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Abstract: The Ganoderma species in Polyporales are ecologically and economically relevant wood
decayers used in traditional medicine, but their genomic traits are still poorly documented. In the
present study, we carried out a phylogenomic and comparative genomic analyses to better understand
the genetic blueprint of this fungal lineage. We investigated seven Ganoderma genomes, including
three new genomes, G. australe, G. leucocontextum, and G. lingzhi. The size of the newly sequenced
genomes ranged from 60.34 to 84.27 Mb and they encoded 15,007 to 20,460 genes. A total of 58 species,
including 40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, one endophyte fungus,
and two pathogens in Basidiomycota, were used for phylogenomic analyses based on 143 single-copy
genes. It confirmed that Ganoderma species belong to the core polyporoid clade. Comparing to the
other selected species, the genomes of the Ganoderma species encoded a larger set of genes involved
in terpene metabolism and coding for secreted proteins (CAZymes, lipases, proteases and SSPs).
Of note, G. australe has the largest genome size with no obvious genome wide duplication, but showed
transposable elements (TEs) expansion and the largest set of terpene gene clusters, suggesting a
high ability to produce terpenoids for medicinal treatment. G. australe also encoded the largest
set of proteins containing domains for cytochrome P450s, heterokaryon incompatibility and major
facilitator families. Besides, the size of G. australe secretome is the largest, including CAZymes (AA9,
GH18, A01A), proteases G01, and lipases GGGX, which may enhance the catabolism of cell wall
carbohydrates, proteins, and fats during hosts colonization. The current genomic resource will be
used to develop further biotechnology and medicinal applications, together with ecological studies
of the Ganoderma species.
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1. Introduction

Ganoderma species (Ganodermataceae, Polyporales, Basidiomycota) are both ecologi-
cally and economically relevant fungi found in forest ecosystems. As wood-decay fungi,
Ganoderma species efficiently decompose the components of plant cell walls, including
lignin, cellulose and hemicellulose [1]. G. boninense Pat. causes a basal stem rot (BSR) on
oil palm trees [2,3], while G. lucidum and G. australe have been used for degradation of
environmental pollutants [4,5]. As medicines, Ganoderma fruiting bodies have been used
over the last 2000 years to produce drugs used for improving immunity, and in anti-aging
and anti-cancer treatments in humans [6–8]. For example, spore powder or basidiocarp
slices of G. lingzhi Sheng H. Wu, Y. Cao, and Y.C. Dai and G. tsugae Murrill are used in
Asian traditional medicine to improve health. On the other hand, polysaccharides and
glycans extracted from G. sinense J.D. Zhao, L.W. Hsu and X.Q. Zhang have been used as
clinical drugs [9].

Ganoderma is the largest genus in Ganodermataceae including 461 taxa recorded in
Index Fungorum (http://www.indexfungorum.org/, accessed on 16 January 2022) as of
15 September 2021. However, only four complete genomes of Ganoderma species have
been reported at this date. The genome of the well-known medicinal polypore, G. lucidum,
was published by Chen et al. [10]. This study focused on the analyses of genes encoding
cytochrome P450s (CYPs), transporters and regulatory proteins which are related to sec-
ondary metabolism (SM) and wood degradation. Then, Binder et al. [11] used the genome
of an unknown North American Ganoderma species to unravel phylogenetic relationships
within the Polyporales. The sequencing and analyses of G. sinense, another well-known
medicinal fungus, provided new highlights on the genome methylation patterns, small
RNA transcriptome, SM and defense processes [12]. Utomo et al. [13] sequenced and
analyzed a pathogenic strain of G. boninense isolated from an oil palm tree with severe
symptoms of BSR disease. Additional genomes are required to explore the full diversity
of Ganoderma gene sets involved secondary metabolism and wood white-rot decay and
identify the genetic traits specific to the different species. Therefore, we sequenced and
analyzed three additional genomes of Ganoderma species and compared them to other
previously sequenced taxa, i.e., G. australe, G. leucocontextum and G. lingzhi.

Ganoderma australe is widely distributed on deciduous trees in central, eastern and
southern China, and G. lingzhi is widely cultivated thanks to its high medicinal value,
whereas G. leucocontextum was recently described from southwestern China and is now
cultivated in Yunnan and Tibet for medicinal production. In addition to these three new
genomes, we included in our analysis seven publicly available genomes of Ganoderma
species. Finally, we compared the Ganoderma gene sets to those obtained on 51 Basidiomy-
cota species, including white-rot and brown-rot wood decayers, and biotrophic fungi. Here,
we provided new insights on the evolutionary relationships between Ganoderma species
and other Polyporales, and we identified idiosyncrasies in the gene repertoire involved in
SM and secreted enzymes.

2. Materials and Methods
2.1. Strain and Culture Conditions

Fruiting bodies of Ganoderma leucocontextum Dai 12418 was collected on Quercus,
and the strain was cultured on Potato Dextrose Agar (Potato Extract 200 g, Agar 20 g,
Dextrose 20 g, water 1 L); G. australe Cui 17254 and G. lingzhi Cui 9166 were collected on
other angiosperm logs., and the strains were cultured on Malt Extract Agar (Malt Extract
20 g, Agar 18 g, KH2PO4 3 g, Glucose 10 g, water 1 L). The strains were cultured for
7–14 days in the dark at 25 ◦C. The taxonomic affiliation of the three strains was confirmed
by phylogenetic analyses based on ITS sequences. Isolates were deposited in the culture
collection of the Institute of Microbiology, Beijing Forestry University and are available
upon request.

http://www.indexfungorum.org/
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2.2. DNA Extractions

For genomic DNA extraction, fresh 7-day-old vegetative agar mycelial cultures grown
on cellophane sheets were harvested, snap frozen in liquid nitrogen and stored at −80 ◦C.
High molecular weight genomic DNA of Ganoderma australe was extracted by using the
sodium dodecylsulfate (SDS) method [14], whereas a modified cetyltrimethyl ammonium
bromide (CTAB) method [15] was used for genomic DNA extraction of G. leucocontextum
and G. lingzhi.

2.3. Genome Sequencing and Assembly

The genome of the strain Dai 12418 from Ganoderma leucocontextum was sequenced
using the Pacific Biosciences platform (PacBio, Menlo Park, CA, USA); 1.5 µg of genomic
DNA was sheared to 10 kb using Covaris g-Tube or Diagenode megaruptor tube. The
sheared DNA was treated with DNA prep to remove single-stranded ends and DNA
damage repair mix followed by end repair/A Tail and ligation of barcoded overhang
adapters using SMRTbell Express Template Prep 2.0 Kit (PacBio, Menlo Park, CA, USA).
The library was purified with AMPure PB beads and libraries with different barcodes were
pooled at equimolar for up to four maximum fungal genomes with a total sum of genome
sizes of 200 Mb. A BluePippin size selection (Sage Science, Beverly, MA, USA) was then
performed on the pool to remove the shorter peaks physically. PacBio Sequencing primer
was then annealed to the SMRTbell template library and sequencing polymerase was
bound to them using Sequel II Binding kit 2.0. The prepared SMRTbell template libraries
were then sequenced on a Pacific Biosystems’ Sequel II sequencer using 8 M v1 SMRT
cells and Version 2.0 sequencing chemistry with 1 × 1800 sequencing movie run times.
Filtered subread data was processed to remove artifacts. Mitochondria was assembled
separately with the CCS reads using an in-house tool (assemblemito.py), used to filter
the CCS reads, and polished with gcpp—algorithm arrow version SMRTLink v8.0.0.80529
(https://www.pacb.com/support/software-downloads, accessed on 16 January 2022).
The mitochondria-filtered CCS reads were then assembled with Flye version 2.7.1-b1590
(https://github.com/fenderglass/Flye, accessed on 16 January 2022) (—g 40 M—asm-
coverage 50—pacbio-corr) and polished with gcpp—algorithm arrow version SMRTLINK
v8.0.0.80529. Contigs less than 1000 bp were excluded.

The Ganoderma australe Cui 17254 and G. lingzhi Cui 9166 genomes were sequenced
using PacBio and Illumina platform. Sequencing libraries for Illumina were generated
using NEBNext® Ultra™ DNA Library Prep Kit (NEB, Ipswich, MA, USA). One µg of
genomic DNA was fragmented by sonication to 350 bp (400 bp for G. lingzhi DNA) using
Covaris g-Tube. The DNA fragments were end-polished, A-tailed, and ligated with the
full-length adaptor for Illumina sequencing with further PCR amplification. The libraries
were purified by AMPure XP system (Beckman Coulter, Brea, IN, USA) and were analyzed
for size distribution by Agilent2100 Bioanalyzer and quantified using real-time PCR. The
libraries for single-molecule real-time (SMRT) on PacBio platform was constructed with an
insert size of 20 kb using the SMRT bell TM Template kit (version 1.0, Pacific Biosciences,
Menlo Park, CA, USA). The DNA fragments were repaired DNA damage and ends and
prepared blunt ligation reaction. The library was purified with 0.45X AMPure PB beads and
size-selection using the BluePippin System (Sage Science, Beverly, MA, USA). The libraries
were analyzed for size distribution by Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA,
USA). The whole genome of G. australe was sequenced using PacBio Sequel and Illumina
NovaSeq PE150 at Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China).
The whole genome of G. lingzhi was sequenced using PacBio RS II platform and Illumina
MiSeq platform at Shanghai Personalbio Technology Co., Ltd. (Shanghai, China). The low-
quality reads were filtered (less than 500 bp) to obtain clean data. Preliminary assembly was
conducted with SMRTLink v5.0.1 (https://www.pacb.com/support/software-downloads,
accessed on 16 January 2022), and long reads (more than 6000 bp) were selected. By the
variant Caller module of the SMRT Link software, the arrow algorithm was used to correct
and count the variant sites in the preliminary assembly results.

https://www.pacb.com/support/software-downloads
https://github.com/fenderglass/Flye
https://www.pacb.com/support/software-downloads
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2.4. Genome Annotation and Quality Check

The genome of Ganoderma leucocontextum was annotated using the JGI Annotation
Pipeline with the support of their corresponding Trinity transcriptomes. Both assembly
and annotations are available from JGI genome portal in MycoCosm (https://mycocosm.
jgi.doe.gov/, accessed on 16 January 2022) [16,17]. The de novo annotation of G. australe
and G. lingzhi were conducted by Augustus v3.03 [18], Genewise v2.4.1 [19] and Evidence-
Modeler [20].

The quality of the predicted proteomes was evaluated by using the tool Benchmarking
Universal Single-Copy Orthologs (BUSCO v.4.1.3) [21] with the Basidiomycota gene set
downloaded from https://busco-data.ezlab.org/v4/data/lineages/basidiomycota_odb10.
2020-09-10.tar.gz, accessed on 16 January 2022.

2.5. Synteny Analyses

The synteny analyses were conducted on the 10 largest scaffolds of each of the selected
Ganoderma genomes. Pair-wise comparisons and identification of syntenic blocks were
performed by using the R package DECIPHER [22] with default parameters. The synteny
blocks between every two species were visualized with the R package Circlize [23]. Data
management, integration, and visualization were as described in Hage et al. [24].

2.6. Phylogenetic Analyses

The phylogenetic analyses of 12 Ganoderma species were conducted by Maximum
Likelihood (ML) with 23 ITS sequences. Sanguinoderma sp. Cui 17238 was used as the
outgroup. The ML analyses were performed in RAxML-HPC v. 8.2.3 [25] involving 1000 ML
searches under the GTRGAMMA model and 1000 rapid bootstrap replicates with the
GTRCAT model to obtain the best tree and ML bootstrap. All trees were viewed in FigTree
1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 16 January 2022). The ML
bootstrap ≥ 50% were presented on topologies from ML analyses.

2.7. Phylogenomic Analyses

A total of 58 Basidiomycota species was used for the phylogenomic analyses, including
40 white-rot fungi, 11 brown-rot fungi, four ectomycorrhizal fungi, a single endophyte and
two pathogens. Melampsora larici-populina Kleb. and Ustilago maydis (DC.) Corda were used
as outgroup species (Table 1).

Table 1. List of the 58 genomes used for phylogenomic and comparative analyses. The new genomes
are shown in bold.

Species Name Strain Reference Lifestyle Order Clade

Abortiporus biennis CIRM-BRFM1778 [24] White-rot Polyporales residual polyporoid clade
Bjerkandera adusta HHB-12826-SP [11] White-rot Polyporales phlebioid clade
Ceriporiopsis subvermispora B [26] White-rot Polyporales gelatoporia clade
Dichomitus squalens LYAD-421 SS1 [27] White-rot Polyporales core polyporoid clade
Earliella scabrosa CIRM-BRFM 1817 [24] White-rot Polyporales core polyporoid clade
Epithele typhae CBS 203.58 [24] White-rot Polyporales core polyporoid clade
Fomes fomentarius CIRM-BRFM 1821 [24] White-rot Polyporales core polyporoid clade
Fomitiporia mediterranea MF3/22 #7 [27] White-rot Hymenochaetales -
Ganoderma australe Cui 17254 this study White-rot Polyporales core polyporoid clade
Ganoderma boninense G3 [13] White-rot Polyporales core polyporoid clade
Ganoderma
leucocontextum Dai 12418 this study White-rot Polyporales core polyporoid clade

Ganoderma lingzhi Cui 9166 this study White-rot Polyporales core polyporoid clade
Ganoderma lucidum G.260125-1 [10] White-rot Polyporales core polyporoid clade
Ganoderma sinense ZZ0214-1 [12] White-rot Polyporales core polyporoid clade
Ganoderma sp. 10597 SS1 [11] White-rot Polyporales core polyporoid clade

https://mycocosm.jgi.doe.gov/
https://mycocosm.jgi.doe.gov/
https://busco-data.ezlab.org/v4/data/lineages/basidiomycota_odb10.2020-09-10.tar.gz
https://busco-data.ezlab.org/v4/data/lineages/basidiomycota_odb10.2020-09-10.tar.gz
http://tree.bio.ed.ac.uk/software/figtree/
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Table 1. Cont.

Species Name Strain Reference Lifestyle Order Clade

Heterobasidion annosum TC32-1 [28] White-rot Russulales -
Hexagonia nitida CIRM-BRFM 1802 [24] White-rot Polyporales core polyporoid clade
Hydnopolyporus fimbriatus CBS384.51 [24] White-rot Polyporales phlebioid clade
Irpex lacteus CCBAS Fr. 238 617/93 [24] White-rot Polyporales phlebioid clade
Leiotrametes lactinea CIRM-BRFM 1664 [24] White-rot Polyporales core polyporoid clade
Leiotrametes menziesii CIRM-BRFM 1781 [24] White-rot Polyporales core polyporoid clade
Lentinus tigrinus ALCF2SS1-7 [29] White-rot Polyporales core polyporoid clade
Obba rivulosa 3A-2 [30] White-rot Polyporales gelatoporia clade
Panus rudis PR-1116 ss-1 [24] White-rot Polyporales residual polyporoid clade
Phanerochaete carnosa HHB-10118-Sp [31] White-rot Polyporales phlebioid clade
Phanerochaete chrysosporium RP-78 [32] White-rot Polyporales phlebioid clade
Phlebia brevispora HHB-7030 SS6 [11] White-rot Polyporales phlebioid clade
Phlebia centrifuga FBCC195 [33] White-rot Polyporales phlebioid clade
Phlebia radiata FBCC0043-79 [34] White-rot Polyporales phlebioid clade
Phlebiopsis gigantea 5-6 [35] White-rot Polyporales phlebioid clade
Polyporus arcularius HBB13444 [36] White-rot Polyporales core polyporoid clade
Polyporus brumalis BRFM 1820 [37] White-rot Polyporales core polyporoid clade
Polyporus squamosus CCBS 676 [24] White-rot Polyporales core polyporoid clade
Pycnoporus cinnabarinus BRFM 137 [38] White-rot Polyporales core polyporoid clade
Pycnoporus sanguineus BRFM 1264 [39] White-rot Polyporales core polyporoid clade
Rigidoporus microporus ED310 [40] White-rot Polyporales -
Stereum hirsutum FP-91666 SS1 [27] White-rot Russulales -
Trametes pubescens FBCC735 [41] White-rot Polyporales core polyporoid clade
Trametes versicolor FP-101664 SS1 [27] White-rot Polyporales core polyporoid clade
Trametopsis cervina CIRM-BRFM 1824 [24] White-rot Polyporales core polyporoid clade
Amylocystis lapponica SKaAmylap13 [24] Brown-rot Polyporales antrodia clade
Antrodia serialis Sig1Antser10 [24] Brown-rot Polyporales antrodia clade
Antrodia sinuosa LB1 PRJNA196036 Brown-rot Polyporales antrodia clade
Daedalea quercina L15889 ss-12 [42] Brown-rot Polyporales antrodia clade
Fibroporia radiculosa TFFH 294 [43] Brown-rot Polyporales antrodia clade
Fomitopsis betulina CIRM-BRFM 1772 [24] Brown-rot Polyporales antrodia clade
Fomitopsis pinicola FP-58527 SS1 [27] Brown-rot Polyporales antrodia clade
Laetiporus sulphureus 93-53 [42] Brown-rot Polyporales antrodia clade
Postia placenta MAD-698-R-SB12 [44] Brown-rot Polyporales antrodia clade
Rhodofomes roseus CIRM-BRFM 1785 [24] Brown-rot Polyporales antrodia clade
Wolfiporia cocos MD-104 SS10 [27] Brown-rot Polyporales antrodia clade
Amanita muscaria Koide [45] Ectomycorrhizal Agaricales -
Laccaria bicolor S238N-H82 [46] Ectomycorrhizal Agaricales -
Pisolithus microcarpus 441 [45] Ectomycorrhizal Boletales -
Rhizopogon vinicolor AM-OR11-026 [47] Ectomycorrhizal Boletales -
Piriformospora indica DSM 11827 [48] Endophyte Sebacinales -
Melampsora larici-populina 98AG31 [49] Pathogen Pucciniales -
Ustilago maydis 521 [50] Pathogen Ustilaginales -

The orthologous protein clusters of the 58 proteomes were identified with OrthoFinder
v2.4.0 [51]. The sequences of each of 143 single copy, conserved orthologs were aligned
using MAFFT v7.471 [52]. Poorly aligned regions were removed with Trimal v1.4.1 [53].
Based on these alignments, a maximum likelihood phylogenomic tree was constructed
by RAxML-NG v0.9.0 [54] using partitions corresponding to an orthologous group, and
their associated best-fit model for each partition of the concatenate protein alignments were
estimated by Modeltest-NG v0.1.6 (Table S1) [55].

2.8. Annotation of Transposable Elements

Transposable elements (TEs) were identified as described in Payen et al. [56]. Briefly,
de novo repeat sequences were predicted in unmasked genome assemblies of 58 genomes,
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using RepeatScout 1.0.6 [57]. Sequences ≥ 100 bp and ≥10 occurrences were filtered out.
The selected sequences were annotated by searching homologous sequences against the
fungal references in REPBASE v.22.08 (http://www.girinst.org/server/RepBase/index.
php, accessed on 16 January 2022) using tBLASTx [58]. The coverage of TEs in the genomes,
including unknown TEs, was estimated by REPEATMASKER open 4.1.1 (http://www.
repeatmasker.org, accessed on 16 January 2022).

2.9. Protein Functionnal Annotation

The gene clusters related to SM biosynthetic pathways were predicted by antiSMASH
4.2.0 [59] and visualized along with the species phylogenetic relationship on iTOLv5 (https:
//itol.embl.de/, accessed on 16 January 2022) [60]. PFAM domain searches were performed
with HMMER [61]. The most abundant PFAM protein domains (abundance > 100) were
visualized along with the species phylogenetic relationship on iTOLv5. Secreted proteins
were predicted as described in Pellegrin et al. [62], and proteins with a size < 300 amino acids
were identified as small secreted proteins (SSP). Carbohydrate-active enzymes (CAZymes)
were manually curated by the CAZy team (http://www.cazy.org, accessed on 16 January
2022). The annotation of secreted proteases and lipases was performed by BLASTP search
(E-value = 10−5) against MEROPS (http://merops.sanger.ac.uk/, accessed on 16 January
2022) and Lipase Engineering Database (http://www.led.uni-stuttgart.de/, accessed on 16
January 2022).

3. Results
3.1. Main Genome Features

Three Ganoderma species were newly sequenced in this study: Ganoderma australe
strain Cui 17254, G. leucocontextum strain Dai 12418 and G. lingzhi strain Cui 9166. The size
of the G. australe assembly was 84.27 Mb and 20,460 protein-coding genes were predicted
(Table 2). This is the largest Ganoderma genome sequenced to date. The size of the genome
assemblies for G. leucocontextum and G. lingzhi was lower at 60.34 and 60.56 Mb, and 15,007
and 16,592 protein-coding genes were predicted on the assemblies, respectively. Between
73.1% to 99.8% of a benchmark set of conserved fungal genes (BUSCO) were found in
genome assemblies, indicating that assembled genomes captured most of the coding gene
space, although the gene annotation for G. lingzhi appeared to be more fragmented (Table 2).

Table 2. Genome features of the three newly sequenced Ganoderma genomes.

Genome Feature G. australe G. leucocontextum G. lingzhi

Genome size (Mb) 84.27 60.34 60.56
Number of scaffolds 93 843 342
Scaffold L50 (bp) 1,745,385 205,166 402,014
Scaffold N50 17 66 37
Longest scaffold (bp) 4,455,856 1,715,371 2,154,085
Shortest scaffold (bp) 33,016 1008 980
GC content (%) 55.48 55.95 55.88
Protein-coding genes 20,460 16,952 15,007
Average gene length (bp) 1582 1846 1605
Complete BUSCOs (%) 84.6 99.8 73.1

We compared the three newly sequenced Ganoderma genomes to four published
Ganoderma genomes and 51 other Basidiomycota genomes. The genomes size of the 58 in-
vestigated species ranged from 19.66 to 109.88 Mb (Figure 1), with 6785 to 26,226 predicted
genes (Table S2). Except for Melampsora larici-populina, Ganoderma species displayed the
largest genomes, i.e., G. australe and G. boninense were two-to three-fold larger than other
wood decayers. No significant differences (p > 0.05) in the average genome size were
found between white-rot fungi, brown-rot fungi and ectomycorrhizal fungi. The number of

http://www.girinst.org/server/RepBase/index.php
http://www.girinst.org/server/RepBase/index.php
http://www.repeatmasker.org
http://www.repeatmasker.org
https://itol.embl.de/
https://itol.embl.de/
http://www.cazy.org
http://merops.sanger.ac.uk/
http://www.led.uni-stuttgart.de/
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duplicated BUSCO genes was higher (23.4%) in G. australe. The synteny analyses showed
no evidence for whole-genome or segmental duplications (Figure S1), it may indicate a
polymorphic dikaryon (Table S2).
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3.2. Macrosynteny between Ganoderma Genomes

The top 10 scaffolds of each Ganoderma genomes, covering 13% to 75% of the whole
assemblies, were selected to perform a macrosynteny analysis (Figure S2, Table S3A).
We observed the highest percentage of syntenic segments (72%) between G. lingzhi and
G. lucidum, while G. boninense and G. leucocontextum showed a lower rate when compared
to other species (Table S3B), reflecting a higher genome divergence.

3.3. Phylogenetic Analyses of Ganoderma Strains

The phylogenetic relationship of 12 Ganoderma species was conducted based on 23 ITS
sequences and one Sanguinoderma sp. as outgroup (Figure 2). Two G. lucidum strains were
not clustered together indicating that the identification of G. lucidum G.260125-1 should
be considered as G. lingzhi actually. Ganoderma sp. 10597 SS1 clustered with G. sessile
suggesting that this strain may pertain to this sessile species in this phylogeny.
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3.4. Phylogenomic Analyses of the Ganoderma Species and Related Polyporales

Our phylogenetic analyses, based on 143 single-copy conserved protein sequences,
was in agreement with previous phylogenetic analyses using single or multi-locus ap-
proaches [24,63]. We also identified five major clades in Polyporales: the core polyporoid
clade, the antrodia clade, the gelatoporia clade, the phlebioid clade, and the residual
polyporoid clade. Ganoderma species clustered in the core polyporoid clade with a high
bootstrap value (Figure 3, 100% ML bootstrap). The phylogenomic status of Ganoderma
species was consistent with the macro-synteny conservation results.

The taxonomic status of Rigidoporus microporus has been changed to Hymenochaetales [64],
and here, it was confirmed again by phylogenomic analyses. Among the sampled species,
the brown-rot fungi and the ectomycorrhizal fungi formed monophyletic groups. The
present analyses also confirmed that the white-rot lifestyle is evolutionary polyphyletic.
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3.5. Transposable Element Identification

The dominant TEs in Ganoderma species belonged to the Gypsy and Copia families of
long terminal repeats (LTR) retrotransposons. Besides, the proportion of unknown TEs
in Ganoderma species was large, especially in G. australe (10.5% of the total assembly) and
G. lingzhi (11.1% of the total assembly), indicating they likely played a key role in genome
rearrangements. G. leucocontextum displayed the largest TE coverage (18.32% of the total
assembly), and the most diverse TE distribution, including simple repeats (Repetitive),
IS3EU and Dada of DNA transposon, RTEX and L1 of non-LTR retrotransposon which
are unique repeat elements in Ganoderma species (Figure 4A). The number of IS3EU and
Dada sequences in G. leucocontextum was significantly larger comparing with other species
(Figure 4B). Although occurring at moderate copy numbers, the G. boninense genome
contained unique TE families, such as the DIRS LTR retrotransposons and several DNA
repeated elements. G. australe also contained more copy of Tad1 non-LTR retrotransposon
and Helitron DNA transposons by comparing to other Ganoderma species.

TE coverage in the 58 analyzed genomes ranged from 0.37% (Phlebiopsis gigantea) to
41.69% (Fomitiporia mediterranea) (Table S4). Comparing to other lifestyle fungi, white-rot
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fungi have low TE coverage except F. mediterranea (p < 0.01), among which Ganoderma
species have relatively higher TE coverage (p < 0.05). Ectomycorrhizal fungi showed the
larger repeat element coverage, in which unknown TE elements were the most abundant
(>12%).
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codes for the five fungal lifestyles are shown at the bottom of the figure.
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3.6. Biosynthetic Gene Clusters

We identified a total of 16 types of SM biosynthetic clusters (Figure 5, Table S5). Except
for the Rhizopogon vinicolor, the pathogens, ectomycorrhizal fungi and endophytes generally
had a lower number of genes involved in SM than saprotrophic species. This difference was
mainly driven by a lower content in t1pks, terpenes related genes and miscellaneous genes
tagged as “putative” and “other” by the antiSMASH software. The antrodia clade composed
of brown-rot species was segregated from other Polyporales clades by an enrichment in
t1pks, indole, and fatty acid associated genes, and a depletion in NRPS. Among white-rot
fungi in Polyporales, the phlebioid clade displayed a higher content in t3pks and a lower
content in terpenes associated genes. The core polyporoid clade contained the species with
diverse sets of biosynthetic genes clusters. Gene clusters involved in terpene synthesis
and unknown metabolites (i.e., putative SM gene clusters) were enriched in Ganoderma
species, especially in G. australe which contained 31 terpene associated gene clusters and
80 putative biosynthetic gene clusters. Noteworthy, G. lingzhi and G. lucidum as the main
medically relevant species showed the lowest number of terpenes associated gene clusters,
whereas G. australe and the pathogenic G. boninense had the highest content. G. lucidum,
G. leucocontextum, Trametes versicolor, and T. pubescens genomes encoded a cluster related to
lantipeptide production, and the first three were identified as associated with a t1pks.

3.7. Pfam Protein Domains Found in the Genomes

More than 5000 Pfam protein domains were identified in the 58 selected genomes. A to-
tal of 32 Pfam categories were sorted according to their gene copy number (>100) (Figure 6,
Table S6). Ganoderma australe showed the higher number of Pfam protein domains, i.e.,
five-fold larger than Ustilago maydis (with 864 protein domains). In G. australe, 13 protein
domains were prominent, including cytochrome P450s (PF00067: p450) involved in SM,
heterokaryon incompatibility protein (PF06985: HET) often related to vegetative incompati-
bility (VI) and membrane transporters of the major facilitator superfamily (PF07690: MFS_1).
Besides, other protein domains putatively playing a role in epigenetic regulation (PF00078:
RVT_1, PF00385: Chromo, PF00665: rve) and protein–protein interactions (PF12937: F-box-
like) were also enriched in G. australe. Comparing to other Ganoderma species, G. boninense
and G. leucocontextum encoded additional protein domains (e.g., PF17667: Pkinase_fungal,
PF18758: KDZ, PF18759: Plavaka, PF18803: CxC2, PF20149: DUF6532, PF20151: DUF6533,
and PF20152: DUF6534), which were only found in parasitic and symbiotic fungi. Protein
kinases domains (PF00069: Pkinase, PF07714: Pkinase_Tyr) and protein–protein inter-
actions domains (PF00400: WD40, PF12894: A0PC4_WD40) were especially enriched in
ectomycorrhizal fungi.
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3.8. The Predicted Secretome

Ganoderma species have the largest secretome among the 58 selected fungal species
(Figure 7, Table S7). Small secreted proteins (SSPs) represented 41% to 81% of the total
secreted proteins and 4% to 28% SSPs were annotated as CAZymes, lipases, or proteases.
Most known SSPs were annotated as CAZymes, especially enriched in G. australe and
G. lingzhi (Figure 8, Table S8).

As secreted CAZymes plays a key role in wood degradation, the evolution of their
content through Polyporales was investigated. The different clades in Polyporales have
a distinctive CAZyme content and the Ganoderma species also contained a distinctive
CAZyme repertoire within the core polyporoid clade. The antrodia clade composed of
brown-rot fungi have a two-fold lower content of secreted CAZymes compared to the
white-rot species in Polyporales (141 ± 24 vs. 237 ± 71 respectively, Table S9). Among the
148 CAZymes sub-families (grouped in 101 families) with secreted genes representatives,
48 (grouped in 38 families) exhibited a lower number of genes in brown-rots compared
to white-rots in Polyporales (BM test, FDR padj < 0.01). It included cellulolytic enzymes
(GH6, GH7), LPMOs (AA9), ligninolytic PODs (AA1_1), heme-associated PODs (AA2), the
carbohydrate-binding module CBM1, CAZymes involved in bacterial cell wall degradation
(GH25, GH79), fungal cell wall degradation (GH20, GH76, GH92, GH128, GH135, GH152),
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and other CAZymes involved in plant cell wall degradation. CAZymes was globally
enriched in the core polyporoid clade compared to the phlebioid clade. This enrichment
was associated to the expansion of AA1, AA14, CE1, EXPN, GH16, GH17, GH18, GH25,
and GH30 families. Of note, the AA7 family was absent from the phlebioid clade and
AA12 was absent from the core polyporoid clade. Among the core polyporoid clade, the
Ganoderma species have enriched CAZymes, and 11 families were expanded, including
GH18, GH16, AA1, GH43, CE16, GH3, GH128, GH47, GH115, GH25, and GH1 families.
Whereas only PL4 was enriched (and only found) in the other species of the core polyporoid
clade. Compared to other species, G. australe had the largest set of secreted CAZymes, in
which GH18 and EXPN families were highly enriched in this species. It also contained the
largest repertoire of PCWDEs, MCWDEs, and enzymes acting on pectin, peptidoglycans,
and chitin (Figure 9, Table S10).
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Figure 9. Distribution of secreted CAZymes involved in plant and microbial cell wall degradation
in Ganoderma species and other selected fungal genomes. The bubble size is proportional to the
number of secreted CAZymes grouped for 11 categories. Colors are coded by five lifestyles. The bar
plots show the count of genes involved in PCWDE and MCWDE (left), and the ratio of PCWDE to
MCWDE (right).
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A total of 3880 genes encoding for secreted proteases (in 73 MEROPS families) were
identified in 58 fungal genomes (Table S11). Eight protease families (A01A, G01, M28E,
M36, S08A, S10, S28, and S53) have more than 100 members, and the largest represented
protease subfamily was A01A with 1332 proteins. No significant differences were found
between saprotrophic and symbiotic species (p > 0.05), but five protease families (C40,
M24X, M57, M77, S08B) were only found in white-rot fungi, although with low gene copy
numbers. Among these families, the M57 protease family including four proteins, was
found in Ganoderma australe, G. leucocontextum, G. lingzhi, and G. lucidum. In addition,
Ganoderma species have more G01, M28E, and M35 proteases.

Comparing to other lifestyles, white-rot fungi have the higher set of secreted lipases
(p < 0.001) and among the 58 analyzed fungal secretomes, Ganoderma australe contained the
highest number of secreted lipases, the most abundant being GGGX lipases (Table S12).
Most genomes displayed less than seven GX lipases, except for G. boninense and G. leucocon-
textum with ten and nine GX lipases respectively. They are prominent enzymes catalyzing
a wide range of reactions on various cellular substrates [65,66].

4. Discussion

In this study, we provided three newly sequenced genomes of ecologically and eco-
nomically relevant Ganoderma species. A phylogeny, based on 23 rDNA ITS sequences
from 12 Ganoderma species, allowed us to determine the phylogenetic status of the newly
sequenced species in Ganoderma. This phylogeny concurred with previous studies which
were carried out by using a smaller set of Ganoderma species [11,63,67], except for G. lu-
cidum. Indeed, this species displayed inconsistence between the two available strains,
suggesting a misidentification of G. lucidum G.260125-1 strain which was purchased from
a company. According to our study, this strain may pertain to the G. lingzhi which is
widely cultivated for its medicinal usage in China [7]. This phylogeny also indicated that
Ganoderma sp. 10597-SS1 probably pertained to G. sessile. The phylogenomic analyses
based on 58 genomes, including seven Ganoderma species, supported the ITS phylogenetic
result and confirmed that Ganoderma belong to the core polyporoid clade of Polyporales as
defined by Justo et al. [63].

Ganoderma species have been used for centuries in traditional medicine thanks to
their well-known arsenal of antimicrobial, anti-aging, antioxidant, anti-inflammatory, and
immunomodulating compounds (e.g., polysaccharides, triterpenoids, and peptides) [68,69].
The drastic reduction of sequencing cost in the last decades allowed genome-wide mining
of medicinal compound. As a result, the number of new genomes rapidly increased over
the year, such as genomes of G. tsugae CCMJ4178 [67] and G. leucocontextum DH-8 [70].
The strain DH-8 of G. leucocontextum was newly sequenced and its genome was 50.05 Mb
with 58 scaffolds [70], the genome of strain Dai 12418 of G. leucocontextum sequenced in
our study was 60.34 Mb with 843 scaffolds. In our study, 21 terpene gene clusters were
predicted in strain Dai 12418 against the 10 terpene gene clusters predicted in strain DH-8.
The two-fold enrichment in strain Dai 12418 compared to strain DH-8 was unexpected,
despite taking into differences in annotation tools and the potential bias of assembly quality.
It may suggest a substantial intraspecific genome polymorphism. Direct comparisons
of other functional gene categories were hampered by major differences in annotation
methodologies. For example, Liu et al. [70] predicted 614 CAZymes genes using HMM,
while we only found 291 CAZymes genes, using the in-house pipeline from the CAZymes
database followed by expert manual curation.

One of the main targets for medically-relevant products are the secondary metabolites
associated genes, especially the terpenes in Ganoderma species. Compared to other species,
the terpene genes of Ganoderma species were indeed expanded, however, substantial differ-
ences were observed among this genus. G. lingzhi and G. lucidum as the main medically
species have the lowest number of terpenes associated clusters whereas the widespread
G. australe and the pathogenic G. boninense have the highest content. Terpene related gene
expansion in G. australe and G. boninense might explain their ecological ability to develop
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on a broader set of substrates. On the other hand, a shift of the terpenome composition in
G. lingzhi, G. tsugae, and G. leucocontextum might have led to the production of terpenes
with beneficial properties for human health. This study also allowed us to identify a
polyketide synthase complex involved in the synthesis of the antibacterial lantipeptide [71]
in G. lucidum, G. leucocontextum, Trametes versicolor, and T. pubescens, likely explaining the
use of formulations based on these fungi as antibiotics [10,72–74]. Besides, the large content
of gene clusters encoding unknown biochemical function(s) were found in Polyporales
species, especially G. australe, suggested an outstanding ability to synthesize a large set of
secondary metabolites of yet unknown function. This confirmed that the economically and
medically relevant secondary metabolites of these fungi represent an untapped resource.

As Polyporales is an important group of wood decayers, we investigated the decay
ability of these species by analyzing their secretome. The current evolution was posited
that early Agaricomycetes were saprotrophic and different lifestyles were derived from
it [75,76]. It also supported that the white-rot lifestyle is linked to the ability to degrade
lignin. The acquisition of lignin degradation in the Agaricomycetes was estimated in the late
Carboniferous and further evolved with the evolution of lignin complexity in Polyporales
and Agaricales taxa [77]. The monophyletic antrodia clade, only composed of brow-rot
species, was derived from white-rot lineages in current phylogenomic analyses. According
to Baldrian and Valášková [75], brown-rot fungi, despite having several independent
origins, were associated with the loss of ligninolytic PODs, heme dye-decolorizing PODs,
heme-thiolate POD/peroxygenases (HTPs), cellulolytic enzymes (GH6, GH7, LPMO), and
the carbohydrate-binding module CBM1 reduced their ability to degrade lignin into its
partial modification by releasing Fenton-generated hydroxyl radicals in the colonized
material. This statement was confirmed in the antrodia clade, in which those losses
were also accompanied by losses in other PCW-degrading enzymes, and FCW- and BCW-
degrading enzymes. The enhanced ability of white-rot fungi to decompose substrates was
also marked by a secreted lipase enrichment. White-rots specific proteases (C40, M24X,
M57, M77, S08B) were identified, and they were related to genetic regulation, bacterial
cell-wall modification, nutrient transformation, and other cellular physiological functions.

The various white-rot Polyporales clades also displayed divergent wood degrading
abilities. The potential ligninolytic ability and more generally PCW degradation ability
of the core polyporoid clade was the highest among Polyporales due to the expansion
of ligninolytic PODs (AA1) and hemicellulose degrading enzyme (AA14, CE1, GH30).
The difference among white-rot clades also showed in the enzyme arsenal to compete
with other microbes for substrates and copy with biotic threats. The specific expansion
in BCW-degrading enzyme (GH25) and FCW-degrading enzyme (GH16, GH17, GH18)
was also observed in the core polyporoid clade. Ganoderma species deepened their lig-
nocellulose degradation ability with further expansion of the ligninolytic PODs (AA1),
hemicellulose (GH43, CE16, GH115), BCW- (GH25), and FCW- (GH16, GH18, GH128,
GH47) degrading enzymes. Aminopeptidase Ap1 (M28E), deuterolysin (M35) and scytali-
doglutamic peptidase (G01) were also enriched in Ganoderma species, but further functional
analyses are needed to clarify their role(s). Noteworthy, G. australe showed an even wider
degrading gene repertoire including higher PCW-degrading CAZyme, lipase and protease
content. Similarly, numerous cytochrome P450 monooxygenases (PF00067: p450) were
found in G. australe. These enzymes are known for their role in lignin and xenobiotic
degradation [78]. This pattern supported the known ability of G. australe to more efficiently
decompose lignocellulose than other Ganoderma species. An increased CAZyme repertoire
in BCW- and FCW-degrading enzymes was also found in G. australe, which could perform
the higher competitiveness than other microorganism for the substrate during colonization
on the hosts. Associated with its enriched number of biosynthetic genes and clusters, such
as lytic transglycolase (PF03330) and cerato-platanins (PF07249), this repertoire could be
used to combat with miscellaneous biotic threats.

The abundance of HET genes related to heterokaryon incompatibility, MFS trans-
porters, and epigenetic regulation in Ganoderma australe indicated that these mechanisms
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play a key role in the stable reproduction and evolution of this wood decayer [79–81]. With
168 protein domains detected among seven Ganoderma species (PF00249, PF08914, PF11831,
PF12776, PF13837, PF13921, PF15963), MYB transcription factors were also abundant in
Ganoderma species. These transcription factors are the largest transcription factor families
in eukaryotic organisms and play key role in variable development and physiological
activities [82,83]. Wang et al. identified 75 MYB transcription factors in five Ganoderma
species after manually curation, and of the gene copy number found in each species was
lower than the detected results in our study. This is likely due to the differences between
strains and technical methods used here. Further exploration of MYB genes can help to
clarify its potential function during the growth and development of Ganoderma fungi.

The present comparative analysis of the publicly available Ganoderma genomes re-
vealed a series of genetic features specific to this lineage of wood decayers. This study
provided foundational information to characterize further ecological traits of this important
group of decomposers. In addition, this information will be used to characterize the regula-
tion of genes involved in SM biosynthesis pathways at the transcriptomic level, including
antimicrobial compounds and medicinal drugs.
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