

trajectories of florets and AMs were reconstructed, and discrete cell types and groups of regu-

lators in the highly heterogeneous young inflorescence were identified and then validated by

in situ hybridization and with fluorescent marker lines.
� Our data demonstrate that a WOX transcription factor, DWARF TILLER1, regulates flower

meristem activity, and provide evidence for the role of auxin in rice inflorescence branching

by exploring the expression and biological role of the auxin importer OsAUX1.
� Our comprehensive transcriptomic atlas of early rice inflorescence development, supported

by genetic evidence, provides single-cell-level insights into AM differentiation and floret

development.

Introduction

The architecture of the grass inflorescence depends on the activi-
ties of the indeterminate inflorescence meristem (IM; also called
the rachis meristem), the auxiliary primary and secondary branch
meristems, and the transition to the determinate spikelet meris-
tem (Zhang & Yuan, 2014; B. Wang et al., 2018; Yuan et al.,
2020; Zhu &Wagner, 2020). In rice (Oryza sativa), the IM initi-
ates inflorescence development. All lateral organs are derived
from axillary meristems (AMs) (Kyozuka et al., 2014; B. Wang
et al., 2018; Zhu & Wagner, 2020); the only structure in the rice
inflorescence not derived from an AM is the rachis, the central
structure generated by the IM. The IM generates a series of AMs
that produce branches, such as the primary branch meristem
(PBM), the elongated primary branch meristem (ePBM), and the
secondary branch meristem (SBM) from branch meristems
(BMs); or spikelets and flowers, from the spikelet meristem (SM)
and floret meristem (FM), respectively (Tanaka et al., 2013;
Kyozuka et al., 2014) [Correction added after first publication 24
February 2022: a reference has been deleted from the preceding
sentence.]. Spatiotemporal changes in several phytohormones,
including cytokinin (CK), GA, brassinosteroids, and jasmonic

acids, are known to affect AM activity and transition time
(Tanaka et al., 2013; Kyozuka, 2014; Zhang & Yuan, 2014;
Yuan et al., 2020). Transcription factors (TFs), such as members
of the SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE (SPL), basic helix–loop–helix, APETALA2/ETHYLENE
RESPONSE FACTOR (AP2/ERF), TEOSINTE BRANCHED1/
CYCLOIDEA/PROLIFERATING CELL FACTOR 1, and
MADS-box families, integrate environmental and hormonal
information to orchestrate AM identity, activity, and determi-
nacy to regulate inflorescence and spikelet development (B. Wang
et al., 2018; Yuan et al., 2020; Zhu & Wagner, 2020)
[Correction added after first publication 24 February 2022: a
reference has been deleted from the preceding sentence.].

Single-cell RNA sequencing (scRNA-seq) technology has
recently been used to examine the cellular identity and heterogene-
ity of several complex plant tissues in maize (Zea mays) (Nelms &
Walbot, 2019; Satterlee et al., 2020;Marand et al., 2021; Xu et al.,
2021), Arabidopsis (Denyer et al., 2019; Zhang et al., 2019,
2021b; Satterlee et al., 2020), and rice (Liu et al., 2021; Wang
et al., 2021; Zhang et al., 2021a). These studies not only provide
valuable transcriptomic information at single-cell resolution, but
also provide unprecedented insights into the developmental trajec-
tory of key plant organs (Seyfferth et al., 2021; Shaw et al., 2021).
Here, we have used scRNA-seq to unravel the identities,*These authors contributed equally to this work.
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distribution, and development of rice inflorescence cells to recon-
struct the differentiation trajectory of floret andmeristem cells.

Materials and Methods

Plant materials and growth conditions

All rice (O. sativa L. ssp. japonica) varieties, including wild-type vari-
ety 9522, Osaux1-1;1 and Osaux1-1;3 mutant (Giri et al., 2018),
and dwarf tiller1 (dwt1) mutant (Wang et al., 2014) lines, were
planted in the paddy fields of Shanghai Jiao Tong University (30°N,
121°E) during the normal growing season (June–September).

Mutant generation and analysis

Clustered regularly interspaced short palindromic repeat
(CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing,
as described previously (Xie et al., 2015), was used to obtain the
Osaxu1-1;4 mutant in cv 9522. Stable Agrobacterium-mediated
transformation was performed in rice as described previously
(Hiei & Komari, 2008). Plants from both T0 and T1 generations
were screened by PCR. More than 100 spikelets from 10 individ-
ual lines were observed for phenotyping analysis. A Leica S8
APO stereomicroscope (Leica, Wetzlar, Germany) was used to
take photographs. Phenotypic analyses were performed at grain
maturity, using 10 panicles from 10 individual plants. Statistical
analyses of significance were performed using Student’s t-test.
Single guide RNA sequence and PCR primer sequence are listed
in Supporting Information Table S1.

The enhanced green fluorescent protein (eGFP) reporters
under control of both OsMAPK6 and OsGASR1 promoters were
generated by cloning OsMAPK6 and OsGASR1 promoter
sequence, respectively, into the binary vector pCAMBIA1301:
eGFP using HindIII and SpeI restriction sites with the In-Fusion
HD Cloning Kit (Takara, Shiga, Japan). The resulting constructs
were stably transformed into cv 9522 using Agrobacterium-
mediated transformation as previously described (Hiei &
Komari, 2008). eGFP signals were captured using an Olympus
IXplore SpinSR microscope (Olympus, Tokyo, Japan) in < 5 mm
inflorescences (excitation 488 nm and emission 500–530 nm
wavelengths). The primers used are listed in Table S1.

Single-cell dissociation

Two replicate inflorescence samples were staged by length to
coincide with commencement of branching, spikelet, and floret
meristem development (Ikeda et al., 2004): stage 1 (S1), < 2 mm;
stage 2 (S2), 2–3 mm. As bracts could not be removed from the
inflorescence (Ikeda et al., 2004), a single young flag leaf (L) cov-
ering the inflorescence was used as the control. Each replication
contains around 100 young inflorescences or leaves. For proto-
plast isolation, samples were first cut into small pieces with a fresh
sharp razor blade and then digested at room temperature in
RNase-free enzyme solution (1.5% (w/v) cellulase R-10, 1% (w/v)
macerozyme R-10 (Yakult), 0.4 M mannitol, 20 mM MES
pH 5.7, 20 mM potassium chloride, 10 mM calcium chloride,

0.1% BSA (Sigma-Aldrich)). Protoplasts were filtered using a
45 lm cell strainer (Biologix, Biologix Group Ltd, Jinan, China)
and centrifuged at 200 g for 3 min. After the supernatant was
removed, the pellet was washed three times with 8% (w/v) man-
nitol, and cell viability was determined by acridine orange–pro-
pidium iodide staining (Countstar® Rigel; ALIT Life Science,
Shanghai, China). Digestion progress was assayed every hour for
6 h, with the optimum time for cell viability, and the chosen
optimum protoplast digestion time was 2 h (Fig. S1a).

Single-cell RNA sequencing

The concentration of protoplasts for sequencing was adjusted to
c. 1000 ll�1 with > 80% viability. The BD Rhapsody system
(BD Life Sciences, San Jose, CA, USA) was used to capture tran-
scriptomic information from the protoplasts using a simple car-
tridge workflow and a multitier barcoding system (Shum et al.,
2019). In general, single-cell capture was achieved by random
distribution of a single-cell suspension across > 200 000 microw-
ells through a limited dilution approach. Beads with oligonu-
cleotide barcodes were added to saturation so that a bead was
paired with a cell in a microwell. Cells were lysed in the microw-
ell to hybridize messenger RNA (mRNA) molecules to barcoded
capture oligonucleotides on the beads. Beads were collected into
a single tube for reverse transcription and ExoI digestion to clean
extra ployT primers. During complementary DNA (cDNA) syn-
thesis, each cDNA molecule was tagged at the 50 end (i.e. the 30

end of a mRNA transcript) with a unique molecular identifier
(UMI) and barcode indicating its cell origin. Libraries were pre-
pared using the BD Rhapsody single-cell whole-transcriptome
amplification (WTA) workflow, including random priming and
extension (RPE), RPE amplification PCR, and WTA index PCR.
Libraries were quantified using a High Sensitivity DNA chip
(Agilent Technologies Inc., Palo Alto, CA, USA) on a Bioana-
lyzer 2200 and the Qubit High Sensitivity DNA assay (Thermo
Fisher Scientific, Waltham, MA, USA). Sequencing was per-
formed using an Illumina sequencer on a 150 bp paired-end run.

Single-cell RNA expression analysis

The software FASTP with default parameters (Chen et al., 2018)
was applied to filter the adapter sequences and remove low-
quality reads to achieve the clean data, and UMI-TOOLS (Smith
et al., 2017) was used for single-cell transcriptome analysis to
identify the cell barcode whitelist. The UMI-based clean data
were mapped to the IRGSP1.0 genome (https://rapdb.dna.affrc.
go.jp/download/irgsp1.html; Sakai et al., 2013) using STAR with
default parameters (Dobin et al., 2013) from the UMI-TOOLS stan-
dard pipeline to obtain the UMI counts of each sample. Cell
quality thresholds were set at > 200 expressed genes and < 20%
mitochondrial UMI rate (mito %); mitochondrial genes were
removed in the expression table. The SEURAT package (v.2.3.4,
https://satijalab.org/seurat/; Satija et al., 2015) was used for cell
normalization and regression based on the UMI counts for each
sample and mito % to obtain the scaled data, which was normal-
ized by the function NormalizeData for further analysis. The
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function FindVariableGenes was used to calculate highly variable
genes (HVGs) across the single cells (https://scrnaseq-course.cog.
sanger.ac.uk/website/seurat-chapter.html).

Principal component analysis (PCA) for all cells were con-
structed based on the scaled data with the top 1000 HVGs, and
the top 10 principal components were used for t-distributed
stochastic neighbour embedding construction and uniform mani-
fold approximation and projection (UMAP) construction (van
der Maaten & Hinton, 2008; Becht et al., 2018). Unsupervised
cell cluster results were generated based on the PCA top 10 prin-
cipal components by applying the graph-based cluster method
(resolution 0.8) in the SEURAT package. Marker genes were identi-
fied with the SEURAT FindAllMarkers function using the Wilcox
rank sum test algorithm with the following parameters: ‘loge(fold
change)’ > 0.25; ‘min.pct’ > 10%; and ‘P-value’ < 0.01. Inflores-
cence clusters of the same cell type were selected for reanalysis
with PCA, graph-based clustering, and marker identification to
further refine cell identity. METANEIGHBOR analysis (Crow et al.,
2018) was performed with R script from https://github.com/
maggiecrow/MetaNeighbor/, using variable genes selected
through SEURAT to test cell-type clusters identity between replica-
tions of samples S1 and S2.

Protoplast preparation has been shown to trigger protoplasting-
responsive genes not present during normal plant growth (Xu
et al., 2021). To avoid interference of these genes on subsequent
analyses, protoplasting-responsive genes from maize datasets (Xu
et al., 2021) were used to identify rice homologues from the rice
proteomes database (https://rapdb.dna.affrc.go.jp) using BLASTP

with the following parameters: criteria E-value < 1E-50; identity
> 70%; query cover > 70%; subject cover > 70%. This analysis
resulted in a list of 332 genes (Table S2), which were excluded for
further analyses.

Differential expression analysis

Differentially expressed genes (DEGs) were identified with the
SEURAT FindMarkers function using the Wilcox rank sum test
algorithm with the following parameters: ‘loge(fold change)’
> 0.25; ‘min.pct’ > 10%; and ‘P-value’ < 0.05.

Pseudotime analysis

Single-cell pseudotime trajectories were constructed using vari-
able genes with MONOCLE 2 with default parameters (http://cole-
trapnell-lab.github.io/monocle-release; Qiu et al., 2017). Gene
expression data over pseudotime were normalized by MONOCLE 2.
Based on the pseudotime analysis, branched expression analysis
modelling (BEAM) was applied to genes at branch points.

Gene Ontology analysis

Unique genes in the significant or representative DEG profiles
were assigned Gene Ontology (GO) functions to elucidate their
biological functions using the R package CLUSTERPROFILER (Yu
et al., 2012). GO annotations were available from National Cen-
ter for Biotechnology Information (http://www.ncbi.nlm.nih.
gov/), UniProt (http://www.uniprot.org/), GO (http://www.
geneontology.org/), and the Rice Genome Annotation Project
(http://rice.plantbiology.msu.edu/). Fisher’s exact test was
applied to identify the significant GO categories. P-value rather
than false discovery rate/P.adjust was used as the criterion,
because some GO results did not have sufficient GO terms for
multiple hypothesis testing.

Quantitative set analysis for gene expression (gene
enrichment) analysis

We used the QUSAGE (2.16.1) package (Yaari et al., 2013) to anal-
yse the gene expression and cluster information to characterize
the relative activation of a given gene set. For cell type identity
(Fig. 1e), genes from reported transcriptome data were used; for
epigenetic pathway enrichment analysis, genes involved in
methylation-related GO terms were used.

In situ hybridization and expression analysis

Fresh samples at the same developmental stage as for scRNA-seq
were collected and fixed in FAA solution (50% ethanol, 10%
formalin, and 5% acetic acid), dehydrated, infiltrated, embedded

Fig. 1 Cellular heterogeneity of young inflorescence. (a) Schematic diagram of rice inflorescence development from inflorescence meristem to stamen
stage used for single-cell RNA (scRNA) sequencing analysis, including S1 (< 2mm), and S2 (2–3mm) stages. Green colour represents leaf cells, blue colour
stands for rachis cells, yellow colour indicates meristem cells, and other colours are annotated with the corresponding abbreviations: FM, floret meristem;
IM, inflorescence meristem; le, lemma; lo, lodicule; pa, palea; PBM, primary branch meristem; rg, rudimentary glume; SBM, secondary branch meristem; sl,
sterile lemma; SM, spikelet meristem; st, stamen. (b) Workflow for inflorescence sample collection and scRNA sequencing. The inflorescences were
observed and photographed using a Leica S8APO stereomicroscope. Two replicate inflorescences at two stages (< 2mm and 2–3mm length) were
collected, cut, and digested to form protoplasts, followed the workflow showing photographs of protoplast collection, cell capture, together with scRNA
sequencing and bioinformatics analysis. Abbreviations as in (a). (c) The t-distributed stochastic neighbour embedding (t-SNE) plot of 16 clusters identified
by unsupervised clustering (see the Materials and Methods section) from 37 571 inflorescence cells. Each dot denotes a single cell; colours denote cell
clusters. Clusters 1 and 11 represent spikelet cells; clusters 5, 9, and 13 represent meristem cells; clusters 7, 8, 12, 14, and 15 represent leaf cells; and
clusters 0, 2–4, 6, and 10 represent rachis cells. See Supporting Information Table S4 for details of enriched genes in each cluster. (d) Replicability of each of
the clusters between samples as defined by the area under the receiver operator characteristic curve (AUROC) score. S1, inflorescence at < 2mm length;
S2, inflorescence at 2–3mm length; replicates are indicated by numbers (.1, .2) after sample name. (e) Heatmap of QUSAGE gene enrichment scores of
spikelet and meristem marker genes collected from published articles. Gene set activity is score calculated by QUSAGE, which means the gene set is enriched
in a cluster and is probably functional. (f) Proportion of cells in each cluster from S1, S2, and young flag leaf (L) samples, showing the distinct expression
profiles associated with inflorescence vs leaf tissues, and for different stages of inflorescence development. S1, inflorescence at < 2mm length; S2,
inflorescence at 2–3mm length. (g) Gene number expressed per cell in each cluster. Boxplots show 25%, 50%, and 75% quartiles, with additional values
represented by dots.
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in paraffin, and sectioned into 8 mm thick sections; subse-
quently, in situ hybridization assays were performed as previously
described (Hu et al., 2015). For quantitative reverse transcription

(qRT)-PCR analysis, total RNA was isolated and analysed as
previously described (Hu et al., 2015). All primers used for
in situ hybridization and qRT-PCR are listed in Table S1.
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Results

Single-cell transcriptomics defines discrete cell types and
developmental stages in the rice inflorescence

During the transition from vegetative to reproductive develop-
ment in rice, establishment of the IM, BMs, and SMs occurs
within a short time window (Fig. 1a) (Ikeda et al., 2004). There-
fore, we collected inflorescence samples at two stages early in
development – S1 (< 2 mm) and S2 (2–3 mm) – containing dif-
ferent tissues, including the rachis, meristems, and spikelets,
before pistil primordium emergence (Fig. 1a,b). Since the bracts
and inflorescence branch primordia growing at the same position
cannot be removed (Ikeda et al., 2004), Ls covering the inflores-
cence were collected as controls. In total, five samples (L and two
replicates for S1 and S2) were digested for 2 h (Fig. S1a); the
resulting protoplasts were transferred to the BD Rhapsody Sys-
tem for cDNA library preparation and scRNA-seq analyses
(Fig. 1b). An average of 94 226 sequencing reads per cell was
obtained (Table S3); the original data were prefiltered at both the
cell and gene levels with the following exclusion criteria: low-
viability cells with high mitochondria rate (mito % > 20%), and
low-expressing genes (nGene < 200). This analysis resulted in a
pool of 37 571 cells expressing 27 586 genes with an average of
4247 UMIs per cell, which could represent the transcripts cap-
tured without bias for further analysis (Fig. S1b–d; Table S3).

Unbiased clustering analyses of S1, S2, and L cells produced
16 discrete cell clusters (Fig. 1c), and the genes enriched in each
cluster were identified (Fig. S1e; Table S4). The cell clusters
revealed in the two replicates of S1 and S2 were highly consistent;
they harboured similar cell proportions in each of the clusters
(Fig. S2a), which were identified with high similarity in
METANEIGHBOR analysis (Crow et al., 2018), presenting as the
average area under the receiver operating characteristic curve
> 0.9, except for cluster 2 (0.83) (Fig. 1d). Furthermore, their gene
expression profiles were highly correlated (Fig. S2b). Some differ-
ences were observed between the two S2 samples (Fig. S2b), indica-
tive of biological variation as inflorescence development progressed.

To assign cell identities to these clusters, we collected reported
transcriptome data and marker genes that function in different cell
types in inflorescence and spikelet development (Table S4) (Furu-
tani et al., 2006; Zhang & Yuan, 2014; Harrop et al., 2016). Corre-
lations between expression of marker genes and enriched genes in
each cluster, defined by quantitative set analysis of gene expression
(Fig. 1e) (Yaari et al., 2013), assigned inflorescence clusters 1 and 11
as spikelets (composed of rudimentary glume (rg), sterile lemma (sl),
and floret); and clusters 5, 9, and 13 as meristem cells (including
IM, BMs, and SM). For the remaining clusters, leaf (clusters 7, 8,
12, 14, and 15) or rachis (clusters 0, 2–4, 6, and 10) cell identity
was assigned based on the predominance of genes from either the L
or S1/S2 samples, respectively (Figs 1c,f, S1f, S2d).

These four cell types (spikelet, meristem, rachis, and leaf) exhib-
ited distinct expression profiles (Fig. S1e) and were enriched with
distinct GO biological functions (Table S5). E-class gene OsMADS1
and cytokinin-activating enzyme LONELY GUY were enriched in
the spikelet and the meristem cluster, respectively (Fig. S1e;

Table S4), whereas genes associated with ‘water transport’ and
‘xylem development’ processes and those related to ‘photorespira-
tion’, ‘response to water deprivation’, ‘glycolytic process’, ‘gluconeo-
genesis’, and ‘water transport’ processes were enriched in rachis and
leaf cluster, respectively (Table S5). All three sample types (S1, S2,
and L) had a unique profile of cells within each cluster (Figs 1f, S1e,
f). Both inflorescence samples and all clusters contained leaf-identity
cells (Figs 1f, S2d). Cells in cluster 13 contained a high proportion
of leaf-identity cells, which may represent cells that are differentiat-
ing into leaf cells from the meristem. Cells in cluster 10 contained a
high proportion of leaf cells, which may reflect parenchyma tissues
that exist in all tissues (Fig. 1f). Cluster 2 harboured the fewest
expressed genes, indicating likely mature cells expressing a limited
number of genes (Fig. 1g; Table S5).

A developmental transition was observed between S1 and S2
samples. More meristem cells were present in S1 than in S2 sam-
ples (Fig. 1f), confirming that S1 samples were earlier than S2
samples at their developmental stages. Conversely, more rachis
cell types were present in S2 samples (Fig. 1f), indicating that S2
samples were later than S1 samples at their developmental stages,
where rachis/branch elongation accelerates (Ikeda et al., 2004).
Genes related to ‘response to stress’, ‘cell division’, and ‘DNA
methylation’ were enriched in meristem cell clusters 5 and 9
(Table S5), whereas genes related to ‘flower development’, ‘re-
sponse to hydrogen peroxide’, and ‘regulation of cell cycle’ were
enriched in spikelet cell clusters 1 and 11 (Table S5), consistent
with the developmental trajectory from meristem maintenance to
floral organ specification (Fig. 1a). These results reveal that a high
degree of cell heterogeneity exists in early rice inflorescences and
that scRNA-seq-derived transcriptome data can facilitate the
identification of discrete cell types and developmental stages in
rice inflorescence.

Spikelet cell clusters can be classified based on gene
expression profiles

A second subclustering analysis using inflorescence clusters 1 and
11 revealed 10 spikelet subclusters, with clear hierarchical struc-
tures when presented with the UMAP algorithm (Fig. 2a) (Jean-
Baptiste et al., 2019; Zhang et al., 2019). DWT1, encoding the
WUSCHEL-related homeobox (WOX) TF expressed in young
panicles and FMs (Wang et al., 2014), was specifically enriched
in spikelet subcluster 7, suggesting that cells in this subcluster are
FM cells (Fig. 2b).

The cell identities of these spikelet subclusters were determined
by enriched expression of spikelet marker genes (Fig. 2b; Table S4).
Specific enrichment of DWT1 and E-class genes OsMADS6 and
OsMADS8 in spikelet subclusters 7 and 5, respectively, identified
these two subclusters as flower cells, revealing their distinct develop-
mental trajectory, whereas enrichment of OsMADS1 in spikelet sub-
cluster 0 indicated its lemma identity (Fig. 2b).

Identification of the close connection of all spikelet subclus-
ters allowed us to construct a developmental trajectory of
spikelet cell differentiation over pseudotime (Fig. 2a,c) (Qiu
et al., 2017). Cells from spikelet subclusters 1, 3, and 6 were
evenly distributed in all developmental trajectories (Fig. 2c),
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and their gene expression profiles were enriched for ‘cell cycle’,
‘response to stress’, and ‘response to abiotic stimulus’
(Table S5). Therefore, they were classified as spikelet support-
ing cells (SSCs) underpinning overall spikelet development

(Fig. 2a). Cells from spikelet subclusters 2 and 8 were grouped
at one end of the branch and cells from subcluster 5 were
grouped at the other end (Fig. 2c), showing specific expression
patterns of flower marker genes (Fig. 2d). Cells from spikelet
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subclusters 2 and 8 with similar gene expression profiles and
GO gene annotations (Table S5) shared a similar pseudotime
developmental trajectory as subcluster 7 with meristem identity
(Fig. 2c); both were classified as spikelet identity cells (SICs).
In sum, the pseudotime analysis of spikelet subclusters revealed
three possible developmental branches: FM-SSC, FM-SIC, and
FM-floret; the last one will be analysed in the following.

Single-cell RNA sequencing discovers role of DWT1 in FM
activity maintenance and palea specification

To specifically examine floret development, we removed SSC sub-
clusters and reclustered the remaining cells into 10 floret cell sub-
clusters, which could be assigned to all known floral organs
(Figs 3a,b, S3b). Floret subclusters 1 and 6 were assigned as SICs,
since cells in these two clusters overlapped with spikelet subclusters
2 and 8 (Fig. S3a). Floret subclusters 0, 2, 8, and 9 were assigned
as lemma, palea, lodicule, and stamen, respectively (Fig. S3b).

Several floret subcluster-specific expression profiles were
observed (Fig. S4a; Table S4). The enrichment of AP2/ERF TFs
in floret subcluster 4 (Fig. 3c) – confirmed by in situ hybridiza-
tion analysis of Os04g0550200 that encodes an AP2/ERF
TF – revealed its specific transcription in cells on the abaxial side
of SM and FM (Fig. 3d). As Arabidopsis mutants of AP2/ERF
TF exhibited cryptic bracts (Karim et al., 2009; Chandler &
Werr, 2017) and rice mutants of AP2/ERF TF, mfs1, showed
multiple glume-like organs (Ren et al., 2013), floret subcluster 4
was classified as ‘cryptic bract’ cells. Genes encoding histones
were enriched in floret subclusters 3 and 4 (Table S4), and His-
tone4 transcripts also accumulated in cells adjacent to SM and
FM (Fig. 3e), suggesting a possible conservative bract suppression
during rice flower development, whose production would other-
wise compete with meristems (Chandler, 2012). Correspond-
ingly, floret subcluster 3 was classified as ‘boundary’ cells,
separating SICs and lemma from cryptic bract cells (Fig. 3a).

Floret subcluster 7 was discrete from the main cell clusters
(Fig. 3a), with enriched expression of OsMADS1, DL, and
YABBY genes. Expression of OsYAB1 (also known as TOB1) was
detected specifically in the lateral organs, including rudimentary
glume, sterile lemma, and lemma (Figs 3f, S3b,c), which corrob-
orated previous reports of the role of OsYABBY TFs in separating
spikelet from meristem identity (Tanaka et al., 2012, 2017).
Combined with enriched expression of OsMADS1, OsMADS6,
and DL (Table S4), this subcluster was further divided into 7a
(sterile lemma) and 7b (rudimentary glume; Figs 3a, S3c).

DWT1 controls internode elongation and synchronizes the devel-
opment of tillers and the main shoot (Wang et al., 2014), but there
has been no report on its function in flower development. We fur-
ther functionally characterized the role of DWT1 in floret develop-
ment because DWT1 was specifically enriched in floret subcluster 5
(FM; Fig. S3b). Analysis of dwt1 florets (Wang et al., 2014) revealed
that most (two out of three) dwt1 florets had identical floret structure
to wild-type plant, exhibiting a structure of two rudimentary glumes,
two sterile lemmas, and one floret, each with one lemma, one palea,
two lodicules, six stamens, and one pistil (Figs 3g, S4b,c), whereas
the remaining (one out of three) dwt1 spikelets exhibited one of two

classes of mutant phenotype: type I mutants had a palea that grew
like a lemma, and type II had no palea at all (Figs 3h, S4b,c). Both
types I and II dwt1 florets also grew multiple glume-like organs and
had fewer stamens (five) and occasionally two pistils (Figs 3h, S4b,c).
Mutant phenotyping data indicated that DWT1 participated in
flower development, regulating FM activity and palea development.

Single-cell RNA sequencing provides new insights into rice
floret specification pathways

To further identify putative regulatory genes and pathways in flo-
ral organ specification, we examined floret subclusters for DEGs
between S1 and S2 stages and revealed 2194 DEGs across the 10
subclusters (Fig. 4a; Table S6). In floret subcluster 5 (FM cells),
genes involved in signal transduction, including FLR1 (Li et al.,
2016), OsFLS2 (Wang et al., 2015b), and RGB1 (Sun et al.,
2014, 2018), were highly upregulated in S1 (Table S6), suggest-
ing that a FLR1/OsFLS2–RGB module-mediated immune
response likely regulates rice FM activity, as it does in maize (Wu
et al., 2020).

Genes previously implicated in meristem maintenance and ini-
tiation, adaxial/abaxial pattern specification, programmed cell
death, and cell cycle, such as OsPNH1 (Nishimura et al., 2002),
rice HOMEODOMAIN CONTAINING PROTEIN4 (OSHB4;
Y. Y. Li et al., 2016), and OSH71 (Kuijt et al., 2014), were associ-
ated with floret subcluster 4 (cryptic bract cells; Table S6)
[Correction added after first publication 24 February 2022: a
reference has been deleted from the preceding sentence.]. Consid-
ering their high correlations with cell activity, we propose that
these cells are specialized cells for polarity establishment. Simi-
larly, genes involved in cell growth, such as OsCCS52A1 (also
known as TAD1 and TE, Table S6) (Lin et al., 2012; Su’udi
et al., 2012; Xu et al., 2012), were upregulated in S2 floret sub-
cluster 3 (boundary cells), suggesting roles of floret subcluster 3
in organ separation.

Genes and processes involved in epigenetic regulation, including
DNA methylation and histone modification, were also enriched in
floret cell subclusters (Table S7), suggesting that changes at the
genomic level accompany the cellular transition to reproductive
development in different floret cell types. Consistently, various
active histone modifications and a global de novo DNA methylation
were found to play a crucial role for rice reproductive development
(Higo et al., 2020; Zheng et al., 2021; Wang et al., 2022).

Floret developmental trajectory reconstruction reveals
floret organ identities

Two continuous developmental trajectories were revealed in the
UMAP of floret cells, representing flower development and lat-
eral organ differentiation events (Fig. 3a). Since scRNA-seq
enables the reconstruction of a continuous differentiation trajec-
tory of a developmental process (Zhang et al., 2019, 2021a),
pseudotime analyses were constructed using floret subclusters
along each trajectory (Fig. 4c,d). Two clusters of cells inferred at
the beginning of pseudotime in both analyses, named SIC states
3 and 4 (Fig. 4c,d), overlaying these cells onto the floret
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subcluster UMAP confirmed that they belong to SICs (floret sub-
clusters 1 and 6; Fig. S4d). Enriched genes in SIC states 3 and 4
were involved in ‘cell defence’ and ‘intracellular signal transduc-
tion’ GO processes (Table S5). Among them were the genes
encoding homeobox-leucine zipper RICE OUTERMOST

CELL-SPECIFIC (ROC) TFs (Fig. 4e) (Ito et al., 2003). In Ara-
bidopsis, HOMEODOMAIN GLABROUS (HDG), homologous
of ROC genes, are expressed specifically in the epidermis
(Horstman et al., 2015); in rice, ROCs increase spikelet size and
number (Zou et al., 2011), which were prominently expressed at
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the beginning point in the developmental trajectory of spikelets
(Fig. 2d). Therefore, these cells could be on the FM surface to
respond to environmental signalling and affect lateral organ spec-
ification. Consistent with their distinct enrichment patterns
(Fig. 4e), expression signals of ROC1 and ROC3 were especially
detected in the L1 layer of inflorescence (Figs 4f, S4e,f).

Though the SIC floret subclusters contained cells with leaf
identity, none of the floral organs that developed from these SICs
over pseudotime, including the FM, palea, lodicule, or stamen,
contained cells with leaf identity (Fig. 4c). In the lateral organ
trajectory, five organs differentiated from SICs all contained cells
with leaf-like identity (Fig. 4d), suggesting that these organs pos-
sess an intermediate identity between nonreproductive leaves and
reproductive floral organs. These floret developmental trajectories
provide clear cellular evidence that the ‘true’ rice flower develops
in a SIC–FM–palea/lodicule/stamen pattern with organs distinct
from leaves, whereas the lemma, rudimentary glume, and sterile
lemma are likely to be bract-like organs that subtend the flower
with intermediate leaf/flower organ identity.

Subclustering reveals three different inflorescence meristem
types

The same strategies were applied to more closely examine 5611
meristem cells in inflorescence clusters 5, 9, and 13; unbiased
reclustering yielded 12 meristem subclusters (Figs 5a,b, S2c, S5a;
Tables S4, S5). IM and SM marker genes were used to assign cell
types to subclusters (Table S4), but most marker genes could not
distinguish between heterogeneous meristem cell types because
they were widely expressed in all meristem subclusters (Fig. S5b).

However, some marker genes with reported functions in IMs
and SMs exhibited cluster-specific expression and could be used
to categorize meristem subclusters into three groups: IM, BM
(comprising PBM, ePBM, and SBM), and SM (Figs S2c, S5c,
S6a) (Furutani et al., 2006; Harrop et al., 2016). Along with the
UMAP plot (Fig. 5a), these identities could be used to classify
meristem subclusters as IM (subclusters 0, 1, 5, 9, 11), BM (3, 4,
6–8), and SM (2, 10) (Fig. 5b). These categorizations also
explained why SM cluster (inflorescence subcluster 13) had many
cells with a leaf identity, since the nonreproductive floret organs
with leaf-like identity, including rudimentary glume, sterile
lemma, and lemma, are generated from SM (Wu et al., 2018).

Genes enriched in IM cells were involved in ‘regulation of
meristem growth’, ‘response to wounding’, ‘stem cell population

maintenance’, and ‘response to auxin’ (Figs 5b, S6b; Table S5),
providing a valuable meristem candidate gene pool for further
validation and agricultural application.

Each of these meristem types contains cells from multiple sub-
clusters, confirming high levels of heterogeneity in reproductive
meristem cells. Genes encoding TFs that regulate inflorescence
branching, including WOX, OSH, ROC, SPL, and YABBY
members, displayed distinct expression patterns in each subclus-
ter (Fig. S6c) and were consistent with those reported in the liter-
ature (Jiao et al., 2010; Miura et al., 2010; Wang et al., 2015a; Q.
L. Wang et al., 2018; Yuan et al., 2019) [Correction added after
first publication 24 February 2022: a reference has been deleted
from the preceding sentence.]. However, specific identities of
each meristem subcluster remain open for further studies.

ROC family genes, as well as genes annotated with ‘response to
chitin’, were enriched in meristem subcluster 7 (Table S5), sug-
gesting that meristem subcluster 7 could be epidermal cells.
Indeed, most maize ZmHDZIV genes, which are homologues
of ROC genes, express preferentially in the epidermis (Javelle
et al., 2011). Furthermore, considering that OsLTPG2
(Os03g0167000) and ONI1 (Os03g0181500), orthologues of
maize GRMZM5G850455 and GRMZM2G445602 listed as
maize meristem epidermal marker genes, respectively (Xu et al.,
2021), were also enriched in meristem subclusters 6 and 7
(Fig. S6a), which were assigned as epidermis cells.

Expression analysis revealed 448 DEGs in meristem subclus-
ters, mostly associated with environmental responsiveness,
including salt, temperature, oxygen, and stress responses (Tables
S4, S6). Of these, reactive oxygen species have been linked not
only to stress response, but also to control of cell cycle and meris-
tem development (Schippers et al., 2016; Yang et al., 2018).
Although another possibility is that protoplast digestion may
induce the expression of stress-responses-related genes. Genes
involved in epigenetic modification pathways were specifically
activated in the SM (Table S7), suggesting that changes in
genomic regulation and protection accompany meristem transi-
tion (Higo et al., 2020; Satterlee et al., 2020) and may prepare
the plant for floret initiation.

Reproductive meristem development responds to
transcription factor and phytohormone signals

The UMAP plot of meristem cell subclusters demonstrated that
two differentiation events likely exist in rice reproductive

Fig. 4 Reconstruction of floret cell identity and differentiation trajectory of floret organs in rice. (a) Differentially expressed genes (DEGs) in all floral
subclusters. Number on bar indicates the number of DEGs in each cluster. DEGs defined as fold change (FC) > ~1.28 (|loge FC| > 0.25) and P < 0.05.
Because S1 and S2 were very close developmental stages with a relatively small number of DEGs, we chose |loge FC| > 0.25 (SEURAT default parameter)
instead of FC > 2, and use P-value instead of false discovery rate FDR to find DEGs. pa, palea; lo, lodicule; st, stamen; FM, flower meristem; SIC, spikelet
identity cell; bo, boundary; cb, cryptic bract; le, lemma; rg, rudimentary glume; sl, sterile lemma. (b) Volcano plots of gene expression in subclusters 1 and 6
of floret genes. DEGs upregulated in S1 tissues are marked in blue; DEGs upregulated in S2 tissues are marked in orange; labelled genes marked with large
navy-blue dot. More detail information can be found in Supporting Information Table S6. (c, d) Pseudotime analysis using floret subclusters, showing that
(c) FM cells are transitional cells that develop floral organs, including palea, lodicule, and stamen; and (d) FM cells also differentiate into glumes, cryptic
bract, and boundary cells. Pie plots represent the cell percentage in S1 and S2 samples. Two subsets of floret SIC subclusters 1 and 6, labelled here as SIC
states 3 and 4 in green and navy-blue, respectively, denote the beginning of pseudotime (also see Fig. S4d); arrows indicate progress through pseudotime.
Coloured dots indicate cells from clusters in Fig. 3a. (e) Violin plots showing expression pattern of selected RICE OUTERMOST CELL-SPECIFIC (ROC)
genes in floret subclusters. Abbreviations as in (a). (f) In situ hybridization of (f1) ROC1 and (f2) ROC3messenger RNAs (mRNAs). Arrows indicate high
levels of mRNA accumulation in the L1 layer. Bar, 50 µm. SM, spikelet meristem; PB, primary branch.
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meristem development (Fig. 5a). Accordingly, the pseudotime
progression began with IM subclusters and ended at either BM
or SM subclusters through branch point 1 (Figs 5c, S7a,b).

Meristem marker genes OSH1 and FOS1, which had been
enriched in IM and BM, respectively (Fig. 5b) (Suzaki et al.,
2009; Tsuda et al., 2011), appeared to function independently in
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maintaining SM and BM activity, respectively (Fig. 5d). Expres-
sion of OsMADS34, which regulates rice inflorescence branching
(Gao et al., 2010; Kobayashi et al., 2010), was enriched in the IM
and appeared to peak in the middle of pseudotime, whereas
expression of DLT, which controls inflorescence elongation
(Hirano et al., 2017), peaked in two waves in BM, with a general
increase during SM development (Fig. 5d).

BEAM was applied to the top 1000 HVGs at branch point 1
during meristem differentiation. Four groups of genes emerged
(Table S6), all of them containing various TFs known to be
involved in inflorescence development (Fig. 5e). Expression levels
of group 1 genes increased in the BM pathway but remained
stable or decreased in the SM pathway, and they were generally
involved in environmental and stress responses (Fig. S7c).
Group 1 also contained OsRR6, a CK-inducible gene whose over-
expression reduces branch number and shortens the inflorescence
(Hirose et al., 2007); thus, group 1 genes might be involved in
primary branch elongation.

Group 2 and group 3 genes appeared to be involved in pro-
moting meristem transition from IM to BM and SM, respec-
tively. Expression levels of group 2 genes decreased significantly
in the SM pathway, whereas those levels in the BM pathway
remained relatively constant over pseudotime. Group 3 genes
were expressed highly in the IM pathway but significantly lower
in the BM pathway; in the SM pathway, expression levels of
group 3 genes initially reduced, but they peaked again before the
final differentiation into SM (Table S6).

In contrast to group 1, expression levels of group 4 genes
increased in the SM pathway (Fig. S7c); they encoded genes
involved in cell cycle and epigenetic processes. NECK LEAF1
(NL1), encoding a GATA-type zinc finger TF, was enriched in
BM (Fig. 5b) and controls fate transition to SM (Fig. 5e). NL1
expression is localized in suppressed bract cells (Wang et al.,
2009), a specialized inflorescence zone with meristem identity
similar to the floret region that regulates primary branch and
spikelet numbers (Wang et al., 2009; Lu et al., 2017), allowing
us to classify meristem subclusters 4 and 6 as suppressed bract
cells (Fig. 5a,b). Indeed, the miR156/529-SPL module coordi-
nates with NL1 in suppressing bract growth and activating tran-
sition from vegetative to reproductive branching (Wang et al.,
2021).

Genes encoding components in phytohormone signalling
pathways, including CK, auxin, brassinosteroids, and GA

(Wils & Kaufmann, 2017; Yuan et al., 2020; Zhu & Wagner,
2020), were also expressed in discrete patterns over the two
differentiation trajectories. Indeed, genes related to biosynthe-
sis or signal transduction of these hormones show switch-like
patterns leading to gradual transition from IM to BM or SM
development, respectively (Fig. 5f), supporting the series of
pattern shifting during rice inflorescence development
(Kyozuka et al., 2014).

OsAUX1 promotes primary branch elongation and spikelet
initiation

Auxin is one of the most important phytohormones in regulating
meristem initiation in Arabidopsis, maize, and Setaria viridis
(Yuan et al., 2020; Zhu & Wagner, 2020), but there is very lit-
tle direct genetic evidence for its role in rice inflorescence develop-
ment. One exception is that mutation of FISH BONE, the
orthologue of TRYPTOPHAN AMINOTRANSFERASE OF
ARABIDOPSIS that encodes an enzyme involved in auxin biosyn-
thesis, showed small inflorescences (Yoshikawa et al., 2014). We
examined the expression of genes involved in auxin biosynthesis,
transport, and signal transduction in identified inflorescence clus-
ters and meristem subclusters (Fig. 6a; Table S4). Genes encoding
auxin-responsive TFs and auxin receptors exhibited similar expres-
sion patterns in both inflorescence clusters and meristem subclus-
ters. DIOXYGENASE OF AUXIN OXIDATION (DAO),
involved in auxin catabolism, was specifically expressed in IM clus-
ters and meristem subclusters, and OsAUX1, an auxin influx trans-
porter, was enriched in inflorescence cluster 15, meristem
subcluster 7, and meristem subcluster 10 (Fig. 6a,b). Most auxin
pathway genes exhibited similar switch-like patterns in SM or BM
identity transition as group 1 genes over meristem pseudotime,
although DAO, OsAUX1, and two SMALL AUXIN-
UPREGULATED RNA TF-encoding genes belonged to different
groups (Fig. 6c,d). Hence, the role of OsAUX1 in inflorescence
development was further investigated.

OsAUX1 facilitates primary root and root hair elongation in
response to phosphate and cadmium stress (Yu et al., 2015; Giri
et al., 2018), but its role in inflorescence development remains
unclear. In situ hybridization confirmed that OsAUX1 was
expressed in BM and SMs (Figs 6e, S8a), which was consistent
with the scRNA-seq analysis (Fig. 6b). Both the CRISPR-Cas9-
edited mutant Osaux1-1;4 and the transfer DNA insertion

Fig. 5 Reconstruction of meristem cell identity and differentiation trajectory of inflorescence meristems in rice. (a) Uniform manifold approximation and
projection (UMAP) plot of unbiased reclustering of meristem clusters 5, 9, and 13, revealing 12 meristem cell subclusters. Clusters could be classified into
three cell types: BM, branch meristems including the primary branch meristem, elongated primary branch meristem, and secondary branch meristem; SM,
spikelet meristem; and IM, inflorescence meristem. Red and blue arrows indicate SM and BM developmental trajectories of meristem cells, respectively. ep,
epidermis; sb, suppressed bract. (b) Heatmap of marker gene expression in meristem subclusters. Abbreviations as in (a). (c) Pseudotime analysis using
meristem cells to show the developmental trajectory of meristem differentiation, from IM into BM or SM. Coloured dots indicate cells from clusters in (a).
Numbers in circles indicate branch points in the developmental trajectories; red circle indicates the branch point analysed in (e). Abbreviations as in (a). (d)
Feature plots for expression of four genes based on (c). (e) Heatmap showing expression of genes encoding transcription factors selected from the first
branch point in meristem cells over pseudotime (point 1 in (c)). The white line in the middle represents the beginning of pseudotime (IM); the two sides
represent the ends of pseudotime down the two lineages (left, BM; right, SM). The gene expression level is scaled and relative to the mean value of one
gene. Abbreviations as in (a). (f) Scatter plot based on branched expression analysis modelling of hormone-related genes. Coloured dots indicate cells from
clusters in (a). Abbreviations as in (a).
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mutants (Giri et al., 2018) Osaux1-1;1 and Osaux1-1;3 produced
shorter inflorescences with fewer branches and spikelets (Figs 6f,
g, S8b–d). These results indicated that OsAUX1 plays a pivotal
role in controlling meristem determinacy during rice inflores-
cence development.

Dynamic distribution pattern ofOsMAPK6 andOsGASR1
determines inflorescence architecture

To further validate our cluster and cell-type annotations, we anal-
ysed dynamic expression of OsMAPK6, a key member in the
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OsER1–OsMKKK10–OsMKK4–OsMPK6 pathway that modu-
lates CK homeostasis to regulate seed size and number (Liu et al.,
2015; Guo et al., 2020). Even though OsMAPK6 was expressed
in all 16 inflorescence clusters (Fig. 7a), its spatial–temporal dis-
tribution pattern changed across meristem and floret subclusters
(Fig. 7b). Consistent with scRNA-seq results, fluorescence from
an OsMAPK6pro-eGFP marker line could be detected in all inflo-
rescence tissues (Fig. 7c), with highly dynamic signals observed in
the IM, BM, and SM (Fig. 7c), supporting its role in meristem
activity (Guo et al., 2020). Furthermore, GFP signals were also
detected in all spikelet organs, with stronger expression in the
palea and lodicule primordia (Fig. 7d). In addition, we also built
an OsGASR1pro-eGFP marker line to monitor GA response dur-
ing rice inflorescence development (Furukawa et al., 2006), since
GA could modulate Arabidopsis inflorescence architecture in a
dynamic pattern, showing a higher GA content in early inflores-
cence but lower content during flower initiation (Yamaguchi
et al., 2014; Kinoshita et al., 2020). Comparable to that of
scRNA-seq results (Fig. 7e), highly dynamic GA signals were also
observed during early rice reproductive development with lower
expression in ePBM and SBM while higher expression in SM
(Fig. 7f). Moreover, higher OsGASR1pro-eGFP signals were
observed in rudimentary glume and SIC while lower expression
was detected in outer floral organs, including sterile lemma,
lemma, palea, and lodicule (Fig. 7g). Thus, these results provided
cellular evidence that phytohormone gradients regulate inflores-
cence patterning, and the scRNA-seq data provided a compre-
hensive, reliable cellular atlas of gene expression involved in early
rice inflorescence development.

Discussion

Inflorescence architectures are highly diverse, and their structures
have been strongly selected during plant adaptation and crop
domestication (Tanaka et al., 2013; Kyozuka, 2014; Kyozuka et al.,
2014; Zhang & Yuan, 2014; B. Wang et al., 2018; Yuan et al.,
2020; Zhu & Wagner, 2020) [Correction added after first
publication 24 February 2022: a reference has been deleted from
the preceding sentence.]. Great effort has been devoted to unravel-
ling the regulatory processes underlying inflorescence complexity
and plasticity and to exploit them for molecular breeding. Here, we
reconstructed a transcriptomic atlas covering early rice inflorescence
development at the single-cell resolution using scRNA-seq.
Although we could not definitively exclude possible side-effects of
protoplasting on our scRNA transcriptome, the removal of 61 rice
orthologues of 332 protoplast-related genes collected from maize

inflorescence (Table S2) (Xu et al., 2021) did not affect the original
clustering, nor the spikelet, floret, and meristem subclustering. This
result was consistent with previous reports from maize and Ara-
bidopsis (Ma et al., 2020; Xu et al., 2021; Zhang et al., 2021a) and
suggested that protoplasting did not strongly affect our results.
However, identification of protoplasting-responsive genes in rice
inflorescence samples will further exclude the risk of batch effects
caused by protoplasting.

In this work, we captured a series of intermediate cell states
during early inflorescence and spikelet development and assigned
their highly heterogeneous identities based on well-known
marker genes from the literature and results from bioinformatics
correlation analyses. Floret subclusters, in particular, could be
assigned to discrete reproductive and nonreproductive organs
(Fig. 3). We successfully reconstructed the rice floret develop-
mental trajectory over pseudotime ordering, providing cellular
evidence that a ‘true’ rice floret comprises the palea, lodicule, and
reproductive organs (Fig. 4c,d). Even though there has been no
reported canonical WUSCHEL-related pathway in rice flower
development, we revealed a DWT1-mediated WOX pathway that
controls FM activity in rice (Figs 3g, S4b,c).

Cells classified as ‘suppressed bract’ and ‘cryptic bract’, whose
function has been hypothesized to compete with the meristem or
to provide positional signals for meristem determinacy (Chan-
dler, 2012; Whipple, 2017), were identified in meristem and flo-
ret subclusters, respectively, each with overlapping (121
conserved genes including OsSPL14 and OsSPL17) but discrete
patterns of gene expression (Tables S4, S5). Here, we propose
that these cells might have retained meristem activity during
domestication, but their identity was repressed by bract-specific
genes such as OsSPL14 and OsSPL17 (Table S4). Further investi-
gation of the reasons for their retention through intensive selec-
tion and breeding may reveal new compensatory mechanisms of
meristem activity maintenance.

Though the meristem differentiation trajectory could not be
fully reconstructed, the unbiased scRNA-seq in this study
revealed that meristems in the inflorescence contain a highly
heterogeneous mixture of cell types. Three groups of meristems
(IM, BM, and SM) were assigned from 12 meristem subclusters
(Fig. 5a), and the reported marker genes were observed to have
distinct spatial patterns of expression across the 12 subclusters,
exemplified by SQUAMOSA PROMOTER BINDING
PROTEIN, WOX, YABBY, OSH, and ROC family genes
(Figs 5b, S6). Some putative regulatory networks that control
meristem and floret cell differentiation could be deduced. LONG
PANICLE 1 is one of the IM-enriched genes (Fig. 5b) and was

Fig. 6 The role of auxin-related genes in meristem cell development in rice. (a) Heatmap showing expression of auxin-related gene in all cell types (16
clusters). (b) Heatmap showing expression of auxin-related genes in meristem cell subclusters. BM, branch meristems including the primary branch
meristem, elongated primary branch meristem, and secondary branch meristem; SM, spikelet meristem; IM, inflorescence meristem. (c) Scatter plot based
on branched expression analysis modelling of auxin-related genes. (d) Heatmap showing expression of auxin-related genes in meristem cells over branch
point 1 of pseudotime (see Fig. 5c). The white line in the middle represents the beginning of pseudotime (IM); the two sides represent the ends of
pseudotime down the two lineages (left, BM; right, SM). Abbreviations as in (b). (e) In situ hybridization ofOsAUX1 in S1 inflorescence. PB, primary
branch; RA, rachis; SB, secondary branch. Bar, 100 lm. (f) Phenotype of wild-type cv 9522 andOsaux1-1;4mutant inflorescences, showing shorter
branches and less spikelets in the mutant. Bar, 5 cm. (g) Panicle length, and the numbers of primary and secondary branches per panicle, in the wild-type
cv 9522 andOsaux1-1;4mutant inflorescences. Dots represent actual values, and black lines represent mean� SD, n = 10. Asterisks indicate significant
differences, ** P < 0.01 (Student’s t-test).
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previously mapped as one of the major candidate quantitative
trait loci (QTLs) in controlling panicle length (Liu et al., 2016).
Therefore, by integrating data from population genetic studies
such as QTLs and genome-wide association studies, the meristem

database here would provide valuable sources to dissect important
regulators in meristem differentiation that contribute to breed-
ing. To further assign the functions and identities of these meris-
tem subclusters, in vivo marker lines can be developed by
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selecting cluster-enriched genes revealed by our analyses. A simi-
lar strategy could be applied to further examine the developmen-
tal trajectory of rachis and leaf cells.

Nevertheless, we provided new genetic evidence for the role of
auxin in rice inflorescence development (Fig. 6), and proposed
that the ROC/HDG gene family might provide positional signals
from the outer layer of the FM to activate rice spikelet and floret
initiation (Figs 4f, S4e), which was consistent with findings from
Arabidopsis, where the epidermis was proposed as the source of
positional signals for meristem maintenance (Gruel et al., 2016).
Further comparative study on these meristem genes in rice, and
homologous genes in other cereals, might open new windows for
understanding how AM differentiation contributes to inflores-
cence traits. Ultimately, development of a plant regulatory mod-
ule algorithm for scRNA-seq data, like that in human work
(Aibar et al., 2017), and combining it with advanced CRISPR-
Cas9 technology, would make step-change improvements in our
ability to fully unravel the developmental trajectory of the inflo-
rescence.
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