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Abstract Positional information is a central concept in developmental biology. In developing 
organs, positional information can be idealized as a local coordinate system that arises from 
morphogen gradients controlled by organizers at key locations. This offers a plausible mechanism 
for the integration of the molecular networks operating in individual cells into the spatially coordi-
nated multicellular responses necessary for the organization of emergent forms. Understanding how 
positional cues guide morphogenesis requires the quantification of gene expression and growth 
dynamics in the context of their underlying coordinate systems. Here, we present recent advances 
in the MorphoGraphX software (Barbier de Reuille et al., 2015) that implement a generalized frame-
work to annotate developing organs with local coordinate systems. These coordinate systems intro-
duce an organ- centric spatial context to microscopy data, allowing gene expression and growth to 
be quantified and compared in the context of the positional information thought to control them.

Editor's evaluation
Quantitative imaging has become a mainstay of modern cell and developmental biology. This article 
reports major advances in the image analysis software package MorphGraphX (MGX). MGX2.0 
includes new tools for precise quantitation of cellular behaviors, such as cell division and expansion, 
within the context of positional information in the growing organs. This article is the go- to resource 
for current and future users of MGX to learn the power of the software package, with which they can 
quantify the spatiotemporal dynamics of the growth and development of living organisms.

Introduction
Many aspects of animal morphogenesis are thought to be controlled by positional information 
(Wolpert, 1969), where cells can sense their position in a developing organ and respond accord-
ingly. This phenomenon may be even more pervasive in plants as cells cannot relocate within organs 
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and must decide their fate based on their location. For example, root morphogenesis appears to be 
controlled by an organizing center at the root tip that provides founder cells and positional infor-
mation to the growing structure (Scheres et al., 2002). Ablation of cortical cell initials in the root 
meristem causes the neighboring pericycle cells to divide and fill the available space, subsequently 
adopting the fate associated to their new location (van den Berg et al., 1995). A similar effect has 
been demonstrated for a variety of cell types in the Arabidopsis root (Marhava et  al., 2019). In 
leaves, development is thought to be coordinated by polarity fields oriented from leaf base to tip 
(Kierzkowski et al., 2019; Kuchen et al., 2012). Over time organs can initiate new growth axes, such 
as when serrations or leaflets develop in more complex leaves (Barkoulas et al., 2008; Kierzkowski 
et al., 2019), or lateral roots emerge from the primary root (Scheres et al., 2002). In these cases, 
information from several organizers must be integrated to direct cell response.

To understand how positional information controls morphogenesis, it is necessary to quantify cell 
shape, gene expression, and morphogen concentration changes over time, preferably at the cellular 
level. This information then needs to be related to its position relative to the organizers controlling 
development within the organ. As computational power and imaging methods improve, new software 
packages for cell segmentation and lineage tracking are being developed (Sommer et  al., 2011; 
Stegmaier et al., 2016), including many specialized for plants (Barbier de Reuille et al., 2015; Esch-
weiler et al., 2019; Fernandez et al., 2010; Schmidt et al., 2014; Wolny et al., 2020). This progress 
has enabled the segmentation of time- lapse data at increasingly higher resolution and throughput 
(Hervieux et al., 2016; Kierzkowski et al., 2019; Sapala et al., 2018; Willis et al., 2016). Although 
this increase in data volume offers tremendous potential to understand how genes control form, the 
analysis of geometric data from thousands of cells is nontrivial. Information about a cell’s shape, gene 
expression, and growth directions is of limited value when the cell’s spatial context within the devel-
oping organ is unknown.

MorphoGraphX is a computer software platform that is specialized for image processing on surface 
layers of cells (Barbier de Reuille et  al., 2015). It has proven especially useful for the analysis of 
confocal microscopy images from time- lapse data in order to quantify the cellular- level dynamics of 
growth, cell division, and gene expression (e.g., Bringmann and Bergmann, 2017; Feng et al., 2018; 
Hervieux et al., 2016; Hong et al., 2016; Kierzkowski et al., 2019; Louveaux et al., 2016; Sapala 
et al., 2018; Scheuring et al., 2016; Tsugawa et al., 2017; Vlad et al., 2014; Zhang et al., 2020; Zhu 
et al., 2020; Fridman et al., 2021). Key to the approach taken in the software is the representation of 
cell layers as curved, triangulated surface meshes that capture the overall 3D shape of organs, which 
retains much of the simplicity of 2D segmentation and lineage tracking. These ‘2.5D’ images contain 
the geometry of the sample at two scales. The global shape of the organ is captured by the mesh’s 
geometry, while a cellular- scale representation is obtained from the confocal signal projected onto 
the mesh, which is segmented to extract the shape of individual cells on the surface (Figure 1A–C). 
When combined with time- lapse data acquisition and cell lineage tracking, MorphoGraphX allows cell 
growth and its relationship to gene expression to be quantified (Figure 1D and E; Kierzkowski et al., 
2019; Sapala et al., 2018; Vlad et al., 2014). In addition to cell surface analysis, MorphoGraphX 
also supports the creation and analysis of full 3D meshes with volumetric cells (Figure  1—figure 
supplement 1; Vijayan et al., 2021). Here, we describe new methods we have developed in Morpho-
GraphX to understand these data by additionally annotating cells with positional information. Not 
unlike the annotation of sequence data, this allows cellular data to be given spatial context, and a 
frame of reference within the organ relative to its developmental axes and the organizers instructing 
morphogenesis.

Results and discussion
Most workflows in MorphoGraphX begin by converting 3D image stacks into meshes of 2.5D or 3D 
cellular segmentations, which are created directly on voxels in the case of 3D segmentation, or on 
surface meshes in the case of 2.5D data (Figure 1A–C, Figure 1—figure supplement 1A and B). 
Recent advances in voxel classification with convolutional neural networks (CNNs) for cell boundary 
prediction can improve input images and the resulting segmentation (Eschweiler et al., 2019; Esch-
weiler et al., 2021; Wolny et al., 2020), especially for 3D segmentations. Although a selection of 
these and other image denoising and preprocessing tools are available directly within MorphoGraphX, 
it is also possible to preprocess and/or segment 3D images in other software and import them into 
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Figure 1. Cellular segmentation and basic quantifications supported by MorphoGraphX demonstrated by using a time- lapse series of an A. thaliana 
flower meristem. (A) Multichannel confocal microscopy images with a cell wall signal (red) and DR5 marker signal (green). Shown are the last three time 
points (T1–T3) of a four- image series (T0–T3). (B, C) Extracted surface mesh of T2. Cell wall signal near the surface was projected onto the curved mesh 
to enable the creation of the cellular segmentation in (C). The segmented meshes provide the base for further analysis within MorphoGraphX as shown 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.72601


 Tools and resources      Developmental Biology | Plant Biology

Strauss et al. eLife 2022;11:e72601. DOI: https://doi.org/10.7554/eLife.72601  4 of 38

MorphoGraphX for further analysis. After the initial segmentation, cellular features can be quantified, 
such as cell area, shape, and gene expression for single time points, or cell proliferation and growth 
for time- lapse data (Figure 1D and E). These data can then be annotated with positional informa-
tion to aid the understanding of the development of the organism under study. Even with deep 
learning techniques, image quality needs to be very high for full 3D segmentation, and this is often 
not possible with live imaged data. By enabling image processing on 2.5D surface images, Morpho-
GraphX can be used in many systems on live imaged data where full 3D segmentation is currently not 
possible (Hervieux et al., 2016; Kierzkowski et al., 2019; Sapala et al., 2018; Silveira et al., 2022; 
Vlad et al., 2014). Annotation with coordinate systems can further reduce image quality requirements 
in cases where growth along a single dimension is required (Liu et al., 2022).

Defining coordinates within an organ
The simplest method to provide positional information for the cells in a sample is by aligning the 
sample with a set of 3D coordinate axes (Figure 2A). For example, a developing root meristem can 
be aligned and positioned such that the organizing quiescent center is at the origin with the Y- axis 
increasing in the longitudinal direction of the root. Provided the sample is reasonably straight, this 
allows cellular measures to be compared with their distance from the quiescent center (Figure 2B).

However, for curved organs significant errors will occur, especially in more distal regions, further 
from the origin. In this case, the central axis can be defined by a curved line that conforms to the 
curvature of the organ (Figure  2C; Schmidt et  al., 2014; Montenegro- Johnson et  al., 2015). In 
MorphoGraphX, this line can be represented by a Bezier spline (Bézier, 1968) with control points 
positioned using either interactive manipulation or automatically from a selected file of cells. Distance 
can then be calculated along the line and transferred to cells in the cross section perpendicular to the 
line (Figure 2C). MorphoGraphX also allows a 2D Bezier surface to be positioned next to or within a 
sample, enabling two directions to be aligned with the natural curvature of the sample.

Placing the Bezier curve or surface to curved organs with more complex shape is challenging. An 
alternative method is to select one or more cells at a reference position and calculate the distance 
relative to the selection (Figure 2D, Video 1). This offers an easy method to create a distance field 
and greatly increases the variety of organs that can be accommodated. The distance is determined by 
computing the shortest path along cells through the tissue, causing it to naturally follow the curvature 
of the organ.

Once cells have been annotated with positional information, it can be used for the analysis of 
cell- level data, such as growth, cell proliferation, cell shape, and gene expression. Using the distance 
measure to define the proximal- distal (PD) axis on an Arabidopsis sepal (Figure  2D), geometric 
measures can be plotted against the local coordinate system. In Figure 2F, cell area extension was 
plotted against distance from the base of the sepal. On the full 7- day sepal time- lapse shown in 
Figure 2—figure supplement 1 (Hervieux et al., 2016), initially growth is predominantly located 
at the distal parts of the organ, followed by the progressive displacement of the high growth zone 
towards the base of the sepal (Figure 2—figure supplement 1A). By time point 6, the growth has 
slowed and become more uniform as the organ differentiates. Proliferation is initially more uniform, 
but otherwise follows a pattern similar to growth, progressing basally as the organ matures (Figure 2—
figure supplement 1B). The data can be indexed by position from the base of the sepal and plotted, 
showing how growth and proliferation vary along the PD developmental axis as a percentage of 
the total sepal length (Figure 2—figure supplement 1D and E). It can be seen in the graphs that 
although the sepal appears to undergo a similar growth arrest starting at the tip as the Arabidopsis 

in (D) and (E). (D) Top: MorphoGraphX allows the quantification of cellular properties such as cell area and shape anisotropy (shown as heat maps). The 
white axes show the max and min axes of the cells. Bottom: heat map of the quantification of the DR5 marker signal (arbitrary units) projected onto the 
cell surface mesh. (E) When cell lineages are known, time- lapse data can be analyzed. Top: heat maps of cell area expansion and growth anisotropy 
(computed from T1 to T2). The white crosses inside the cells depict the principal directions of growth. Bottom: visualization of the cell lineages and heat 
map of cellular proliferation (number of daughter cells), computed from T0 to T2. Scale bars: (A) 50 μm; (B– E) 20 μm. See also user guide Chapters 1–15 
and tutorial videos S1 and S2 videos S1 and S2available at https://doi.org/10.5061/dryad.m905qfv1r.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Basic 3D analysis using MorphoGraphX demonstrated using an Arabidopsis ovule.

Figure 1 continued

https://doi.org/10.7554/eLife.72601
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Figure 2. Methods to define positional information and their application to data analysis in plant organs. (A) Y- axis aligned A. thaliana root. The cells 
are colored according to the y- coordinate of their centroid position. (B) Plot of cell volumes of epidermis cells of the root in (A) along the y- axis with a 
fitted trend line. (C) Seedling of A. thaliana with a surface segmentation of the epidermis. A manually defined Bezier curve (white) allows the assignment 
of accurate cell coordinates along a curved organ axis. (D) Side and top views of an A. thaliana sepal with a proximal- distal (PD) axis heat coloring. The 

Figure 2 continued on next page
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leaf, there are subtle differences. The growth in the early stages is more distal in the sepal, along with 
the proliferation, and the zone of higher growth moves towards the base as the sepal develops. This 
is in contrast to the Arabidopsis leaf where the growth and proliferation zones remain relatively fixed 
with respect to the total leaf length (Figure 1K and M; Kierzkowski et al., 2019). The use of relative 
coordinates also makes it possible to pool data from multiple samples (Vijayan et al., 2021; Zhang 
et al., 2020) and compare data from different genotypes (Kierzkowski et al., 2019; Montenegro- 
Johnson et al., 2019; Zhang et al., 2020).

Deriving directions from organ coordinates
In addition to scalar information such as areal growth rate or cell volume, MorphoGraphX can also 
quantify directional information, such as the principal directions of growth (PDGs) that represent the 
maximal and minimal directions of growth for each cell (Figure  3A–C). A common problem with 
the interpretation of such directional information is the tendency for directions to be locally hetero-
geneous when growth is nearly isotropic. This happens because the maximal and minimal growth 
amounts are almost the same, and the displayed directions become arbitrary and heavily influenced 
by noise. This can make the comparison of growth directions between neighboring cells difficult. A 
more informative approach is to look at growth with respect to the directions of the developmental 
axes. This can be done by first setting up an axis defining the positional information for the leaf, for 
example, by using the previously introduced distance field (Figure 2D, Figure 3B). The growth direc-
tions are then projected onto this developmental axis and separated into components that are parallel 
(Figure 3D) and perpendicular (Figure 3E) to the axis. Using this method on the Arabidopsis thaliana 
leaf primordium different developmental zones with varying growth rates along the PD and medial- 
lateral (ML) axis can be revealed (Figure 3C–E): while the area extension differs greatly in midrib/
petiole (low) and leaf blade cells (high), it can be seen that those differences mainly follow from the 
ML growth rate, whereas the PD growth map is more similar in these domains. Moreover, an increase 

in ML growth around the forming serration can 
be seen, separating it from the surrounding leaf 
blade cells that show less growth along this direc-
tion (Figure  3E). From the original PDG visual-
ization, it is not immediately apparent that the 
varying ML growth is the main cause of the differ-
ences in the domains (Figure 3C).

Another benefit of looking at PDGs in the 
context of a local coordinate system is that it 
can provide a more direct comparison to the 
outputs of computational simulations. Develop-
mental models of emergent organ shape often 
use morphogens that are thought to specifically 
control growth in parallel and perpendicular 
to a developmental axis (Kierzkowski et  al., 
2019; Kuchen et al., 2012; Whitewoods et al., 
2020). By projecting the PDGs onto this axis, it is 
possible to directly compare model growth rates 
in the different directions to experiments. Since 
MorphoGraphX can load a wide variety of mesh 

cell coordinates were assigned by computing the distance to manually selected cells (outlined in red) at the organ base. This method allows organ 
coordinates to be assigned in highly curved tissues. (E) Side and top views of (D) with a heat map coloring based on cellular growth to the next time 
point. (F) Plot summarizing the growth data of (E) using the PD- axis coordinates from (D). See Figure 2—figure supplement 1 for the analysis of the 
complete time- lapse series. Scale bars: (A) 20 μm; (C) 100 μm; (D, E) 50 μm. See also user guide Chapter 23 ‘Organ- centric coordinate systems’ and 
tutorial video S3video S3 available at https://doi.org/10.5061/dryad.m905qfv1r.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. From cellular resolution heat maps to a global analysis of A. thaliana sepal development using organ- centric coordinates.

Figure 2 continued

Video 1. Creation of a simple organ- centric coordinate 
system and its application on cellular data. Starting 
with two time points of an Arabidopsis sepal that have 
been lineage traced, the principal directions of growth 
are computed. Next, cells at the base of the sepal are 
selected to create a distance field that is used as a 
simple coordinate system. The growth (areal extension) 
can then be computed along the directions defined 
along the organ- centric coordinate system. The organ 
coordinates can also be exported and used to plot 
different kinds of cellular data.

https://elifesciences.org/articles/72601/figures#video1

https://doi.org/10.7554/eLife.72601
https://doi.org/10.5061/dryad.m905qfv1r
https://elifesciences.org/articles/72601/figures#video1
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Figure 3. Examples of data analyses using organ coordinate directions. (A–E) Quantification of cellular growth along organ axes in a young A. thaliana 
leaf. (A) Segmented meshes of the leaf primordium at 3 and 6 days after initiation shown with cell labels and lineages of the earlier time point (3 days). 
(B) Earlier time point of (A) with proximal- distal (PD) axis coordinates (heat map) and directions (white lines) computed from selected cells at the leaf 
base. (C) Area extension (heat map) and principal directions of growth (PDGs, white lines) between the time points of (A). PDG axes are computed per 

Figure 3 continued on next page
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formats, this allows the direct comparison of similar quantifications made on templates extracted from 
model simulations from various sources.

Figure 3F–K shows a similar growth quantification for the tomato meristem (Kierzkowski et al., 
2012), where local organ coordinates were created by using cell distance measures around each 
emerging leaf primordium with directions pointing towards (radial) and around (circumferential) their 
respective center. In addition to growth, the signal intensity of the auxin reporter DR5 was quantified 
in the same sample, allowing a direct comparison to auxin signaling levels and cellular growth. For 
both primordia, we found radial growth to have a high negative correlation with DR5 signal intensity. 
Figure 3J shows that the radial growth (red) peaks on the abaxial side of the emerging primordium, 
whereas the DR5 signal (blue) is higher on the adaxial side. Circumferential growth was more or less 
constant. The DR5 maximum tends to be on the adaxial side of the initiating leaf, whereas growth 
is much higher on the opposing abaxial side. This supports the idea that auxin acts as a trigger for 
primordium initiation (Reinhardt et al., 2003; Smith et al., 2006) rather than via controlling growth 
rates directly.

Combining directions
In 2D or on 2.5D surfaces, local directions can be fully defined by a single distance measure by taking 
one direction aligned with the gradient of the distance field or a Bezier curve, and the other perpen-
dicular to the first. This is similar to the methods used to specify directions in developmental modeling 
in plants (Green et al., 2010; Kennaway and Coen, 2019; Kierzkowski et al., 2019; Kuchen et al., 
2012; Whitewoods et al., 2020), and thus facilitates direct comparison between models and experi-
mentally observed patterns of growth and gene expression.

In 3D, a third direction must be defined (Kennaway and Coen, 2019; Whitewoods et al., 2020). In 
MorphoGraphX, this can be done by combining the directions defined by different distance measures. 
The 3D Cell Atlas add- on (Montenegro- Johnson et al., 2015) combines several distance measures 
for radially symmetric structures such as root and hypocotyls. A Bezier curve is placed along the center 
in the longitudinal direction and combined with a surface mesh to obtain radial directions (Figure 4B). 
This also puts bounds on the radial direction (and also implicitly on the circumferential direction), which 
allows relative coordinates to be assigned to cells in addition to absolute values. The relative radial 
coordinate will follow the layer as the root narrows towards the tip. The relative distance between 
the central axis and the organ surface can then be used to annotate and classify 3D segmented cells 
in organs with a layered cellular organization. Figure 4D shows classification of layers with relative 
coordinates on an Arabidopsis root (Montenegro- Johnson et al., 2015). Figure 4C shows layer clas-
sification using absolute distance from a surface mesh (Montenegro- Johnson et al., 2019), which can 
be used as a starting point for layer classification in any organ.

The mature ovule in Arabidopsis shows a more complicated structure than a root or sepal, with five 
layers of integument cells encapsulating the nucellus that contains the embryo sac (Schneitz et al., 
1995; Vijayan et al., 2021; Figure 1—figure supplement 1, Figure 5). In this example, combining 
different directions allows the establishment of organ- centric coordinates in the outermost layer of 
cells in the ovule (the outer integument). After segmentation and 3D mesh extraction in Morpho-
GraphX, directions normal to the surface (Figure 5A) were combined with those of a Bezier curve 
computed from a user- selected cell file (Figure 5B and C). Similar to the root data, relative coordi-
nates facilitate the classification of cells into layers.

cell and can point in different directions. (D, E) Computation of the growth component of (C) that is directed along the PD and the orthogonal medial- 
lateral (ML) axis. (F–K) Quantification of locally directed growth in leaf primordium and initiation site of a tomato meristem. (F) Smoothed heat map of 
cell curvature. Local maxima in this heat map (green and cyan cells) were selected as meristem center (M), primordium center (P), and initiation site (I) as 
shown in (G). (H) To analyze the data, we defined circumferential coordinate systems with their axes directions (white lines) around the primordium and 
initiation center (not shown), and aligned them towards the meristem center. (I) Heat maps of cell distance, area extension, radial and circumferential 
growth, and normalized DR5 signal intensity of the aligned primordium and initiation site. (J) Plotting the data of (I) reveals a negative correlation of the 
DR5 signal intensity and radial growth around the developing primordium. (K) Detailed plots of radial (red) and circumferential growth (orange) as well 
as the normalized DR5 signal intensity of the primordium and initiation site. Scale bars: (A) 50 μm; (B–H) 20 μm; (I) 10 μm. See also user guide Chapters 
16 ‘Custom axis directions,’ 23 ‘Organ- centric coordinate systems,’ and tutorial video S3 available at https://doi.org/10.5061/dryad.m905qfv1r.

Figure 3 continued

https://doi.org/10.7554/eLife.72601
https://doi.org/10.5061/dryad.m905qfv1r
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Figure 4. Methods to create organ coordinates for 3D meshes and label different cell types. (A–D) Organ coordinates and cell types for volumetric 
meshes. (A) Heat map of the surface distance for cell centroids in an A. thaliana shoot apical meristem. (B) For volumetric tissues, often a single direction 
is not enough to capture the geometry of the organ. Different methods can be combined such as a Bezier curve (white dashed line) with a surface mesh 
(gray) to create a heat map of the relative radial distance of cells in the A. thaliana root. (C, D) Organ coordinates can be used to assign cell- type labels 
as demonstrated in the 3D Cell Atlas plug- in for meristem and root. See also Figure 4—figure supplement 1. (E–H) Different methods to create cell- 
type labelings. (E) A. thaliana gynoecium (fruit epidermis) surface segmentation with a heat map of the length of the minor cell axis as obtained from a 
principal component analysis (PCA) on the cells’ triangles. The heat values can be thresholded to assign two cell types. (F) The same principle can be 
used on organ coordinates that results in a clean separation of replum (green) and valve tissue (blue). (G) We generalized the 2D clustering approach of 
3D Cell Atlas (see Figure 4—figure supplement 1) so that it can be used for any measure pair and on subset selections of cells. Shown is a 2D plot of 
the minor axis length (x- coord) and cell signal intensity (y- coord) on the valve tissue in (F). Manually assigning clusters can separate the stomata, which 
are typically smaller with higher signal values (yellow) and the remaining valve cells (blue) efficiently. See also Figure 4—figure supplement 1 for 2D 
plots of all cells. (H) The support vector machine (SVM) classification is able to separate the three shown cell types in a higher dimensional space by 

Figure 4 continued on next page
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The Bezier curve defined the longitudinal direction, whereas the surface directions obtained from 
the organ surface mesh were used to compute perpendicular width and depth axes and distances. Cell 
volume and geometry acquired from 3D segmentation and mesh extraction (Figure 1—figure supple-
ment 1) were calculated along the various directions of the organ axes and analyzed (Figure 5D–G).

Moving along the PD axis from 0 to 260 μm, we found variations in cell volume with a clear minimum 
at around 100 μm and a steady increase towards proximal and distal end (Figure 5G). Measuring 
the length, width, and depth of cells separately revealed the underlying cause for differences in cell 
volume between different PD regions of the outermost integument layer. At the proximal end (at 
0 μm), the cell shape is relatively isotropic with similar values in cell length, width, and depth. Moving 
along the PD axis, cell anisotropy slowly increased, first mostly due the decreasing depth and width 
(until around 100 μm), later mainly due to the increased cell length (from about 150 μm). The increased 
cell length suggests a highly anisotropic growth along the longitudinal axis in this area. A potential 
proliferative region could be suspected in the region between 100 and 150 μm, where cell volume 
and length are the smallest. The quantification using the organ coordinates in this study allows spatial 
information to be linked to 3D cellular properties such as cell volumes and the associated shape 
anisotropies along different cell axes.

Using positional information for automatic cell-type classification
Plant organs typically emerge as primordia consisting of undifferentiated tissue. Cells subsequently 
differentiate, acquiring a unique identity that depends on their location within the organ, via genetic 
processes that integrate spatial and environmental cues. Although cell differentiation is ultimately 
controlled by differential gene expression, it is often the case that cell fate can be predicted by geom-
etry, even at very early stages (Yoshida et al., 2014). It is rare that cells with different cell types have 
identical morphological features.

MorphoGraphX supports a large variety of measures to quantify different features of cell 
morphology, including simple geometric measures (area, volume, perimeter, surface area, min and 
max axis), shape quantifiers (convexity, circularity, lobeyness, largest empty circle, aspect ratio), neigh-
borhood measures (number of neighbors, variability), gene expression (average, total, near boundary), 
and cell network measures (betweenness centrality, betweenness current flow). Most measures can 
be used on time- lapse data to quantify changes over time (growth rates, gene expression changes, 
cell proliferation). For a complete list of the measures implemented in MorphoGraphX, see Table 1 
and Table  2. The modular architecture of the software also allows custom measures tailored to 
specific problems to be easily added through its plug- in interface. More sophisticated calculations, 
for example, the averaging of data over multiple samples, can be calculated externally in packages 
such as R and imported back into MorphoGraphX for visualization on segmented meshes. Here, the 
development of more complex data- flows is enabled by the use of a standardized attribute system to 
store and visualize cell data for both scalar values and tensor (directional) information.

During the segmentation process, MorphoGraphX assigns a unique label to each cell. When 
tracking cell lineages over multiple time points, a secondary label called the ‘parent label’ is provided. 
Other secondary labelings are also possible, for example, for cell type, cell layer, or zones within an 
organ. MorphoGraphX has several methods to assign these labels to classify cell types and layers. 
These labels can be assigned manually by interactively selecting cells or by employing a number of 
processes that use heat map measure data to assign secondary labels (Figure 4E–H). Positional infor-
mation from the distance measures can be combined with measures of cell morphology and gene 
expression, where a secondary labeling can be used to provide additional context.

Since cells of a common biological cell type have similarities in one or more geometrical, positional, 
or gene expression attributes, the values of these attributes will often form a cluster, facilitating their 
automatic classification. An example can be seen in the 3D Cell Atlas add- on for MorphoGraphX 

using a variety of different measures and a relatively small training set. Scale bars: (A–D) 20 μm; (E–H) 50 μm. See also user guide Chapter 24 ‘Cell atlas 
and cell type classification’ and tutorial videos S3 and S4 available at https://doi.org/10.5061/dryad.m905qfv1r.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Cell- type labeling methods and their use in the data analysis.

Figure 4 continued

https://doi.org/10.7554/eLife.72601
https://doi.org/10.5061/dryad.m905qfv1r
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Figure 5. Quantification of volumetric cell sizes along organ axes in the outer layer of the outer integument of an A. thaliana ovule. (A) Extraction of 
cell layer of interest (colored in green) using an organ surface mesh. (B) Selection of the central cell file (in red) with cell distance heat map to exclude 
lateral cells (heat values >40 µm). (C) The centroids of the selected cells from (B) were used to specify a Bezier curve defining the highly curved organ 
axis from the proximal to the distal side. Heat coloring of the cells according to their coordinate along the Bezier. (D–F) Analysis of the cellular geometry 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.72601
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(Figure 4—figure supplement 1A–C, Montenegro- Johnson et al., 2015) that clusters cells by rela-
tive radial distance and cell size to classify the cell layers of the root, hypocotyl, mature embryo, or 
other radially symmetric plant organs. To aid in optimizing cell clustering, MorphoGraphX offers a 2D 
interactive heat map, where information from two independent measures can be visualized, and clus-
ters selected (Figure 4G, Figure 4—figure supplement 1B). These methods can be used repeatedly 
on subsets of cells to enable a classification of cells that differ across more than two features.

Multifeature classifications tasks can be solved automatically by machine learning approaches 
(Cortes and Vapnik, 1995) when provided with sufficient training data. Of particular relevance are 
support vector machines (SVMs) that have been used to classify cell types based on geometrical 
features of plant cells (de Reuille and Ragni, 2017; Sankar et al., 2014). MorphoGraphX provides 
a simple interface to the libSVM SVM library (Chang and Lin, 2011). Cells can be selected and clas-
sified into different cell types for use as training data (Figure  4H, Video  2). Any cell attribute or 
measure that can be quantified in MorphoGraphX can be used by the classifier. These include all the 
morphological and gene expression measures, time- lapse measures, positional information created 
via distance maps or other coordinate systems, and even custom measures created via plug- ins or 
calculated externally with R or MATLAB. Once trained on a small group of cells with the desired 
measures, the classifier can be used to classify all the cells in a sample (Figure 4H). After manual 
curation, the classification can then be used as additional training data, improving the power of the 
classifier. Figure 4G and H and Figure 4—figure supplement 1F and G show the cell types of the 
Arabidopsis gynoecium, which consists of the lateral valve tissues that are fused to the replum. Within 
the valve, stomata are homogeneously distributed, consistent with the uniform growth and differen-
tiation of this tissue. In contrast, no stomata cells can be found within the replum, which is made up 
of smaller, more homogenously sized cells. Cell typing this organ can be useful to identify the region 
of the valve margin, where the fully matured fruit will dehisce to release the seeds (Eldridge et al., 
2016; Ripoll et al., 2019).

Mapping positional information through time
In the analysis of morphogenesis, many key quantifications such as growth depend on the ability 
to track samples through time. In MorphoGraphX, this can be done following cell segmentation by 
manually assigning parent labels to the second time point, a process that has been highly stream-
lined in the user interface for 2.5D surfaces. However for full 3D samples, or large 2.5D samples with 
multiple time points, this method can be cumbersome. One method to address this problem is to 
find a nonlinear coordinate transformation or deformation that maps all the points from one time 
point onto the next. Parent labeling can then be determined by mapping cell centers of the later time 
point to an earlier one, allowing the cell they came from to be identified. This can be used to directly 
assign lineage or to seed algorithms that use more involved methods, such as the minimization of the 
total distances between the mapped cells (Fernandez et al., 2010). In MorphoGraphX, to define a 
mapping between the meshes of two successive time points (Figure 6A), we have implemented a 3D 
deformation function based on scattered data point interpolation (using cubic radial- basis functions; 
Duchon, 1977; Turk and O’Brien, 1999). An initial transformation is computed based on a few preas-
signed landmarks by matching several cells with their parents in the previous time point (Figure 6C). 
A deformation field is then calculated that provides a mapping for all points in 3D. This is then used 
to assign parent labels in the second time point based on their closest match in the previous time 
point. Close to the landmark points, this mapping will be very accurate, with accuracy decreasing with 
distance from the landmarks. The decrease in accuracy away from landmarks is larger if the deforma-
tion between the time points is highly nonuniform. After assigning all the cells to their closest parent, 
the mapping is then verified by checking the correspondence of neighborhoods between each cell 
and its parent. The labeling for cells that do not match is cleared, and the process is repeated. This 
causes correctly labeled regions to ‘grow’ out from the initially placed landmarks until the entire 

in 3D. (D) Heat map of cell volume and the tensor of the three principal cell axes obtained from a principal component analysis on the segmented stack. 
(E) Bezier directions and associated cell length. (F) Directions perpendicular to the surface and associated cell depth. (G) Plots of the various cellular 
parameters relative to the Bezier coordinate. A few small cells at the distal tip of the integuments were removed from the analysis. Scale bars: 20 μm. 
See also user guide Chapters 21–24 and tutorial video S3 available at https://doi.org/10.5061/dryad.m905qfv1r.

Figure 5 continued

https://doi.org/10.7554/eLife.72601
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Table 1. Measures for cells segmented on surface projections (2.5D).

Measure Unit Description

Geometry

Area µm2 Area of the cell (sum of its triangle 
area)

Aspect ratio - Ratio of length major axis and length 
minor axis (see below)

Average radius µm Average distance from the center of 
gravity of a cell to its border

Junction distance µm Max or min distance between 
neighboring junctions of a cell

Length major axis µm Length of the major axis of the 2D 
shape analysis (computes a PCA on 
the triangle positions weighted by 
their area)

Length minor axis µm Length of the minor axis of the 2D 
shape analysis (computes a PCA on 
the triangle positions weighted by 
their area)

Maximum radius µm Maximum distance from the cell center 
to its border

Minimum radius µm Minimum distance from the cell center 
to its border

Perimeter µm Sum of the length of the border 
segments of a cell

Lobeyness

Circularity - Perimeter^2/(4*PI*Area)

Lobeyness - Ratio of cell perimeter to convex hull 
perimeter
(1 for convex shapes)

Rectangularity - Ratio of cell area to the area of the 
smallest rectangle that can contain 
the cell
(1 for rectangular shapes, lower values 
for irregular shapes)

Solidarity - Ratio of the convex hull area to the 
cell area
(1 for convex shapes, higher values for 
complicated shapes)

Visibility pavement - 1-(visibility stomata) (see below)

Visibility stomata - Estimate of visibility in the cell
1 for convex shapes, decreases with 
the complexity of the contour

Location

Bezier coord µm Associated Bezier coordinate of a cell
Requires a Bezier grid

Bezier line coord µm Associated Bezier coordinate of a cell
Requires a Bezier curve

Cell coordinate µm Cartesian coordinate of a cell

Cell distance µm/cells Distance to the nearest selected cell 
(finds the shortest path to a selected 
cell through the cell connectivity 
graph, edge weights: Euclidean, cell 
number or 1/wall area)

Table 1 continued on next page

https://doi.org/10.7554/eLife.72601
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sample is correctly labeled (Figure 6C, Video 3). At each step, only correctly labeled cells remain. 
Sometimes the iterative cell labeling process can get stuck in highly proliferative areas where cells 
have divided repeatedly between time points. In this case, a few additional landmarks can be manu-
ally added at trouble spots. One significant advantage of the method is that incorrect cells remain 
unlabeled, making manual curation straightforward. Once all of the parents are assigned and have 
passed the neighborhood correspondence check, one can be assured that both the lineage and the 
underlying segmentations are correct.

Deformation functions can also be used to create animations of organ development from 2.5D or 
3D time- lapse data. This requires two or more time points of a segmented mesh with corresponding 
cell lineages. The cell centers and/or junctions are used as the landmarks defining the deformation 
function that maps one mesh onto the other. Interpolating mesh vertices between stages creates 

Measure Unit Description

Distance to Bezier µm Euclidean distance to the Bezier curve 
or grid

Distance to mesh µm Euclidean distance to the nearest 
vertex in the other mesh

Major axis theta ° Angle between the long axis of the cell 
and a reference direction

Polar coord °/µm Polar coordinate around a specified 
Cartesian axis

Network

Neighbors Count Number of neighbors of a cell

Betweenness centrality - Computes the betweenness centrality 
of the cell connectivity graph
Edges can be weighted by the 
length of the shared wall between 
neighboring cells

Betweenness current flow - Computes the betweenness current 
flow of the cell connectivity graph
Edges can be weighted by the 
length of the shared wall between 
neighboring cells

Signal

Signal border Average amount of border signal in 
a cell

Signal interior Average amount of interior signal in 
a cell

Signal parameters Advanced and general process that 
allows the setting of parameters to 
compute different kinds of signal 
quantifications

Signal total Average amount of total (=border + 
interior) signal in a cell

Other measure processes

Mesh/lineage tracking/heat map 
proliferation

Cells Proliferation

Mesh/cell axis/custom/custom direction 
angle

° Angle between a cell axis and a 
custom axis

Mesh/division analysis/compute division 
plane angles

° Angle between division planes and/or 
cell axes

PCA: principal component analysis.

Table 1 continued

https://doi.org/10.7554/eLife.72601
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a smooth animation with as many intermediary steps as desired (Figure 6—figure supplement 1, 
Video 4). MorphoGraphX has a user- friendly pipeline to record animations directly from the GUI with 
options to adjust the camera angle and visualize cell lineages, heat maps, and cell outlines during the 
animation. Temporal smoothing of morphing animations created from more than two time points is 
achieved using Catmull–Rom splines to interpolate the position of mesh vertices over time (Catmull 
and Rom, 1974). Heat and signal values in the mesh, such as cell area, growth rates, or gene expres-
sion, can also be interpolated along with vertex positions.

In large cells, growth can vary significantly within the same cell (Armour et al., 2015; Elsner et al., 
2018). As the deformation function provides a smooth mapping between time points, its gradient 

Table 2. Measures for meshes with volumetric (3D) cells.

Measure Unit Description

Cell atlas

Cell length (circumferential, radial, 
longitudinal)

µm Cell length as determined by 3D Cell 
Atlas root (shoot rays from the cell 
center to the side walls to measure cell 
size along organ- centric directions)

Coord (circumferential, radial, 
longitudinal)

3D organ coordinates as determined 
by 3D Cell Atlas root

Geometry

Cell length (custom, X, Y, Z) µm Cell length along the specified 
direction (cell size is measured as in 3D 
Cell Atlas root [see above])

Cell wall area µm2 Total area of the cell wall

Cell volume µm3 Volume of the cell

Outside wall area µm2 Cell wall area that is not shared with 
another neighboring cell

Outside wall area ratio % Proportion of cell wall area that is not 
shared with a neighbor cell

Location

Bezier coord µm Associated Bezier coordinate of a cell
Requires a Bezier curve or grid

Cell coordinate µm Cartesian coordinate of a cell

Cell distance µm/cells Distance to the nearest selected cell 
(finds the shortest path to a selected 
cell through the cell connectivity 
graph, edge weights: Euclidean, cell 
number or 1/wall area)

Distance to Bezier µm Euclidean distance to the Bezier curve 
or grid

Mesh distance µm Euclidean distance to the nearest 
vertex in the other mesh

Network

Neighbors Count Number of neighbors of a cell

Betweenness centrality - Computes the betweenness centrality 
of the cell connectivity graph
Edges can be weighted by the 
length of the shared wall between 
neighboring cells

Betweenness current flow - Computes the betweenness current 
flow of the cell connectivity graph
Edges can be weighted by the 
length of the shared wall between 
neighboring cells

https://doi.org/10.7554/eLife.72601
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can be used to create a continuous growth map at 
any point on a mesh. This enables the approxima-
tion of areal expansion and PDGs at a subcellular 
level, where the quality of the approximation is 
limited by the number and placement of land-
marks (junctions). It is also possible to apply the 
process to subcellular landmarks, such as those 
obtained by tracking microbeads, as done previ-
ously for 2D images (Armour et al., 2015; Elsner 
et  al., 2018). Our 3D implementation of this 
method has been used to compute growth direc-
tions on curved surface meshes (Figure 6E) and 
volumetric meshes (Figure 7I).

A comparison of the areal growth and PDGs 
calculated with deformation functions vs. the 
cell- based method is shown in Figure 6D and E. 
The deformation function captures differences in 
growth within single cells, as is often apparent in 
larger cells that straddle areas of fast and slow 

growth. Figure 7A–I shows a 3D time lapse of the Arabidopsis root where the deformation func-
tions have been used to perform lineage tracking in 3D. It can be seen in Figure 7D that the four 
tissue types – epidermis, cortex, endodermis, and pericyle – all show a similar pattern of cell volume 
increase, with slow growth in the meristem and faster growth near the transition zone, which can also 
be seen when displayed as a function of the distance from the root tip (Figure 7E). Most of the volume 
growth occurs along the longitudinal direction and is reflected by the increase in cell length, which is 
highly synchronized due to the physical connections of the cell layers (Figure 7F). Growth along width 
and depth directions is less synchronized, but much smaller than the length increase, reflecting the 
strong anisotropic growth of this system (Fridman et al., 2021).

Advanced geometric analysis
In addition to tools for creating organ coordinates and deformation functions, we have implemented 
a range of additional new processes in MorphoGraphX 2.0 for advanced image analysis.

3D lineage tracking and growth analysis
While MorphoGraphX was created to work with 2.5D surface projections, it now supports a complete 
set of tools for full 3D image processing, and in many samples advantages can be gained from 
combining both techniques. One example is automated cell lineage tracking, originally implemented 
for surfaces, which has now been extended to facilitate growth analysis in full 3D. Lineage tracking in 
3D is a much harder task than on 2.5D surface images as 3D cellular meshes lack the cellular junctions 
that serve as material points for surfaces. However, in many cases, entire organs are well defined by 
their surfaces meshes, allowing landmarks on the surface to be used to construct a 3D deformation 
function to aid lineage tracking in full 3D. Surface landmarks can also be combined with 3D cell 
centers and/or face centers as material points to improve the internal resolution of the deformation 
functions for full 3D samples. These techniques allow the methods used to calculate growth rates and 
PDGs in 2.5D to be extended to full 3D (Figure 7; Fridman et al., 2021). Cell proliferation and most 
of the other measures can also be quantified from 3D time- lapse data (Figure 7—figure supplement 
1). In addition to the automated tools, improved manual 3D parent labeling and the ability to relabel 
cells so that adjacent cells are always a different color aid in the manual curation of 3D lineage maps.

Cell division analysis
One of the more advanced quantifications from time- lapse data is the analysis of cell divisions. As 
plant cells cannot move, cell division and growth are the main determinants of morphogenesis. 
MorphoGraphX has processes to identify dividing cells from time- lapse data and quantify the orienta-
tion of the division wall in both 2.5D and 3D (Figure 8A–I, Figure 8—figure supplement 1). In 2.5D, 
the best- fit line to the division wall is calculated (Figure 8A and D), whereas in 3D the best- fit plane 

Video 2. Cell- type classification using support vector 
machines (SVMs). A selection of measures is calculated 
on a segmented mesh from an Arabidopsis gynoecium. 
A sampling of cells are then are labeled by hand and 
used as training data. The cell type for the rest of the 
cells is then predicted automatically.

https://elifesciences.org/articles/72601/figures#video2

https://doi.org/10.7554/eLife.72601
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Figure 6. Deformation functions in MorphoGraphX. (A) Deformation functions allow a direct mapping of arbitrary points (blue) between two meshes. 
They require the definition of common landmarks (red stars). (B, C) Semi- automatic parent labeling using deformation functions. (B) Two consecutive 
time points of an A. thaliana leaf primordium segmented into cells. (C) The automatic parent labeling function requires the definition of a few manually 
labeled cells as initial landmarks. From this sparse correspondence, a mapping between the meshes can be created and new cell associations between 
the two meshes are added and checked for plausibility. With more cells found, the mapping between the meshes is improved for the next iteration. (D, 
E) Comparison of the classic principal directions of growth (PDGs) in (D) with the gradient of a deformation function computed using the cell junctions 
from a complete cell lineage in (E) on an A. thaliana sepal. The classic PDGs compute a deformation for each cell individually and are shown with a heat 
map of areal extension for each cell. In contrast, the deformation function is a continuous function on the entire mesh. Here, heat values are derived by 
multiplying the amount of max and min growth. Using the deformation function gradient subcellular growth patterns that were previously hidden are 

Figure 6 continued on next page
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is used (Figure 8B, C and G). There are also measures to determine the asymmetry of the daughter 
cells. The use of positional information to give organ context is especially important for directional 
information, such as the orientation of cell division. Quantifying the orientation of the division plane is 
of little use without knowing how it relates to the developmental axes. Orientations can be computed 
with respect to the axes of a local coordinate system defined for the organ, along with its associated 
positional information (Figure  8E and I, Figure  8—figure supplement 1A). It is also possible to 
quantify how close cell divisions are to common division rules proposed in the literature, such as the 
shortest wall through the center of the cell including local minima (Figure 8H; Besson and Dumais, 
2011; Yoshida et al., 2014; Vaddepalli et al., 2021) along the PDG (Hejnowicz, 2014), or rules based 
on network measures (Jackson et al., 2019).

Cell connectivity networks
The organization of cells in organs may be analyzed through the extraction of cell connectivity 
networks from 2.5D or 3D segmented data. The physical associations between cells (cell- cell wall 
areas) can be extracted and converted into networks where they are analyzed using network measures 
(Figure 8J–K). Local measures such as the number of immediate neighbors (degree) can be calculated, 
along with more global measures, such as betweenness centrality based on the number of shortest 
paths cells lie upon, or random walk centrality (Figure 8K). These global measures are central to 
understanding how information flows within tissues (Jackson et al., 2017; Jackson et al., 2019). The 
use of these measures uncovered the presence of a global property in cellular organization within the 
Arabidopsis shoot apical meristem (SAM) (Jackson et al., 2019). Namely, the length of paths between 
cells is maximized, whereby cells that lie upon more shortest paths have a great propensity to divide, 
and the orientation of this division tends to leave the two daughter cells on the fewest number of 
shortest paths. Using this approach, the local geometric properties of cells can be related to the emer-
gent global organization of cellular arrangements. Perturbation of cell shape in the katanin1 mutant 
led to alterations in path length in the SAM, which correlated with defects in phyllotaxis (Jackson 
et al., 2019).

Cell polarity
Cellular signals, such as proteins tagged with fluorescent reporters, can also be quantified in Morpho-
GraphX. After segmenting a surface into cells by using a cell wall stain or marker line, a signal collected 

in a second channel can be projected onto the 
surface mesh, and the abundance, orientation, 

revealed, such as differential growth within a single giant cell. Scale bars: (B, D, E) 50 μm; (C and zoomed regions in D and E) 20 μm. See also user guide 
Chapter 17 ‘Mesh deformation and growth animation’ and tutorial videos S1 and S2 available at https://doi.org/10.5061/dryad.m905qfv1r.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Deformation functions allow the interpolation of intermediate steps that can be turned into a continuous sequence or animation.

Figure 6 continued

Video 3. Semi- automatic cell lineage tracking. A 
few cells from two time points from a time lapse of 
Marchantia are matched by hand. The other cells can 
then be determined automatically. Trouble spots can 
be overcome by selecting a few more cells by hand and 
continuing the process.

https://elifesciences.org/articles/72601/figures#video3

Video 4. Animating time- lapse data with deformation 
functions. A time lapse of Marchantia is used to 
demonstrate how deformation functions can be used to 
animate growth. Cells are colored by areal growth rate.

https://elifesciences.org/articles/72601/figures#video4

https://doi.org/10.7554/eLife.72601
https://doi.org/10.5061/dryad.m905qfv1r
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and polarity of signals can be computed. Examples are the PIN- FORMED (PIN) auxin transporter 
report line (Benková et al., 2003) or the GFP:MBD (Van Bruaene et al., 2004) line that tags micro-
tubules (MTs) (Figure 8L–N, Figure 8—figure supplement 2). For the quantification of cell polarity, 
MorphoGraphX implements a process where the projected signal along the cell border is binned 
based on its position in relation to the cell center to obtain its predominant direction and its intensity. 
Figure 8L shows an example of the PIN1 polarity quantification at the cell wall of surface segmented 
cells in the SAM. A similar quantification can be performed for 3D meshes as shown in Figure 8N 
and Figure 8—figure supplement 2A and B, where we computed the PIN2 polarity in epidermis 
and cortex cells of an Arabidopsis root. Again, this directional information can be combined with the 

Figure 7. Time- lapse analysis and visualization of 3D meshes. (A) Cross section of the confocal stack of the first time point of a live imaged A. thaliana 
root. (B, C) The 3D segmentations of two time points imaged 6 hr apart. Shown are the cell lineages that were generated using the semi- automatic 
procedure following a manual correction. (D) Exploded view of the second time point with cells separated by cell types (see also Figure 4D). Cells are 
heat colored by their volume increase between the two time points. (E–H) Quantification of cellular growth along different directions within the organ. 
(E) Plot of the heat map data of (D). The cellular data was binned based on the distance of cells from the quiescent center (QC). Shown are mean values 
and standard deviations per bin. (F–H) Similarly binned data plots of the change in cell length (F), width (G), and depth (H). It can be seen that the 
majority of growth results from an increase in cell length. See Figure 7—figure supplement 1 for a detailed analysis of the cells in the endodermis. 
(I) Different ways to visualize 3D growth demonstrated using a single cortex cell: principal directions of growth (PDGs) averaged over the entire cell 
volume (left), PDGs averaged over the cell walls projected onto the walls (top right), and subcellular vertex- level PDGs projected onto the cell walls 
(bottom right). Scale bars: (A–D) 20 μm; (I) 5 μm. See also user guide Chapter 21 ‘Mesh 3D analysis and quantification’ and tutorial videos S6 and S7 
available at https://doi.org/10.5061/dryad.m905qfv1r.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Time- lapse analysis of cellular geometry in the A. thaliana root endodermis.

https://doi.org/10.7554/eLife.72601
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Figure 8. Advanced data analysis and visualization tools. (A) Division analysis of a cell from a surface segmentation of an A. thaliana sepal. A planar 
approximation of the actual plane is shown in red and other potential division planes in white/blue. The actual wall is very close to the globally shortest 
plane. (B, C) Top and side views of a recently divided 3D segmented cell. The daughter cells are colored yellow and cyan. The red circle depicts the flat 
approximation plane of the actual division wall. The two white rings depict the two smallest area division planes found by simulating divisions through 
the cell centroid of the mother cell (i.e., the combined daughter cells). (D) Visualization of the actual planes (white lines) between cells that divided into 
two daughter cells in the A. thaliana sepal. (E) Density distribution and median (dashed line) of the angle between the division plane and the primary 
organ axis in sepal (see D) and root (see Figure 8—figure supplement 1A). The division in sepals is less aligned with the organ axis. (F) Half of an A. 
thaliana wildtype embryo in the 16- cell stage. This view shows that the divisions leading to this stage are precisely regulated to form two distinct layers 
in the embryo. (G) A visualization of the actual planes (red circles) and the shortest planes (white circles) in the wild type. Cells are colored according 
to the label of the mother cells. (H, I) Violin plots of quantifications of the planes show that the wild type does not follow the shortest wall rule unlike 
the auxin- insensitive- inducible bdl line RPS5A>>bdl. The bdl divisions are almost orthogonal to the organ surface (see Figure 8—figure supplement 
1B, D, E), whereas the wild type divides parallel to the surface. Consequently, the bdl fails to form a distinct inner layer. (J, K) Cellular connectivity 
network analysis. (J) Cell connectivity network analysis on a young A. thaliana leaf. Cells are heat colored based on the number of neighbors, edges 
in the cell connectivity graph are shown in black. (K) Heat map of betweenness centrality. The betweenness reveals pathways that might be of 
importance for information flow, potentially via the transport of auxin. (L–N) Cell- based signal analysis. (L) Analysis of cell polarization on a surface mesh. 

Figure 8 continued on next page

https://doi.org/10.7554/eLife.72601
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organ coordinates to compute the angle between cell polarity and the organ axis (Figure 8—figure 
supplement 2C). Another example is the quantification of MT alignment using our implementation of 
FibrilTool (Boudaoud et al., 2014) that has been adapted for processing on surfaces. After projecting 
the MT signal onto the surface, the alignment direction and strength of the signal can be quantified 
at the subcellular level (Figure 8M) or for entire cells (Figure 8—figure supplement 2E). Again, this 
information can be interpreted using organ coordinates as we demonstrate on cells of a SAM that 
tend to have their MTs aligned circumferentially from the meristem center (Figure 8—figure supple-
ment 2E,F).

3D visualization and interactive tools
MorphoGraphX has a flexible rendering engine that can handle meshes containing millions of trian-
gles. It supports the independent rotation and translation of different stacks and meshes in the same 
world space and the ability to render both voxel and geometric data together with blending and 
transparency. It has adjustable clipping plane pairs and a bendable Bezier cutting surface that can 
be used to look inside 3D samples, and an interface to support the creation of animations (Video 5). 
However, visualizing and interacting with 3D data on a 2D computer screen still remains a challenge. A 
particular problem is the validation and correction of 3D segmentations of organs as internal cells are 
obscured by outer layers. 3D segmentation curation and correction is a bottleneck when developing 
training sets for deep learning tools, and MorphoGraphX has become a useful tool for this purpose 
(Wolny et al., 2020). In addition to clipping planes, exploded views are a commonly used method 
to visualize the internal structure of multicomponent 3D objects (Li et al., 2008), which can be used 
on mesh data in MorphoGraphX. These are particularly useful for visualizing the internal structure of 
entire organs with small cell numbers such as embryos (Figure 8—figure supplement 1C) and can 
be used in combination with multiple clipping planes for larger samples. To add biological meaning 
to the exploded visualization, cells can be bundled by their parent or cell- type label to visualize key 
aspects of biological data sets such as cell divisions or to separate organs into cell layers or by cell type 
(Figure 7D, Figure 8—figure supplement 1C). Furthermore, cells sharing the same cell- type label 
can be easily manually selected, moved, or deleted for improved visualization of specific tissues and 
groups of cells. These processes can also aid user interactions, making cell selection and annotation 
more straightforward when users are curating 3D cellular segmentations and lineage maps.

In addition to mesh editing tools, Morpho-
GraphX has several tools to edit voxel data. The 

(M) Microtubule signal analysis on a surface mesh. (N) Top and side views of a cell polarization analysis on a volumetric mesh (root epidermis PIN2, see 
Figure 8—figure supplement 2A–D for details). Scale bars: (A, B, C, L, M) 2 μm; (D) 50 μm; (F, G, J, N) 5 μm; (K) 100 μm. See also user guide Chapter 
25 ‘Cell division analysis.’, Chapter 18 'Quantifying signal orientation', and Chapter 21.7 'Signal orientation for 3D meshes'.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Details of the cell division analysis examples from Figure 8.

Figure supplement 2. Example analyses of cell polarity and microtubule signals of the data shown in Figure 8M and N.

Figure 8 continued

Video 5. Creating an animation. Key frames are saved 
and used to provide steps for an animation that can 
then be played back.

https://elifesciences.org/articles/72601/figures#video5

Video 6. Convolutional neural network (CNN) cell wall 
prediction and segmentation. Using an Arabidopsis 
flower meristem, a CNN is first used to improve the cell 
wall signal. The meristem is then segmented into cells, 
and a 3D mesh created.

https://elifesciences.org/articles/72601/figures#video6

https://doi.org/10.7554/eLife.72601
https://elifesciences.org/articles/72601/figures#video5
https://elifesciences.org/articles/72601/figures#video6
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simplest is an eraser tool that can be used to 
remove portions of the stack that would other-
wise interfere with processing. An example is 
the digital deletion of the peripodial membrane 
overlying the Drosophila wing disc, which needs 
to be removed to allow for the extraction of the 
organ’s surface (Aegerter- Wilmsen et al., 2012). 
A typical workflow for 3D segmentation starts 
with a 3D image of a cell boundary marker. This 
is then preprocessed with operations such as 
blurring to reduce noise or background removal 
filters, before segmentation with algorithms such 
as the Insight Toolkit’s (ITK) Morphological Water-
shed filter (https://www.itk.org). More recently, 
deep learning methods with CNNs have been 
developed to predict cell boundaries, such as 
the 3D U- Net model (Çiçek et  al., 2016; Ourselin et  al., 2016), that can improve the stacks for 
downstream segmentation. The modular structure of MorphoGraphX has allowed us to interface an 
implementation of the 3D U- Net model developed by Eschweiler et al., 2019. This enables the inter-
active use of the CNN boundary prediction tool from within MorphoGraphX (Video 6) and simplifies 
experimentation with different networks or downstream segmentation strategies. Several networks 
are currently implemented (Eschweiler et al., 2019; Eschweiler et al., 2021; Wolny et al., 2020), 
although the add- on should work with any libtorch traced model. It also avoids the requirement to set 
up a full Python environment and comes stand- alone as a package built for the most common nVidia 
GPU architecture.

Once data is segmented, it often requires some manual correction before it is ready for final analysis 
in a chosen coordinate system. MorphoGraphX has interactive tools that operate on voxel data both 
to combine and split labels (cells), although typically it is easier to oversegment and combine, rather 
than undersegment and split (Video 6). This can be used to correct segmentations, which can then be 
used to help train deep learning networks to further improve automatic segmentation (Vijayan et al., 
2021). In this context, MorphoGraphX has been used to segment and curate Arabidopsis ovule data 
to create ground truth for confocal prediction networks (Wolny et al., 2020).

Software design
The internal architecture of MorphoGraphX has been designed to make it easily extendable, while 
retaining the speed of the fully compiled, statically typed language C++. The relatively small visualiza-
tion and data management core is augmented with processes that are loaded dynamically at startup 
and provide almost all of the software’s functionality. MorphoGraphX has grown to provide a wealth 
of custom processes for 2.5D and 3D image processing and coordinate system creation. Additionally, 
it has become a platform to integrate published tools and methods that have no visual interface to the 
data of their own, which increases their accessibility and ease of exploration for biologists. Examples 
include the previously mentioned deep learning tools and the processes that interface to the Insight 
Toolkit (ITK) C++ image processing libraries. This greatly reduces the learning curve required to use 
ITK tools, such as the popular Morphological Watershed filter, which can be run from MorphoGraphX 
with a click of the mouse. For more advanced ITK pipelines, we have recently integrated an open- 
source tool that provides an XML Pipeline Wrapper for the Insight Toolkit (XPIWIT) that allows the 
development of ITK image processing pipelines interactively without any C++ programming required 
(Bartschat et al., 2016). These pipelines can be packaged into processes and called directly from 
the MorphoGraphX GUI, allowing the easy exploration of complex ITK image processing pipelines. 
An example is the ‘Threshold of weighted intensity and seed- normal gradient dot product image’ 
(TWANG) pipeline (Stegmaier et  al., 2014), a fast parallel algorithm for nuclear segmentation. A 
selection of pipelines along with the XPIWIT software is bundled as an add- on for MorphoGraphX and 
requires no additional installation.

Another example of software integration with popular open- source tools is the processes we have 
developed to interface with R (Video 7) that provide plots for basic statistical analysis on attributes 

Video 7. Calling R from MorphoGraphX. A time lapse 
of an Arabidopsis leaf is used to demonstrate how to 
create heat map data for analysis and plotting in R.

https://elifesciences.org/articles/72601/figures#video7

https://doi.org/10.7554/eLife.72601
https://www.itk.org
https://elifesciences.org/articles/72601/figures#video7
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created in MorphoGraphX, including positional information provided by organ- centric coordinate 
systems. This simplifies the creation of the most commonly used plots without the need for export 
files and the mastery of ggplot. In addition to directly linking to C++ libraries, MorphoGraphX can be 
scripted with Python, allowing repetitive functions to be performed in batch, and the possibility to 
integrate Python- based tools. Operations interactively performed in MorphoGraphX are written to a 
Python log file for reproducibility and logging, and to allow easy cut- paste script creation.

Since its inception, a major focus of MorphoGraphX has been in the creation, manipulation, and 
visualization of geometry in the form of surface meshes for 2.5D and full 3D cellular meshes. This is in 
addition to the 3D voxel source data from microscopy images. There is currently very little software 
available that can handle both and enable the interaction between the two. Most image processing 
software work only with voxels, whereas most computer graphics, animation, and engineering soft-
ware deal only with meshes. If the goal is simply to segment 2D or 3D cells, there are many options 
available, for example, Fiji (Schindelin et al., 2012) or ilastik (Berg et al., 2019). If the processing 
of surface projections is required, advanced geometrical quantification like cell division analysis, or 
annotation with custom designed coordinate systems, then MorphoGraphX should be considered.

Conclusion
Similar to sequencing data, geometric data on the shape and sizes of hundreds or thousands of cells 
is of limited value without annotation. For many developmental questions, the spatial context for 
information on cell shape, division, and gene expression is paramount. However, it is not enough to 
know the 3D position of cells, but rather their position in a coordinate system relative to the devel-
oping tissue or organism. These coordinates typically reflect the developmental axes of the organism 
or tissue, allowing the direct comparison of cell and organ shape changes with the gene expression 
controlling their morphology. In addition to putting data in a mechanistic context, organ- centric rela-
tive coordinates can be used to compare samples with different morphologies (Thompson, 1942), 
such as different mutants, or even in different species (Kierzkowski et al., 2019). This also applies 
to changes in morphology over time, where organ coordinate systems can be used to determine the 
correspondence between cells at different stages of development. Several tools have been published 
that successfully harness organ- centric coordinates for specific problems, for example, in roots and 
hypocotyls (Montenegro- Johnson et al., 2015; Schmidt et al., 2014), the shoot apex (Montenegro- 
Johnson et al., 2019), and the Arabidopsis ovule and similar shaped organs (Vijayan et al., 2022). 
MorphoGraphX provides a generalized framework to create such tools by enabling the development 
of coordinate systems customized to the particular organ or organism of interest. Possibilities vary 
from simple distance- based systems to analyze leaf growth on surfaces from time- lapse images (Kierz-
kowski et al., 2019) to more involved methods for more complex organs in full 3D from fixed samples 
(Vijayan et al., 2021).

MorphoGraphX is unique in that it is the only software that we are aware of that allows image 
processing on surface meshes, which we informally refer to as 2.5D image processing. These meshes 
are most often created from 3D confocal images of a cell boundary signal. Images obtained from 
the microscope in proprietary formats are typically loaded into Fiji or ImageJ with BioFormats/LOCI- 
Tools (Linkert et al., 2010) , and then converted to TIFF for import into MorphoGraphX. Denoising of 
images and other preprocessing can be performed before import; however, most common prepro-
cessing steps are now available directly in MorphoGraphX. Although originally targeted at 2.5D 
image processing, the necessity to handle full 3D image processing has meant that it has become 
convenient to implement a wide array of processing filters for full 3D in MorphoGraphX, many of 
which are GPU accelerated. The number of processes available in MorphoGraphX has swelled to over 
540 in the current version compared to just over 160 in the previously published version (Barbier de 
Reuille et al., 2015) . This includes a comprehensive toolkit for cell shape analysis, growth tracking, 
cell division analysis, and the quantification of polarity markers, both on 2.5D image meshes, and 
for full 3D. All of these measures can be calculated and stored within the mesh, or exported to files 
for further processing with other software. Custom measures can also be calculated and imported 
for visualization within MorphoGraphX. Cell shape measures in combination with positional informa-
tion provide a powerful framework for cell- type classification, both with machine learning methods 
(Figure 4G and H) and clustering techniques (Montenegro- Johnson et al., 2019) . Although organ- 
centric positional information provides important features for cell classification, it is unavailable in 

https://doi.org/10.7554/eLife.72601
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most machine learning cell classification software that typically can only deal with voxel information 
and limited annotation.

A key strength of MorphoGraphX is that it offers both manual and automatic tools for segmenta-
tion, lineage tracking, and data analysis. Although fully automated methods are improving, streamlined 
methods for manual and semi- automatic segmentation and analysis provide a path to completion for 
many samples where the automatic methods are ‘almost’ good enough. For example, the automatic 
lineage tracking now available in MorphoGraphX benefits from the streamlined tools we developed 
previously to do the process manually as these are now used to correct and fill in missing portions 
when the automatic segmentation is incomplete. This reflects the interactive nature of MorphoGraphX 
and its focus on low- throughput but high- quality datasets.

As more and more imaging datasets are becoming available for community use, their annotation 
with positional information and gene expression data will be critical to help understand how the cell- 
level action of different genes and genetic networks is translated into the 3D forms of tissues and 
organs of different species (https://www.plantcellatlas.org). In this context, MorphoGraphX provides 
a tool set to help maximize the attainable information from these datasets in an accessible platform 
tailored to the experimental biologist.

Materials and methods
Software availability
MorphoGraphX is open- source software and runs on Linux and Windows. Binaries and source code 
can be downloaded from: https://www.MorphoGraphX.org/software.

There are binaries available for recent versions of Ubuntu, as well as Windows. We recommend 
Linux as some add- ons are not available for Windows. For Linux, we provide a Cuda version for 
machines with a compatible nVidia graphics card and a non- Cuda version for those without. Currently 
there is only a non- Cuda version for Windows. Although there is no Mac version, some have had 
success running it in a virtual machine.

Support for the software can be found on the Help page of the MorphoGraphX website and the 
MorphoGraphX user forum on  forum. image. sc.

With the growing number of processes in MorphoGraphX, the complexity of the software has 
increased. We aim to provide novel users with sufficient documentation to do their first steps in 
MorphoGraphX. We previously published a detailed guide on how to generate cellular segmentations 
and do basic quantifications as shown in Figure 1 (Strauss et al., 2019). MorphoGraphX 2.0 also 
comes with an extended manual that contains step- by- step guides for all workflows presented in this 
article (Table 3).

Data acquisition
Arabidopsis flower meristem (Figure 1)
pUBQ10::acyl:TDT (Segonzac et  al., 2012) and DR5v2::n3eGFP (Liao et  al., 2015) were crossed. 
F3 double homozygote line was used for imaging. Floral meristems were dissected from 2- week- old 
plants grown on soil under the long- day condition (16 hr light/8 hr dark), at 20°C ± 2°C using injection 
needle. Dissected samples were cultivated in 1/2 Murashige and Skoog medium with 1% sucrose 
supplemented with 0.1% plant protective medium under the long- day condition (16 hr light/8 hr dark), 
at 20°C ± 2°C. Confocal imaging was performed with Zeiss LSM800 with a 40× long- distance water 
immersion objective (1 NA, Apochromat). Excitation was performed using a diode laser with 488 nm 
for GFP and 561 nm for TDT. Signal was collected at 500–550 and 600–660 nm, respectively. Images 
of three replicates were obtained every 24 hr for 4 days.

Arabidopsis ovule (Figure 5A–F, Figure 1—figure supplement 1)
Data previously published in Vijayan et al., 2021.

https://doi.org/10.7554/eLife.72601
https://www.plantcellatlas.org
https://www.MorphoGraphX.org/software
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Arabidopsis root (Figure 2A, Figure 4B and D, Figure 4—figure supple-
ment 1A and C, Figure 7A–D and I, Figure 7—figure supplement 1A–D, 
Figure 8—figure supplement 1A)
Root imaging
pUBIQ10::H2B- RFP pUBQ10::YFP- PIP1;4 was described previously (von Wangenheim et al., 2016). 
The seeds were stratified for 1 day at 4°C, grown on 1/2 Murashige and Skoog medium with 1% sucrose 
under the long- day condition (16 hr light/8 hr dark) at 20°C ± 2°C. Confocal imaging was performed 
with Zeiss LSM780 with two- photon laser (excitation 960 nm) with a band pass filter 500/550 nm for 
YFP. Images of three replicates were obtained.

Arabidopsis mature embryo (Figure 2C)
A. thaliana Col- 0 seeds were sterilized in 70% ethanol with Tween20 for 2 min, replaced with 95% 
ethanol for 1 min and left until dry. Seeds were placed on the Petri plates containing 1/2 MS medium 
including vitamins (at pH 5.6) with 1.5% agar and stratified at 4°C for 3 days in darkness. Next, seeds 
were imbibed for 3 hr, and the mature seed embryo was isolated from the seed coat. For live imaging, 
the embryos were stained with propidium iodide 0.1% (Sigma- Aldrich) for 3  minutes and imaged 
with Leica SP8 laser scanning confocal microscope with a water immersion objective (×20). Excitation 
wavelengths and emission windows were 535 nm and 617 nm. Confocal stacks were acquired at 1024 
× 1024 resolution, with 0.5 μm distance in Z- dimension. Images were acquired at 48 hr intervals and 
samples were kept in a growth chamber under long- day condition (22°C, with 16 hr of light per day) 
between imaging.

Marchantia time lapse (Video 3)
Marchantia polymorpha gemmaling Cam- 1 PM::GFP reporter line (Boehm et al., 2017) were trans-
ferred on a Petri plate containing 1/2 Gamborg’s B5 medium including vitamins (pH 5.5) with 1.2% 
agar and grown for 24 hr. For live imaging, the gemmaling were imaged with Leica SP5 laser scanning 
confocal microscope with a water immersion objective (×25/0.95). Excitation wavelengths and emis-
sion windows were 488 nm and 510 nm. Confocal stacks were acquired at 1024 × 1024 resolution, 
with 0.5 μm distance in Z- dimension. Images were acquired at 24 hr intervals, and samples were kept 
in a growth chamber under constant light between imaging. For the move, we selected a represen-
tative sample from six total replicates. To quantify the cell area, change, and anisotropy, the fluores-
cence signal was segmented and semi- automated parent labeling was performed to couple the cells 
at two successive time points. Heat maps are displayed on the later time point (after 24 hr of growth). 
Scale bars are displayed on the image.

Arabidopsis sepal (Figure 2D and E, Figure 2—figure supplement 1A and 
B, Figure 6D and E, Figure 6—figure supplement 1B, Figure 8A and D)
Data previously published in Hervieux et al., 2016.

Arabidopsis leaf (Figure 3A–E, Figure 6—figure supplement 1A, 
Figure 8J and K)
Data previously published in Kierzkowski et al., 2019.

Tomato shoot apical meristem (Figure 3F–I)
Data previously published in Kierzkowski et al., 2012.

Arabidopsis shoot apical meristem (Figure 4A and C, Figure 4—figure 
supplement 1D)
Data previously published in Montenegro- Johnson et al., 2019.

Arabidopsis gynoecium (Figure 4E–H) and leaf (Figure 6B and C)
pUBQ10::acyl:YFP has been described previously (Willis et al., 2016). Plants were cultivated on soil 
under the long- day condition (16 hr light/8 hr dark) and 20°C ± 2°C. Flowers at post- anthesis stage 
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from 5- week- old plants were dissected with fine tweezers to remove sepals and stamens to expose 
gynoecium and mounted on the 60  mm plastic dish filled with 1.5% agar. Confocal imaging was 
performed with a Zeiss LSM800 upright confocal microscope, equipped with a long working- distance 
water immersion objective ×40 (1 NA, Apochromat). Excitation was performed using a diode laser 
with 488 nm for YFP, and the signal was collected between 500 and 600 nm. For both organs, images 
of three replicates each were obtained.

Arabidopsis embryo (Figure 8B,C,F and G, Figure 8—figure supplement 
1B–E)
Data previously published in Yoshida et al., 2014.

Arabidopsis shoot apical meristems for PIN1 and MT (Figure 8L and M, 
Figure 8—figure supplement 2E)
pUBQ10::acyl:TDT (Segonzac et al., 2012) and GFP:MBD (Van Bruaene et al., 2004) were crossed. 
F3 double homozygote line was used for imaging.

Floral organs were removed with fine tweezers about 21 days after germination to expose inflo-
rescence meristem. Meristems were mounted on the 60 mm plastic dish filled with 1.5% agar and 
imaged with a Zeiss LSM800 upright confocal microscope, equipped with a long working- distance 
water immersion objective ×60 (1 NA, Apochromat). Excitation was performed using a diode laser 
with 488 nm for GFP and 561 nm for TDT. Signal was collected at 500–550 and 600–660 nm, respec-
tively. Images of three replicates were obtained.

Arabidopsis root for PIN2 in 3D (Figure 8N, Figure 8—figure supplement 
2A)
pPIN2::PIN2:GFP was previously described (Xu and Scheres, 2005). The seeds were stratified for 
2 days at 4°C, grown on 1/2 Murashige and Skoog medium with 1% sucrose under the long- day condi-
tion (16 hr light/8 hr dark) at 20C°±2°C. The roots were stained by 10 μM propidium iodide (Sigma- 
Aldrich) and observed by Zeiss LSM780 with two- photon laser (excitation 990 nm) with a band pass 
filter 500/550 nm for GFP and 575–600 nm for PI. Images of three replicates were obtained.

Data analysis
For the data analysis examples in the article, we computed all necessary cellular data within Morpho-
GraphX and exported them as .csv files (see MorphoGraphX user guide Chapter 12.2 ‘Attribute maps' 
and Chapter 12.3 'Data export’). Those files were imported to RStudio for further processing or directly 
plotted using ggplot2 (R Development Core Team, 2020; RStudio Team, 2019; Wickham, 2016).

In the following, we provide a detailed description of the necessary processing steps for each data 
set shown in the figures. Hereby, we refer to the relevant chapters in the MorphoGraphX user guide 
which provides a step- by- step guide for most pipelines.

Arabidopsis flower meristem (Figure 1)
We selected one sample for segmentation and further analysis. The segmentation, cell lineages, and 
heat maps were generated following the standard workflow as described in Strauss et al., 2019 and 
in the MorphoGraphX user guide (Chapters 5–11).

Arabidopsis ovule (Figure 5, Figure 1—figure supplement 1)
We selected one sample of the published data for segmentation and further analysis (Vijayan et al., 
2021). Segmentation was obtained by back blending the raw images to CNN boundary predictions 
(Wolny et al., 2020) as described in Vijayan et al., 2021.

Following the segmentation (see also user guide Chapter 20 ‘3D segmentation’), for Figure 1—
figure supplement 1 we simply generated the heat map of the cell volumes (see user guide Chapter 
21.1 ‘Heat maps & measures 3D’).

For the additional analysis in Figure  5, we first generated a trimmed surface mesh (using the 
process ‘Mesh/Creation/Marching Cubes Surface’ on the segmented stack) and then used it to label 
the outermost layer using the process ‘Mesh/Cell Atlas 3D/Ovule/Detect Cell Layers,’ which is based 
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on the method described in Montenegro- Johnson et al., 2019. Next, we selected the cells of the 
cell- type (or parent) label of the outermost layer, inverted the selection, and deleted all other cells. At 
this stage, only the cells of the outer layer remained.

For each cell, its longitudinal organ axis (as custom cell axis X) was defined by a Bezier curve 
obtained from a manually selected central cell file using the processes ‘Misc/Bezier/Bezier From Cell 
File’ and ‘Mesh/Cell Axis 3D/Custom/Create Bezier Line Directions’ (see user guide Chapter 16.1 
‘Custom directions with Bezier’ for general information about how to handle the Bezier in Morpho-
GraphX and Chapter 21.6 ‘Custom directions for 3D meshes’ for its application for organ coordinates). 
Next, the surface organ axis (as custom cell axis Y) was computed using the surface mesh and the 
process ‘Mesh/Cell Axis 3D/Custom/Create Surface Direction.’ Finally, the width direction (as custom 
cell axis Z) was computed as orthogonal direction of the other two using the process ‘Mesh/Cell Axis 
3D/Custom/Create Orthogonal Direction.’.

Next, the cell sizes were quantified by first doing a PCA on the voxels of cells in the segmented 
stack (‘Mesh/Cell Axis 3D/Shape Analysis/Compute Shape Analysis 3D’, see also user guide Chapter 
22.2 ‘Cell shape analysis using principal component analysis for 3D meshes’) and finally computing the 
component of the PCA’s tensor aligned with the axes of interest (‘Mesh/Cell Axis 3D/Shape Analysis/
Display Shape Axis 3D’ with the appropriate ‘Custom’ heat option), with the Bezier direction corre-
sponding to cell length, the surface direction to depth, and the orthogonal direction to width.

Shape anisotropy was defined using the equation: (max – 0.5*mid – 0.5*min)/(max + mid + min), 
with max, mid, and min defined by the length of the PCA axes. Elongation is defined by max/mid and 
flatness by mid/min.

To create the plots, cells with a distance >40 μm from the central cell file and few small cells at the 
distal end were filtered out. The data of the remaining 213 cells was plotted.

Arabidopsis root (Figure 2A, Figure 4B and D, Figure 4—figure supple-
ment 1A and C, Figure 7A–D and I, Figure 7—figure supplement 1A–D, 
Figure 8—figure supplement 1A)
From the three imaged replicates, we selected the sample with the best segmentation quality for 
further analysis. The raw images of the two time points of the analyzed root data sample were blurred 
and segmented using the ITK watershed segmentation processes in MorphoGraphX (see also Stamm 
et al., 2017) and the MorphoGraphX user guide Chapter 20 ‘3D segmentation’. From the segmented 
stack, a surface mesh and volumetric cell mesh were created using the processes ‘Mesh/Creation/
Marching Cubes 3D’ and ‘Mesh/Creation/Marching Cubes Surface.’.

For the axis alignment analysis in Figure 2A, the organ was manually aligned with the y- axis and 
the coordinates of the cell centroids were computed (processes ‘Mesh/Heat Map/Analysis/Cell Anal-
ysis 3D’ and ‘Mesh/Heat Map/Measures 3D/Location/Cell Coordinate’ for the heat map; see also user 
guide Chapter 21.1 ‘Heat maps and measures 3D’ and 22.3 ‘Further types of organ coordinates’). In 
Figure 2B, the cell volume of the 304 epidermis cells was plotted against the y- coordinate.

The 3D Cell Atlas pipeline (Montenegro- Johnson et al., 2015; Stamm et al., 2017) was used 
to compute cell coordinates, sizes, and cell types (Figure 4B and D, Figure 4—figure supplement 
1A–C).

For the time- lapse analysis (Figure 7A–I, Figure 7—figure supplement 1), the cell lineages were 
determined semi- automatically using the pipeline introduced in this article (Figure 6) followed by a 
manual error correction (see also user guide Chapter 21.2 ‘Cell Lineage Tracking 3D’). Change maps 
were computed from the cells’ volume and size data extracted from 3D Cell Atlas from both time 
points (see user guide Chapter 21.3 ‘Change maps 3D’, Chapter 24.1 ‘Cell Atlas root’ and Stamm 
et al., 2017). PDGs in 3D were derived from the deformation function mapping the first onto the 
second time point using parent- labeled cell centroids and cell wall centers (see user guide Chapter 
21.4 ‘PDGs 3D’).

For the analysis of the cell types in the endodermis (Figure 7—figure supplement 1), xylem cells 
in the stele and their neighboring pericycle cells were automatically identified by their circumferential 
coordinate obtained from the previously executed 3D Cell Atlas pipeline (see above). Endodermis 
cells touching two xylem- associated pericycle cells were determined as xylem pole. The two phloem 
poles in the endodermis were shifted by 90° (or two cells) from the xylem pole. In total, we used 26 
xylem pole, 21 phloem pole, and 43 rest endodermis cells for the analysis.
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For the analysis in Figure 8E, Figure 8—figure supplement 1A, only the second time point and 
its previously created parent labeling was used (see above). We computed the proliferation to the 
previous time point (‘Mesh/Heat Map/Lineage Tracking/Heat Map Proliferation’), extracted the 
vertices on each division plane between cells that have divided exactly once (proliferation = 2, n = 249 
mother cells that divided), and computed a PCA on each set of division plane vertices to extract the 
normals of the planes (using the process ‘Mesh/Division Analysis/Analysis 3D/Division Analysis Multi,’ 
see also user guide Chapter 25.2 ‘Division Analysis 3D’). Then, we computed the angle between the 
longitudinal axis of the organ as extracted by 3D Cell Atlas and the division planes (‘Mesh/Division 
Analysis/Compute Division Plane Angles’) and exported the data.

Arabidopsis mature embryo (Figure 2C)
From more than 10 replicates, a sample with curved overall shape was selected for the demonstra-
tion of the organ coordinates using a Bezier curve. The fluorescence signal was segmented on the 
surface, and cells were parent labeled manually between two successive time points following the 
standard pipeline (see Strauss et al., 2019 ) and the MorphoGraphX user guide (Chapters 5–11). 
For creating the heat map of organ coordinates, a Bezier line was created and manually aligned 
with the organ (see user guide Chapter 23.2 ‘Bezier line and grid’). The organ coordinate heat map 
was then created using the process ‘Mesh/Heat Map/Measures/Location/Bezier Line Coord.’ The 
heat map is displayed on the later time point (after 48 hr of growth). Scale bars are displayed on 
the image.

Arabidopsis sepal (Figure 2D and E, Figure 2—figure supplement 1A and 
B, Figure 6D and E, Figure 6—figure supplement 1B, Figure 8A and D)
For the sepal analysis, one replicate of the data from Hervieux et al., 2016 consisting of seven time 
points was used (see Figure 2—figure supplement 1A and B).

For the analysis in Figure 2D–F, Figure 2—figure supplement 1 for each time point, we manually 
determined the organ base based on the cell lineages from the first time point. Cells at the organ base 
were selected and used to compute the Euclidean cell distance measure (‘Mesh/Heat Map/Measures/
Location/Cell Distance,’ see also the user guide Chapter 23.1 ‘The cell distance measure’). Finally, cell 
distances, growth, proliferation, and cell sizes were exported.

For the cell division analysis in Figure 8A and B, we analyzed the divisions that occurred between 
the time point T4 and T5. We computed the proliferation between these time points, extracted the 
vertices on each division plane between cells that have divided exactly once (proliferation = 2, n = 84), 
and computed a PCA on each set of division plane vertices to extract the normals of the planes (using 
the process ‘Mesh/Division Analysis/Analysis 2D/Division Analysis Multi,’ see user guide Chapter 25.1 
‘Division analysis 2.5D’). Next, we computed the PD- axis direction of the organ using the Euclidean 
cell distance from the base using the previously computed cell distance measure (see above) for 
creating custom directions along the PD- axis (see user guide Chapter 16.2 ‘Custom direction using a 
distance heat map’). Finally, we computed the angle between PD- axis and the division planes (‘Mesh/
Division Analysis/Compute Division Plane Angles’) and exported the data.

For the growth analysis in Figure 6D, we computed the PDGs from time point T4 to time point 
T5, visualized on the earlier time point (see user guide Chapter 15 ‘Principal directions of growth 
(PDGs)’). Figure 6E shows the same time point, but here growth was computed using the gradient 
of the deformation function obtained from the cells’ junctions (see user guide Chapter 17.6 ‘Growth 
analysis using deformation functions’).

Arabidopsis shoot apical meristem (Figure 4A and C, Figure 4—figure 
supplement 1D)
We selected one sample of the published data for analysis. Cel- type labels were determined using the 
methods described in 3D Cell Atlas meristem (Montenegro- Johnson et al., 2019). See also the user 
guide Chapter 24.2 ‘Cell Atlas meristem.’ We computed the surface distance heat map using a surface 
mesh and the process ‘Mesh/Heat Map/Measures 3D/Location/Mesh Distance’ (see also user guide 
Chapter 23.3 ‘Further types of organ coordinates’).
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Arabidopsis leaf (Figure 3A–E, Figure 6—figure supplement 1A, 
Figure 8J and K)
The Arabidopsis leaf data was previously published in Kierzkowski et al., 2019. One replicate of a 
time- lapse series consisting of seven time points was selected for analysis, but only time points T2 
and T5 were used for the analysis here. The cell distance was computed similarly to the sepal example 
(Figure 2D) as distance from the organ base (‘Mesh/Heat Map/Location/Cell Distance’; see also user 
guide Chapter 23.1 ‘The cell distance measure’). Additionally, we computed the heat map gradient 
of the cell distance heat map (‘Mesh/Cell Axis/Custom/Create Heatmap Directions’; see user guide 
Chapter 16.2 ‘Custom direction using a distance heat map’) to obtain custom directions along the PD 
axis and orthogonal to them along the ML axis of the organ for each cell. PDGs were computed and 
used to determine the amount of growth along the previously computed PD and ML axis (see user 
guide Chapter 15 ‘Principal directions of growth (PDGs)’ and Chapter 16 ‘Custom axis directions’).

For the morphing animation in Figure 6—figure supplement 1A, we used T2 and T5 and followed 
the user guide chapter 17.4 'Morphing animations'.

For the cell network analysis in Figure 8J and K, we computed the cell connectivity network of 
all cells in T5 weighted by the inverse of the length of the cell walls to determine the betweenness 
centrality. This is done by running the process ‘Mesh/Heat Map/Measures/Network/Betweenness 
Centrality’ (Jackson et al., 2019).

Tomato shoot apical meristem (Figure 3F–I)
For the growth and DR5 signal analysis on the shoot apical meristem, we used one replicate of the 
previously published data of Kierzkowski et al., 2012 . To objectively find the center of the meri-
stem, primordium, and initiation site, the curvature of the cells was computed (‘Mesh/Cell Axis/
Curvature/Compute Tissue Curvature’). The resulting heat map was smoothed across neighboring 
cells for two rounds and resulting local maxima were identified as centers (‘Mesh/Heat Map/Heat 
Map Smooth’). Meshes were manually aligned along the x- axis with respect to the meristem center 
to compute circumferential coordinates (‘Mesh/Heat Map/Measures/Location/Polar Coord’; see also 
user guide Chapter 23.3 ‘Further types of organ coordinates’) around the primordium and initiation 
center. For the analysis, only cells in the vicinity of the primordium and initiation centers were consid-
ered (as obtained by the cell distance towards their center cell using ‘Mesh/Heat Map/Measures/
Location/Cell Distance’; see also user guide Chapter 23.1 ‘The cell distance measure’). Furthermore, 
the gradients of the Euclidean cell distance heat maps from both centers were used to compute 
custom directions along the heat (=radial) and orthogonal to the heat (=circumferential) (using the 
process ‘Mesh/Cell Axis/Custom/Create Heatmap Directions’; see also user guide Chapter 16.2 
‘Custom directions using a distance heat map’). Finally, the growth analysis was done similarly to the 
leaf, computing PDGs and growth along the custom axis (‘Mesh/Cell Axis/PDG/Compute Growth 
Directions’; see also user guide Chapter 15 ‘Principal directions of growth (PDGs)’ and Chapter 16 
‘Custom axis directions’).

After each step, heat maps were exported to attribute maps and in the end exported to .csv files 
(see also Chapter 12 ‘Attribute maps & data export’).

Arabidopsis gynoecium (Figure 4E–H)
We selected one replicate for further analysis. After the surface segmentation (see user guide Chap-
ters 5–9), we computed the heat map for the length of the minor axis in Figure 4E (process ‘Mesh/
Heat Map/Measures/Geometry/Length Minor Axis’; see also user guide Chapter 10 ‘Cell geometry 
quantification’ and Chapter 22 ‘Cell shape analysis using PCA’). For Figure 4F, after a manual align-
ment of the mesh we computed the x- coordinate of the cells (process ‘Mesh/Heat Map/Measures/
Location/Cell Coordinate’; see also user guide Chapter 23.3 ‘Further types of organ coordinates’). 
For both of these heat maps, cell types were generated by determining an appropriate threshold and 
selecting cells by their heat value using the process ‘Mesh/Heat Map/Heat Map Select’ to set their 
parent label (=cell- type label). For more details, see also user guide Chapter 24.4 ‘Cell type classifica-
tion using a single heat map.’.

In Figure 4G, we created a clustering using the process ‘Mesh/Cell Types/Classification/Tools/Cell 
Property Map 2D.’ See also the user guide Chapter 24.6 ‘Cell type classification using two measures.’.
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In Figure 4H, we used the SVM training and classification pipeline to generate the cell- type labels 
from a small training set (as shown in the figure). See also the user guide Chapter 24.7 ‘Cell type clas-
sification using SVMs.’.

Arabidopsis leaf (Figure 6B and C)
We selected one replicate for segmentation, parent labeling, and the demonstration of the semi- 
automatic parent labeling. See user guide Chapters 5–9 about creating a surface segmentation and 
Chapter 17.2 ‘Semi- automatic parent labeling’ for more details.

Arabidopsis shoot apical meristems (Figure 8L and M, Figure 8—figure 
supplement 2E and F)
For the MT analysis, we selected one sample for segmentation and analysis. We determined the 
center of organ based on a smoothed curvature heat map (‘Mesh/Cell Axis/Curvature/Compute 
Tissue Curvature’). The center cell was selected and the Euclidean cell distance to the remaining 
cells was computed (‘Mesh/Heat Map/Location/Cell Distance’). The circumferential direction around 
the cell center was obtained from the orthogonal direction of the heat map directions (‘Mesh/Cell 
Axis/Custom/Create Heatmap Directions’). Cells were then binned by their Euclidean distance to the 
center (‘Mesh/Heat Map/Operators/Heat Map Binning’).

Arabidopsis embryo (Figure 8F and G, Figure 8—figure supplement 
1B–E)
The data for the 3D division analysis in A. thaliana embryos was previously published in Yoshida et al., 
2014. From this dataset, we chose one wildtype and one inducible bdl (pRPS5a>>bdl) sample at the 
16- cell stage.

A surface mesh was generated from the cells in the embryo, and the cells were parent labeled 
according to their predicted mother cell. Then, the process ‘Mesh/Division Analysis/Analysis 3D/Divi-
sion Analysis Multi’ performed the following steps on all of the parent- labeled cells (n = 16 cells or 8 
divisions in each genotype): first, a planar approximation of the actual division plane was computed 
by performing a PCA on the vertex positions of the shared wall between the two daughter cells. Then, 
1000 equally distributed division planes were simulated on the combined mother cell and different 
measures were quantified. See also the user guide Chapter 25.2 ‘Division analysis 3D’ for more details. 
The actual and the best planes were visualized using the process ‘Mesh/Division Analysis/Display and 
Filter Planes.’.

Arabidopsis root PIN2 in 3D (Figure 8N, Figure 8—figure supplement 2A 
and B)
For the analysis of the PIN directions in the A. thaliana root, we selected one sample for 3D segmen-
tation (see user guide Chapter 20 ‘3D segmentation’). Next, we defined the main organ axis using a 
Bezier curve through the center of the organ (‘Mesh/Cell Axis 3D/Custom/Create Bezier Line Direc-
tions’; see also user guide Chapter 21.6 ‘Custom directions for 3D meshes’). Then, we computed 
the PIN2 polarity direction (‘Mesh/Cell Axis 3D/Polarization/Compute Signal Orientation’; see also 
user guide Chapter 21.7 ‘Signal orientation for 3D meshes’) and determined the angle between the 
polarity direction and the Bezier line (‘Mesh/Cell Axis 3D/Compute Angles’).
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