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Abstract 

Sexual reproduction involves meiotic recombination and the creation of crossing over between homologous 
chromosomes, which leads to new allele combinations. We present a new approach that uses the allele frequency 
differences and the physical distance of neighboring polymorphisms to estimate the recombination rate from pool 
genotyping or sequencing. This allows a considerable cost reduction compared to conventional mapping based on 
genotyping or sequencing data of single individuals. We evaluated the approach based on computer simulations 
at various genotyping depths and population sizes as well as applied it to experimental data of 45 barley popula-
tions, comprising 4182 RIL. High correlations between the recombination rates from this new pool genetic map-
ping approach and conventional mapping in simulated and experimental barley populations were observed. The 
proposed method therefore provides a reliable genetic map position and recombination rate estimation in defined 
genomic windows.
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Introduction
Sexual reproduction involves meiotic recombination 
and the creation of crossing over between homologous 
chromosomes, which leads to new allele combinations 
[1]. The resulting phenotypic diversity is the basis of 
evolution and human selection [2]. Meiotic recombina-
tion is therefore essential in various research fields such 
as medicine, animal and plant breeding, conservational 
and evolutionary genomics [2–8]. Especially in breed-
ing, the response to selection is strongly associated with 
the recombination rate. Therefore, increased recombi-
nation can enhance breeding and selection efficiency 
[9]. Besides, a high recombination rate could foster the 

dissociating of phenotypic and genetic variation [10] and 
affect reproductive barriers.

The exchange mentioned above between homologous 
chromosomes was first reported by T.H. Morgan, who 
identified novel allele combinations after crossing two 
Drosophila melanogaster strains [11–13]. Since then, 
incredible progress has been made in uncovering the 
molecular mechanisms of meiotic recombination [14, 
15]. Furthermore, interest increases in understanding the 
effect of environmental factors on the recombination rate 
(RR) or the inter- and intraspecies variation of RR (e.g. 
[15–18]).

Detecting differences in RR among environmental 
conditions, genetic backgrounds, or species requires the 
genotypic characterization of a representative number of 
genotypes of each treatment. The most frequently applied 
genotyping approach in this context is using SNP arrays. 
However, the main limitation of such approaches is that 
the costs increase linearly with the number of evaluated 
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genotypes. Furthermore, the number of loci typically 
genotyped with SNP arrays is limited to a few thousand 
variants [19–23]. This limits the resolution of the result-
ing genetic map, which hinders, e.g., studies on popula-
tions with a long history of natural or artificial selection 
[24]. Sequencing strategies like genotyping by sequenc-
ing [25, 26], exome capture [27, 28], whole-genome rese-
quencing [29, 30], or RNA sequencing [31, 32] are useful 
to increase the genome-wide variant density and cover-
age. However, such approaches applied to individual gen-
otypes have the same limitations as mentioned above for 
SNP array genotyping – the costs increase linearly with 
the number of studied genotypes.

The progress of sequencing techniques allowed the 
estimation of recombination events from linked read 
gamete sequencing [33]. Although this approach revealed 
promising results, the high experimental effort and asso-
ciated costs might prevent its implementation in exten-
sive recombination screening studies.

Our study proposes an alternative approach to over-
come the burden of either high costs, low variant densi-
ties, or low genotype count. The proposed method allows 
the estimation of the RR from pooled genotype samples. 
In this situation, any user-defined quantity of genotypes 
can be pooled without increasing the monetary costs of 
genotyping or sequencing. Our approach uses the allele 
frequency differences and the physical distance of neigh-
boring polymorphisms to estimate the RR, an idea ini-
tially proposed for situations with a linked locus under 
selection that causes a fitness differential [34].

The objectives of our study were

 i. to assess the accuracy of estimated genetic maps 
and RR from pool genotyping based on computer 
simulations,

 ii. describe a best practice guideline for accurate RR 
extraction from pool genotyping and sequencing, 
and

 iii. apply the RR estimation on experimental popula-
tions of barley

Results
Raw pool genetic map (PGM) calculation from simulated 
populations
We simulated 1260  F2 populations with various genotyp-
ing depths and population sizes. The simulations were 
performed based on a consensus genetic map calculated 
for 4182 recombinant inbred lines from 45 barley HvDRR 
populations [18].

The genome-wide SNP allele frequency observed in 
the simulated populations deviated from the expected 
0.5 (Supplementary Figure  1). The average deviation 

was highest in small populations (50 genotypes – 0.04, 
standard deviation = 0.03). It decreased exponentially 
to a genome-wide average of 0.003 (sd = 0.002) for the 
populations consisting of 10,000 genotypes.

Based on the allele frequency deviation of pairs of 
physically neighboring SNPs and their physical dis-
tance, we estimated the raw pool genetic map (PGM) 
and calculated the PGM recombination rate  (RRPGM) 
for 50 MB windows across the genome (Fig.  1). The 
average correlation coefficient of the RR derived from 
the consensus genetic map  (RRconsensus) and the  RRPGM 
was r = 0.894 across all genotyping depths. The low-
est correlation was observed when only 500 markers 
were used for genotyping the population (r = 0.819, 
Table 1). Generally, a continuous increase in the corre-
lation between  RRPGM to  RRconsensus was observed with 
increasing genotyping depth, where a maximum Pear-
son correlation of 0.994 was observed for a genotyping 
depth of 42,077 (Table 1). Despite the above described 
high correlation coefficients between  RRconsensus and 
 RRPGM, we observed that the average PGM to consen-
sus genetic map position ratio was 0.0093, indicating a 
significant underestimation of the overall PGM length 
and  RRPGM (Fig.  2). Additionally, the PGM’s standard 
deviation across all samples was 0.01–1,1 times the 
average genetic map length ratio. Therefore, we investi-
gated the effect of the genotyping depth and the popu-
lation size on the length of the PGM and the accuracy 
of the  RRPGM estimation. We observed a shorter PGM 
in those simulated samples with a low genotyping 
depth and an almost linear increase in map length with 
increasing genotyping depth (Fig.  3A). Analogously, 
the population size influenced the overall extent of the 
genetic map length and  RRPGM. We noticed a decrease 
in genetic map length with increasing population size 
(Fig. 3B). In contrast to the genotyping depth, no effect 
of the population size was observed on the correlation 
between  RRPGM to  RRconsensus.

In order to obtain a PGM with a length as close as pos-
sible to that of the consensus map, correction approaches 
were investigated. We evaluated the use of two models 
that included effects for the genotyping depth and pop-
ulation size: a linear and a non-linear model. While the 
linear model revealed a log-likelihood of 10,332 and an 
AIC of 20,672, the non-linear model resulted in a log-
likelihood and AIC values 30 and 26% lower than that 
of the linear model, respectively. This was accompanied 
by a Pearson correlation between the  RRPGM and the 
 RRconsensus of 0.635 for the linear model and 0.998 for the 
non-linear model (Supplementary Figure  2). Therefore, 
we used the latter to correct the SNP’s genetic position 
on the PGM to a non-linear adjusted pool genetic map 
position (nPGM).
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Non‑linear adjusted pool genetic map and derived 
recombination rate
After utilizing the above described non-linear adjust-
ment, the nPGM estimated genetic map positions devi-
ated marginally from the consensus map (Fig. 2). Across 
all tested samples, each marker’s average nPGM to con-
sensus map position ratio was 1.03, which was very close 
to the ratio of the Haldane genetic map (HGM) to con-
sensus map (ratio = 1.00). HGM is the genetic map recal-
culated from simulated samples by the Haldane mapping 
approach. In addition, nPGM resulted in a lower relative 
standard deviation across all population sizes and geno-
typing depth than PGM (sd = 0.014).

To compare the  RRHGM and  RRnPGM to the  RRconsensus, 
we calculated the RR in genomic windows of 50 MB for 
all replicates of the simulated samples with a population 
size of 50, 500, and 2000 at all genotyping depths. We 
observed significant RR correlations between HGM and 
the consensus map across all tested SNP and genotype 

Fig. 1 Workflow of performed analysis and steps to retrieve a recombination rate (RR) estimate from pooled samples. Box outline color and fill color 
refer to the same group of performed calculations

Table 1 Evaluation of the precision and accuracy of the adjusted 
pool genetic map derived recombination rate  (RRnPGM) in 
comparison to  RRconsensus on varying levels of the genotyping 
depth

SD Standard deviation, RMSE Root mean square error

Genotyping 
depth

RMSE Pearson correlation

average SD average SD

500 0.8597 0.00027 0.387 0.1037

1000 0.4596 0.00029 0.446 0.0939

2000 0.2526 0.00028 0.787 0.0357

5000 0.1168 0.00026 0.835 0.0406

10,000 0.0673 0.00023 0.925 0.0150

15,000 0.0510 0.00020 0.928 0.0120

20,000 0.0405 0.00018 0.941 0.0080

30,000 0.0312 0.00015 0.941 0.0080

42,077 0.0250 0.00014 0.950 0.0070
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levels (correlation test p  < 2 ×  10− 16), with an overall 
Pearson correlation of 0.973. The correlation increased 
to 0.999 when excluding those samples with a genotyp-
ing depth below 10,000 markers (Fig.  4B). Similarly, 
we observed an average Pearson correlation of 0.913 
between the  RRnPGM and  RRconsensus for those samples 
with a genotyping depth ≥ 10,000 (Fig. 4B). Furthermore, 
we noted a significant effect of the number of mark-
ers in the 50 MB windows on the correlation coefficient 

and the RMSE in the  RRHGM and  RRnPGM estimations 
(p < 0.0001, Fig. 4A). The RMSE of nPGM decreased by a 
factor of four in genomic windows with more than 1000 
markers compared to windows with less than 100 mark-
ers. In contrast, the RMSE decrease was only 1.17 times 
for HGM for the same comparison. Analogously, sam-
ples characterized by a low genotyping depth resulted 
in a lower SNP density in genomic windows and, thus, 
resulted in an increased deviation of  RRnPGM (Fig.  4C). 

Fig. 2 Effect of genotyping depth on the accuracy of the genetic position in PGM estimations. A ratio of PGM (blue), nPGM (golden), and HGM 
(turquoise) genetic map position compared to the true map position, namely the consensus genetic map, was calculated for each marker. A level of 
1 indicates a perfect position match (dashed line). The error bars indicate the standard deviation over the replicates. Sub figures present the impact 
of different population sizes. HGM was calculated from individual genotyping, while (n)PGM was calculated from pooled genotyping. nPGM was 
PGM adjusted by least squares, PGM is unadjusted

Fig. 3 Correlation coefficient of the recombination rate between PGM and consensus map (petrol), map length (light green), and the correction 
factor (yellow) for the PGM (Step 7 & 8 from Fig. 1) for varying genotyping depths (A) and the population sizes (B). Lines indicate the smooth loess 
curve
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In the last step, we compared the absolute recombina-
tion rates on the chromosomal scale among the three 
approaches (Fig. 4D). The RR was highly similar between 
HGM and the consensus map throughout the entire 
genome (r > 0.98). In analogy, we observed high simi-
larities in the pericentromeric regions when comparing 
nPGM and the consensus map. Nevertheless, the non-
pericentromeric regions revealed a more pronounced 
deviation of RR – especially on the long chromosomal 
arms. However, the Pearson correlation coefficient 
between the  RRnPGM and  RRconsensus remained high with 
 rnon-pericentromeric = 0.782 vs.  rpericentromeric = 0.915 for sam-
ples with a genotyping depth ≥ 10,000 across all chromo-
somes and replicates. However, the deviations of the RR, 
estimated from nPGM compared to that of the consensus 
map, only minorly altered the marker’s genetic map posi-
tion (Fig. 4E).

nPGM estimation in experimental populations
In addition to simulations, we were interested in using 
the nPGM approach in experimental populations. There-
fore, we applied the nPGM strategy to a set of 45 segre-
gating spring barley populations [33], characterized by an 

average of 87 recombinant inbred lines (RIL) per popula-
tion and an average number of 1639 polymorphic SNPs. 
Pooled genotyping information for all populations was 
derived from the available genotyping data of individual 
RIL, and the nPGM and nPGM-derived RR were calcu-
lated and compared to HGM-derived values.

Across all 45 populations, an average Pearson correla-
tion of 0.829 was observed between the  RRHGM and the 
 RRnPGM in 50 MB windows (95% Confidence interval 
r = 0.37:0.95, correlation test p < 5 ×  10− 10; Fig. 5B).

We observed a similar range of map length across all 
populations for the nPGM approach (90% confidence 
interval 873:1670 cM) compared to the HGM (90% con-
fidence interval 1242:2449 cM) (Fig.  5A). Nevertheless, 
the overall map length was, on average, across all popula-
tions, 635 cM longer in HGM than PGM (Fig. 5B). Spear-
man rank sum correlation between HGM and nPGM 
revealed a high correlation of 0.83, whereas the Pearson 
correlation was 0.61.

To evaluate whether the accuracy of the nPGM 
approach is sufficient to detect differences among the 
 RRHGM and  RRnPGM, we used the genome-wide  RRnPGM 
to estimate a general recombination effect (GRE) for each 

Fig. 4 Assessment of recombination rate; A The recombination rate’s RMSE between HGM and the consensus map and nPGM and the consensus 
map regarding marker count in windows. B Average correlation coefficient of the nPGM and HGM recombination rate compared to the 
consensus map in 50 MB windows regarding variant genotyping depths. C Deviation of the cM/MB recombination rate, assessed by nPGM, from 
the consensus map. Value depends on the physical position (x-axis), the genotyping density (color), and the population (shape). The genome is 
divided by chromosomes (gray blocks on top) D Observed recombination fraction (square rooted for better visualization purpose; cM/MB) for 
nPGM (gold), Haldane genetic map (turquoise), and the consensus map (gray). 42.077 variants and a genotyping depth of 2000 were used to 
simulate the population. For this set, the recombination rate in 50 MB windows was calculated. E Estimated genetic map position (y-axis) in relation 
to the physical position (x-axis) for the same sample as illustrated in D. The genetic map position is the result of aggregating the single marker 
recombination rate along the chromosomes. Color scheme identical to subfigure D
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of the 23 parental inbreds, as was proposed by [18]. This 
step revealed considerable variations in the GRE among 
parental inbreds, indicating that some inbreds result in 
a higher  RRnPGM in their progenies than others (Suppl. 
Figure 4). The direct comparison of the GRE, calculated 
from  RRnPGM, with the  RRHGM GRE from Casale et  al. 
(2021), revealed a rank-sum correlation of 0.877, indi-
cating high similarities (Pearson correlation = 0.803). In 
the group of the ten genotypes with the highest GRE, 
nine matched between nPGM and HGM. Similarly, eight 
of ten genotypes with the lowest GRE were identical 
between nPGM and HGM.

Effect of sequencing bias on nPGM accuracy
Next, we evaluated the genetic map estimation from 
pooled sequencing data using simulated reads for 42,077 
and 10,000 SNPs and three sequencing depths. Limi-
tations of the simulation software did not allow reli-
able simulations with more than 100 genotypes; thus, we 
evaluated population sizes of 50 and 100. After simula-
tion, variant calling, and allele frequency estimation, the 

genetic map of the simulated pool sequencing was cal-
culated  (nPGMps), and the corresponding  RRnPGMps was 
assessed.

While the population size and genotyping depth did 
not significantly  (PpopSize  = 0.21;  PgenotypingDepth  = 0.56) 
affect the  RRnPGMps estimation accuracy, the sequenc-
ing depth and the genomic window size significantly 
 (PseqDepth < 0.0001;  PgenWindow < 0.001) impacted the accu-
racy. When  RRnPGM and  RRnPGMps were compared based 
on a shallow sequencing depth of 10 reads per locus, we 
observed a low Pearson correlation of 0.26 between them 
(Fig. 6B.i). However, the correlation coefficient increased 
to 0.88 and 0.9 for sequencing depth of 50 and 100 reads/
locus (Fig. 6A.i & B.i).

The correlation coefficients between  RRnPGMps and 
 RRnPGM, estimated in genomic windows of 10 MB, were 
about 90% lower than that observed for 50 MB windows. 
This was caused by the low SNP density in the 10 MB 
windows. Generally, the highest correlation was observed 
for a read depth of 100 in 50 MB windows (r = 0.94, 
Suppl. Figure 5).

Fig. 5 Comparison of HGM to nPGM for 45 HvDRR populations. A Compare map length between HGM (x-axis) and nPGM (y-axis). The gray dashed 
line indicates expectation, while the blue line indicates a loess curve over the black data points. The gray area illustrates the 95% confidence 
interval. B The total map length for each population across all seven chromosomes. The mapping algorithm is differentiated by shape. The color 
denotes the genome-wide recombination rate correlation between the HGM and nPGM for the particular population, based on the recombination 
rate of 50 MB windows
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Similar patterns of Pearson correlation coefficients 
were observed when comparing  RRnPGMps and  RRconsensus. 
The highest correlation was detected for genomic win-
dows of 50 MB and a sequencing depth of 100 (r = 0.912, 
Fig. 6A.ii & B.ii). In contrast to the comparison between 
 RRnPGM and  RRnPGMps, where the correlation was higher 
for 10,000 than 42,077 variant loci, a higher correlation 
coefficient (r = 0.918) was observed for the scenario 
with 42,077 variant loci compared to that with 10,000 
variant loci (r = 0.863) when considering the comparison 
between  RRnPGMps and  RRconsensus.

The assessment of the absolute levels of the  RRnPGMps 
based on the different population sizes (Fig.  6C) revealed 
no influence of this parameter (Fig.  6C.i, 1:1 ratio to 
 RRnPGM). However, the genotyping depth strongly 
impacted the absolute value of the  RRnPGMps (Fig. 6C.ii, 4:1 
ratio to  RRnPGM).

Similarly, we observed a mean overestimation of 
 RRnPGMps to  RRPGM of 16.7 times (Fig. 6A, axis scales). 
This observation indicates that the sequencing proce-
dure likely adds extra allele frequency deviations.

Fig. 6 Pool sequencing  (nPGMps) to estimate recombination rates (RR) in genomic windows of 50 MB. A.i Correlation plot of the RR from pooled 
genotyping  (RRnPGM, y-axis) compared to the RR from simulated pool sequencing  (RRnPGMps, x-axis) at 100 reads coverage for 42,077 variant loci 
at population sizes of 50 and 100. A.ii Similar to A.i, but comparing the  RRnPGMps to  RRconsensus. The number of variants in the genomic windows 
is illustrated by color, while the chromosomes are differentiated by shape. A larger scale of cM/MB was observed for  nPGMps than nPGM and the 
consensus map. B The average RR across 20 simulated replicated samples at given sequencing depth (x-axis) and the associated genomic window 
(y-axis). The samples are differentiated by color. B.i Correlation coefficient between  RRnPGM and  RRnPGMps. B.ii Correlation coefficient between 
 RRnPGMps and  RRconsensus. C Illustrating the effect of different genotyping depths on the correlation coefficient of RR on genotyping (C.i) and pool 
sequencing level (C.ii). C.i Comparing  RRnPGM between samples with 42,077 (y-axis) and 10,000 (x-axis) variants genotyping depths; C.ii Similar to C.i 
on  RRnPGMps
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Discussion
Need for cheap RR estimation
The accurate and cost-efficient RR estimation of popu-
lations, lines, species, or genetic material that experi-
enced different environmental cues is a technique many 
research fields could benefit from [35–39]. Commonly 
used approaches to estimate recombination rates require 
both the haplotype and allele frequency [40]. This infor-
mation is typically derived from genotyping or sequenc-
ing of single individuals. However, crossing-overs per 
chromosome and meiosis are typically limited to one to 
four [28]. Therefore, many individuals must be genotyped 
to obtain accurate recombination rate estimations [41].

Concept of pool‑based RR estimation and its evaluation 
using computer simulations
This study describes an approach for RR estimation that 
does not require genotyping or sequencing of single indi-
viduals – without considerable sacrificing accuracy. The 
method relies on two sources of information: (i) the allele 
frequency at each polymorphic locus and (ii) the physical 
position of these loci. We followed the idea that the allele 
frequency difference of two neighboring polymorph loci 
indicates a crossing-over [34]. Thus, our approach does 
not require collecting haplotype information by genotyp-
ing single individuals.

The required allele frequency variations across the 
genome are caused by the combination of migration, 

selection, drift, or gene flow [42]. However, even unin-
tended selection or drift can result in traceable allele fre-
quency deviations in populations (Suppl. Figure 1).

The extent of cross-overs can be quantified based 
on this concept, but the effective RR cannot be derived 
from allele frequency variations alone. For example, 
recombination between two loci with a distance of one 
Mb is much less likely than between two loci separated 
by 10 Mb. Suppose the allele frequency variation in both 
situations is identical. In this case, the recombination 
likelihood in the small interval is much lower; therefore, 
the local RR must be higher than that of the big interval. 
Accordingly, we scaled the allele frequency deviation by 
the  log10 of the physical distance of the considered loci to 
calculate parameters related to the local RR (Eq. 1).

The first objective of our study was to propose an 
accurate and reliable method for genetic map position 
and RR estimation in defined genomic windows. For a 
genotyping depth above 10,000 markers, we observed a 

high correlation coefficient (r > 0.9) between  RRPGM and 
 RRconsensus (Fig.  3). Nevertheless, the actual PGM map 
length and the extent of  RRPGM were (i) underestimated 
and (ii) depended on the genotyping depth and popu-
lation size (Figs.  2 & 3). Exemplarily, the average map 
length in the simulated samples with only 500 SNPs was 
20 times shorter than the map length of samples with 
42.077 SNPs (Fig. 2). This can be explained thereby that 
with increasing genotyping depth, undetected recombi-
nation in maps with fewer loci will be observed, which 
increases the recombination rate. From this observation, 
we concluded that it is crucial to integrate the number of 
polymorph loci in the  RRPGM estimation. Especially when 
only a few polymorph loci are available, the variation in 
genotyping depth between two populations might affect 
the comparison. In addition, we also observed an effect 
of the population size (Fig.  3) on  RRPGM. Fewer geno-
types resulted in a higher deviation of the actual allele 
frequency, which resulted in a higher  RRPGM estimate 
than expected. In analogy to the genotyping depth, this 
might not be relevant in weakly unbalanced experimental 
designs, but an adjustment might prevent the overesti-
mation of  RRPGM.

Therefore, a linear and a non-linear model were exam-
ined to adjust the extent of  RRPGM by considering the 
genotyping depth and the population size. The non-lin-
ear least square model performed superior to the linear 
model (Suppl. Figure 2). The final model implemented in 
the further comparisons was:

Using this model’s result, multiplied with the outcome 
of eq. 1, provides an unbiased estimation of the recombi-
nation rate. This adjustment of PGM to nPGM resulted 
in genetic maps having the same map extension as HGM 
(Fig. 2), regardless of the genotyping depth (Σ SNPs) or 
population size (Σ Genotypes). Furthermore, we could 
show that the correlation coefficient between  RRnPGM 
and  RRconsensus was only slightly lower than the correla-
tion coefficient between  RRconsensus and  RRHGM (Fig.  4A 
& C). Especially when the genotyping depth was high, 
the correlation coefficients were almost identical. An 
even higher correlation coefficient between  RRnPGM 
and  RRHGM was observed than between  RRnPGM and 
 RRconsensus. This can be explained thereby that the simula-
tion of populations introduced a measurable simulation 
error. These observations indicated that RR estimation 
from pooled samples is possible with high accuracy at 
dramatically reduced costs.

n = 7958.92 ∗ e−0.5401∗log2 SNPs
∗ e0.3491∗log2 Genotypes

+
691.0495

SNPs
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In addition to the correlation of the recombination 
rates, we evaluated the accuracy of the  RRnPGM estima-
tion on a genome-wide scale. This analysis indicated an 
overestimation of the  RRnPGM in non-pericentromeric 
regions of the genome (Fig.  4D). This deviation is pre-
sumably caused by the different variant distribution of 
the SNP array in the non-pericentromeric compared 
to the pericentromeric region. Therefore, the observed 
overestimation of  RRnon-pericentromeric regions is only prob-
lematic if the RR is compared between different genotyp-
ing approaches.

Pool‑based RR estimation in experimental populations
The 45 HvDRR populations were characterized by 
varying genotyping depth (deviation of lowest to high-
est – 5.79x) and population sizes (variation of small-
est to largest– 3.76x). Therefore we applied the nPGM 
approach to adjust for genotyping depth and popula-
tion size. Although we used the nPGM model described 
above, we observed a map length that was, across all 
populations, about 33% lower compared to the HGM 
reported by Casale et al. (2021) (Fig. 5). This observation 
can be explained thereby that the experimental popula-
tions are RIL populations, while the model underlying 
the nPGM approach was established based on simu-
lated F2 populations. The total number of recombination 
events accumulated in the gametes of a RIL, after end-
less selfing generations, was about twice the number of 
such events in an F2 population [43]. Therefore, if the 
absolute value of the map positions is of interest, then the 
model underlying nPGM approach needs to be derived 
de novo for the population type under consideration. 
However, in analogy to the results of the simulations, 
the map length variations did not affect the correlation 
of the  RRHGM to  RRnPGM, which was r > 0.8 for 23 of 45 
populations  (rSpearman  > 0.6 for 41 populations, Fig.  5B). 
We explored potential reasons for these deviations and 
observed that the populations with a correlation of the 
 RRHGM to  RRnPGM < 0.6 were characterized by a median 
inter-marker distance that was about 40% lower than that 
of the other populations (Suppl. Figure 6). We tested this 
effect for statistical significance in a linear model and 
retained a significant effect of the genome-wide median 
inter marker distance and standard deviation on the 
Pearson correlation of  RRnPGM to  RRHGM  (pMedian < 0.003; 
 pSd  < 0.002). Similarly, we observed the same effect on 
the Spearman correlation  (pMedian = 0.001;  pSd = 0.0015). 
Contrary, no genotyping depth or population size effect 
was observed  (pGD = 0.34;  pPS = 0.33). We conclude from 
this observation that a skewed distribution of genomic 
marker distances can significantly affect the  RRnPGM esti-
mation. One possibility to overcome this problem is to 

sample the loci such that all loci with a distance below 
10,000 bp are omitted for further progression with the 
nPGM approach. However, this requires further research.

Subsequently, we were interested in comparing the 
general recombination estimate (GRE) derived from 
the nPGM approach with that from HGM. This param-
eter summarizes the RR of a parental genotype in com-
bination with several parental genotypes and is highly 
relevant for breeders of all crops, exemplarily in intro-
gression breeding [8]. Compared to the HGM-based GRE 
of Casale et  al. (2021), the GRE calculated from nPGM 
resulted in almost the same ranking of the involved 23 
parental inbreds (Suppl. Figure  4). Deviations in the 
ranking between nPGM and HGM-derived GRE might 
be due to discrepancies between the genetic and physical 
order of the underlying marker (Suppl. Figure 3), which 
either can be artifacts from the HGM approach or are 
structural variants in the genomes of some of the paren-
tal inbreds.

These observations together illustrated the validity and 
accuracy of RR estimates from nPGM also in experimen-
tal populations.

Pool‑based RR estimation by sequencing
For the above-described results, we derived pool geno-
typing data from genotyping information of individu-
als as a starting point for evaluating our approach. This 
procedure results in the upper limit of the accuracy as it 
neglects the variation in allele frequency that is caused 
by its estimation in a pool. One possibility would be to 
consider this aspect in our simulations of genotyping 
with an SNP array. However, with today’s sequencing 
costs [43], applying our method to datasets created from 
the sequencing of pooled samples is even more economi-
cally attractive. Therefore, we estimated the accuracy 
of recombination rate estimation from simulated pool 
sequencing samples. The correlation between  RRconsensus 
and  RRnPGMps was, at a coverage of 10 reads per locus, at 
a rather low level of about 0.3 (Fig.  6B.ii). However, we 
observed that increasing the read dept. from 10 to 50 
reads per locus reduced the median variation of simu-
lated pool sequencing compared to the RR from pool 
genotyping by 40% (Supple. Figure 5).

Similarly,  RRconsensus and  RRnPGMps correlation 
increased to 0.93 in 50 MB genomic windows at 
50x coverage. A further increase of the read cover-
age to 100 did not result in similarly high additional 
precision, indicating that saturation was reached. 
The second aspect that was studied, in addition to 
the sequencing depth, was the size of the genomic 
window for which the RR was estimated. At a 
sequencing depth of 100 reads, the median error 
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was reduced by 50% when comparing the 10 to 
25 MB genomic windows (RMSE 10 MB = 0.0004; 
50 MB = 0.0002). The error was only further 
reduced by 2% comparing the RMSE of 25 and 
50 MB windows (Supple. Figure  5). The choice of 
a reasonable window size for summarizing the RR 
is impacted by the number of variants present in a 
window. In our simulations, we assumed conserva-
tively 10,000 and 42,077 genome-wide variant loci. 
However, a considerably higher number of poly-
morphic loci in most species will be identified when 
sequencing strategies are applied. For barley, e.g., 
more than 57 Mio. SNPs were collected in a vari-
ant database [44], indicating that more than 1350x 
variants than those used in our study are already 
known. Therefore, we expect that the window size 
can be considerably decreased down to less than 
1 MB in future experimental studies. This in turn 
allows to increase the resolution.

Besides the high correlations of  RRnPGMps to  RRnPGM, 
we noticed a significant overestimation of  RRnPGMps com-
pared to  RRnPGM (16.7 times higher, Fig. 6A). This obser-
vation might be due to the additional allele frequency 
variation between adjacent loci caused by sequencing 
errors. However, the above-described overestimation 
only matters when comparing the RR among different 
methods, like  RRHGM to  RRnPGMps.

Furthermore, we also observed a variation in the 
scale of RR between the genotyping depth levels. The 
extent of  RRnPGMps increased with the genotyping depth 
(Fig.  6C.ii). Higher genotyping depth might be associ-
ated with a smaller inter polymorphism distance and, 
therefore, might lead to a further increased overesti-
mation of the  RRnPGMps. To generate a comparison on 
the same scale, a simple linear model correction for 
the  RRnPGMps might be suitable to compare it to other 
approaches’ derived RR. Apart from this overestima-
tion of the RR, the  RRnPGMps,  RRnPGM, and  RRconsensus 
indicated high similarities in the genomic window-base 
recombination estimation (Fig. 6B).

Comparison of the nPGM approach to other approaches 
of RR estimation
Generally, the observed accuracy of our approach of esti-
mating the RR in pooled samples might overcome issues 
of related approaches, like high costs, and allow a high 
throughput screening for GRE.

Other attempts to solve the dilemma of high costs 
have been proposed earlier. For example, [45] proposed 
an ultra-low individual sequencing strategy, followed by 
an imputation step to recover none sequenced regions 
in the library. Nevertheless, the imputation might also 

introduce errors in the recombination estimation, mak-
ing accurate recombination estimation challenging.

Other approaches minimize the number of test sam-
ples by implementing Markov Coalescent models or 
machine learning strategies trained in different subsam-
ples or even species [46, 47]. Few single genotypes need 
to be sequenced in these approaches to estimate the 
genetic map to retain haplotype information in the sam-
ple. This is based on applying genetic maps from related 
species might be a useful approach to estimate the RR, 
especially when few samples or no reference genome are 
available or costs should be reduced. In situations where 
no reference genome is available, our  nPGMps method 
cannot be performed and is inferior to these methods. 
Nevertheless, the RR might differ from one species to 
another [48], and our proposed  nPGMps approach allows 
differentiating populations of the same species with a 
much higher resolution.

Sun et al. (2019) showed that the unexpected breaks in 
linked read sequencing of  F1 plants’ pollen could denote 
recombination events. While this approach is complex 
and costly to perform, generating a pooled sample with 
equal tissue contribution of each genotype from leaves or 
seeds underlying our method is technically easy. Further-
more, our method allows genotyping of undefined popu-
lation sizes without cost inflations. The  nPGMps method 
does not demand more than 10 to 100 reads coverage per 
locus, while the pool-linked read sequencing of haploid 
cells requires ultra-high sequencing depth across all the 
pollen. Furthermore, pool sequencing prices can be fur-
ther decreased when the sequencing depth is reduced 
[34, 49]. The only disadvantage of our method is that it 
is not based on the F1 generation as the approach of Sun 
et al. (2019) but requires the establishment of at least the 
F2 generation. However, that is possible for most species 
without big space limitations and is more than balanced 
by the considerably lower costs.

Implementation of the (n)PGMps approach in other genetic 
materials or species
In order to generate a genome-wide genetic map for 
a species of interest using the PGM approach, the fol-
lowing prerequisites have to be fulfilled. First, a refer-
ence sequence must be available to align short reads 
to annotated positions. Second, a pool sequencing 
strategy has to be chosen that ideally allows to remove 
duplicated reads (unlike restriction-site based geno-
typing by sequencing) and is unbiased regarding the 
expression level (like RNAseq). This is because such 
sequencing procedures can bias the accurate allele 
frequency estimation and therefore are less suitable 
for pool sequencing [50] and  RRnPGMps estimation. 
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Consequently, we propose whole-genome sequencing 
as the most convenient method to generate high-con-
fidence allele frequency estimates (Table  2 – 1.1-1.3). 
Furthermore, a sequencing depth of approximately 
100x or higher will result in sufficiently accurate allele 
frequency estimations. Nevertheless, a 100x coverage 
is associated with high monetary costs, especially for 
crop species with large genomes, so one might want to 
sequence a pool on a lower coverage level (exemplarily 
10x, Table  2 – 2.1-2.7). SNP allele frequency aggrega-
tion to a haplotype (window) frequency is suitable for 
increasing precision in such cases. The haplotype crea-
tion can either be based on defined genomic windows 
[49] or on genomic features, like genes [51]. However, it 
must be pointed out that such haplotype aggregations 
or generally lower counts of detected variant loci (like 
GBS) will reduce the RR resolution (cf. Table 2 – 1.4).

Finally, in case the absolute map length of the PGM 
is of interest, a genetic map of the variants under 
consideration is required to scale the observed RR. 
This step is required, as the presented model cannot 
accommodate the entire variety of sequencing-induced 
allele frequency deviations and, thus, was not included 
in the model fitting. Instead, we propose identifying 

the typical genetic map extension size in the species of 
interest and performing a linear scaling of the genetic 
map position and recombination rate according to 
Table 2, 3.3.

Beyond the relative RR and map length estimations, 
this case study presented a method to overcome vari-
ations in genotyping depth and the population size by 
exploiting computer simulations. We recommend the 
map length adjustment by genotyping depth and popu-
lation size only in cases where the populations to com-
pare are characterized by highly different numbers of 
genotypes, the polymorphism count is highly variant, 
or sequencing depth varies.

Conclusion
This case study presents a method that allows a cost-
efficient estimation of genetic maps and the recombina-
tion rate in genomic windows. Our approach exploits the 
allele frequency and the physical position information. 
Furthermore, based on computer simulations and experi-
mental data, we have shown that the proposed method 
allows an accurate assessment of RR. Finally, we have 
explained how to apply the procedure for other species 
and discussed potential pitfalls. The functions presented 

Table 2 Best practice guideline to estimate the recombination rate from pooled sequencing data
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in this publication can be obtained from GitHub https://
github.com/mischn-dev/popRR.git for both R and Julia 
environments, using a filtered VCF file as input.

Methods
Consensus map‑based population simulations
Our simulations were based on the consensus genetic 
map generated by Casale et al. (2021). In brief, 45 recom-
binant inbred line populations have been created by 
crossing 23 parental inbreds in a double round-robin 
design [52]. Each of the 4182 RIL was genotyped using 
a 50 K SNP array [23], and the 45 genetic maps have 
been integrated. The resulting consensus map comprises 
42,077 SNPs with a genetic and physical position [18] 
(Fig. 1, steps 1–3).

For the simulations, two virtual parental genotypes 
with different alleles for each of the 42,077 loci were 
generated and alphaSim [53] was used to derive F2 
populations (F1 by crossing, F2 by selfing) with various 
populations sizes (50; 100; 500; 1000; 2000; 4000; 10,000 
genotypes), and various genotyping depths (500; 1000; 
2000; 5000; 10,000; 15,000; 20,000; 30,000; 42,077) across 
the entire genome. These simulations were repeated 20 
times for each SNP–genotype count combination (i.e. in 
total 1260 populations, Fig.  1 – Step 4). For each repli-
cate, a different set of SNPs (except the 42,077 sample) 
was sampled.

Recalculation of genetic maps from simulated populations 
based on Haldane’s mapping function
To estimate the error introduced by the simulation pro-
cess to the consensus map, we recalculated the Haldane 
genetic maps for all 20 replicates in populations with 50, 
500, and 2000 genotypes. For computational reasons, we 
ordered the SNPs first by their physical position to real-
ize a correct starting point. Subsequently, the Haldane 
genetic map (HGM) was calculated using the qtl package 
based on Haldane’s mapping function at an error prob-
ability of 0.0001 [54]. Finally, the RR was calculated as the 
median centiMorgan per megabase pair [cM/MB] value 
in 50 Mb windows across all variants in this window 
(Fig. 1, step 6.1).

Genetic maps from pooled samples
The alleles in a segregating population derived from two 
parental inbreds are expected to have a frequency of 
0.5. However, due to selection or random sampling, the 

allele frequency at a locus can deviate from this expected 
frequency. Notably, the deviating allele frequency is 
expected to attenuate distally toward the expected fre-
quency due to increasing crossover events between the 
locus and gradually more distal loci [55]. Therefore, the 
allele frequency and its rate of change should be related 
to the genetic distance. The genetic map can be generated 
with as little as one library preparation since genome-
wide allele frequency can be determined using whole-
genome genotyping or sequencing of a pool of individuals 
from the population of interest [53]. Our study evaluates 
whether allele frequency differences across the genome 
can be used to estimate RRs and genetic maps, even 
in situations without substantial fitness differences.

We dismissed any individual genotype information 
after calculating the allele frequency at each SNP across 
all genotypes by pooling individuals’ genotypic informa-
tion (Fig. 1, step 5.1). We estimated the factor KM1M2 as:

where ΔAFM1M2 was the allele frequency deviation of 
the considered physically neighboring SNP pair (M1, 
M2) and  log10 Δdist the decadic logarithm of the physi-
cal distance between them. The factor KM1M2, which 
comprises the two SNPs’ relative recombination rate, 
was added up along the chromosome to generate a pool 
genetic map (PGM, Fig. 1, step 6.2). As the absolute size 
of factor KM1M2 can not be interpreted, it needs to be 
scaled first. In the first step, we adjusted the PGM using 
the adjstart correction factor, which was calculated as the 
ratio between the length of the consensus map across all 
chromosomes  (MLref) in cM and the sum of the PGM 
across all chromosomes  (MLPGM). An adjustment value 
adjstart was calculated separately for each simulated sam-
ple (Fig. 1, steps 7 & 8).

The above-described correction factor adjstart was used 
to estimate the effect of the genotyping depth (Markers) 
and population size (Genotypes) on the map length in 
order to realize in the next step a correction of the map 
length for these two factors. Therefore, we evaluated a 
simple linear model without intercept (Eq. 2; Fig. 1, step 
8.1):

and a non-linear least square model (nls, Eq.  3; Fig.  1, 
step 8.2):

(1)KM1M2 =
�AFM1M2

log10�DistM1M2

(2)adjstart = a ∗

∑

Markers + b ∗
∑

Genotypes

(3)adjstart = α ∗ eβ∗log2
∑

Markers
∗ eγ ∗log2

∑

Genotypes
+

θ
√

∑

Markers

https://github.com/mischn-dev/popRR.git
https://github.com/mischn-dev/popRR.git
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and compared them concerning AIC and log-likelihood 
to identify the best fitting model.

The nls model described above comprised four sub 
transformations (α, β, ϒ, Θ) and the SNP and geno-
type count were  log2 transformed. For both models, the 
parameters were estimated across all simulated 1260 
populations. Based on these estimates, the correction 
factor  adjstart was calculated using each population’s gen-
otyping depth and population size (Fig. 1, step 8.3).

According to the observed log-likelihood and AIC, the 
nls model was used in all following analyses and multi-
plied to each SNP’s K value to generate a corrected PGM 
estimate (nPGM), (Eq. 4; Fig. 1, step 9).

RR estimation from adjusted pool genetic map (nPGM)
RR [cM/MB] was calculated from the nPGM for each 
SNP pair. Next, an average RR value was calculated for 
50 Mb windows, applying a sliding window approach 
(window size 50 MB, slide 0.5 x window size).

Finally, the RR of the simulated populations with 50, 
500, and 2000 genotypes on all genotyping depths was 
compared between (i) nPGM  (RRnPGM) and the consen-
sus map  (RRconsensus) (ii) HGM  (RRHGM) and the consen-
sus map (Fig.  1, step 10), and (iii) nPGM  (RRnPGM) and 
HGM  (RRHGM).

nPGM calculation in experimental populations
The previously described 45 HvDRR populations were 
used to estimate the nPGM in experimental populations 
and compare the  RRnPGM to the  RRHGM. The HGM was 
calculated as described by Casale et  al. (2021). For the 
nPGM construction of each population, monomorphic 
SNPs and SNPs with identical or missing physical posi-
tions were omitted. In addition, SNPs with more than 
10% missing information were omitted as well. Finally, 
the allele frequency was calculated, and the nPGM was 
derived from it, as was described above. The nPGM was 
used to estimate the  RRnPGM (Fig. 1, steps II & II.i). The 
 RRnPGM estimate accuracy was assessed by comparing it 
to  RRHGM.

Impact of sequencing error on the pool genetic map 
estimation accuracy
In the above-explained simulations, the allele frequency 
was calculated from the genotypic information of indi-
vidual samples. However, the primary purpose of our 
nPGM approach was the recombination estimation from 
pool sequencing data. Therefore, based on the allele 
frequency of the individual genotyping simulations, we 
performed a pool sequencing simulation to estimate 

(4)K ′
= KM1M2 ∗ adjstart (nls)

the effect of both the sequencing and sampling error on 
the genetic map estimation accuracy using the nPGM 
approach (Fig.  1, step 11). Therefore, we selected four 
scenarios, characterized by a genotyping depth of 10,000 
and 42,077 markers and a population size of 50 and 100 
genotypes.

The simReads function of the Rsubread package [56] 
was used to simulate the sequencing data based on the 
allele frequency of the simulated populations and the 
barley reference genome (Barley Morex V2 pseudomol-
ecules [57]; Fig. 1, step 5.2). simReads created a fastq file 
with a locus coverage of approximately 3000 reads per 
locus. From this set, three sequencing depths were sam-
pled (10, 50 & 100 reads per locus) with ten replicates per 
combination of either 10,000 or 42,077 variants and 50 or 
100 genotypes (Sequencing depth x Genotyping depth x 
population size).

In the next step, the subsets of simulated 100 bp 
long paired-end reads were aligned to the Barley 
Morex V2 pseudomolecules reference genome by bwa 
mem [58]. Following, the reads were filtered by omit-
ting all reads with an alignment score below 60 using 
samtools [59]. Next, the variants were called from the 
aligned reads using samtools 1.8 mpileup and bcftools 
1.8 call [60], where all reads with a variant quality 
below 30 were omitted.

Finally, the allele frequency and physical positions 
were extracted and based on eq.  5, a pool sequencing 
derived nPGM, named  nPGMps, was calculated (Fig.  1, 
step11.1). Next, we estimated from the  nPGMps the 
 RRnPGMps and compared it in 10, 25, and 50 MB windows 
across the genome to the  RRconsensus and  RRnPGM. Fur-
thermore, the two variant levels (10,000, 42,077) were 
compared to assess the effect of the genotyping depth in 
the pooling strategy.

Estimation of general recombination effect of parental 
inbreds
We calculated the general recombination effect of each 
of the 23 parental inbreds based on the nPGM, and 
compared it against the values reported by Casale et  al. 
(2021). We used the same G-BLUP model to retain con-
sistency in comparing both HGM and nPGM approaches. 
If not mentioned differently, all analyses were performed 
in R 4.0.2 [61] and Julia 1.6.2 [62].
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Megabase pairs; Nls: Non-linear least square model; nPGM: Non-linear 
adjusted pool genetic map; nPGMps: Non-linear adjusted pool genetic map 
derived from pool sequencing; ML: Map length; PGM: Pool genetic map; RIL: 
Recombinant inbred line; RR: Recombination rate; SNP: Single nucleotide 
polymorphism.
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Additional file 1: Suppl. Figure 1. Deviation between observed and 
expected allele frequency (y-axis) for different numbers of genotypes per 
population (x-axis). The expected allele frequency value in an F2 popula-
tion of infinite size is 0.5 and was set as the expected allele frequency. 
The observed allele frequency results from simulating a population with 
a given genotype count by AlphaSim. Each dot presents one simulated 
population. A total of 1260 populations were simulated. Suppl. Figure 2. 
Linear model (magenta) and non-linear least square (turquoise) models 
to predict the impact of a population’s size and genotyping depth on 
the map extension (length). The model estimate on the y-axis is based 
on the pool genetic map estimation. Each point illustrates an individual 
population. The dashed line indicates the ideal fit. (step 8.1 & 8.2 in Fig. 1). 
Suppl. Figure 3. Marey map of genetic position (y-axis) against the physi-
cal position (x-axis) for all 45 experimental populations. The nPGM (coral) 
is compared against the HGM (blue). Chromosomes and populations are 
faceted. Suppl. Figure 4. The genome-wide general recombination effect 
for each parental inbred line, computed using a GBLUP model, based on 
the nPGM genome-wide RR observations. Suppl. Figure 5. The correla-
tion plot of the RR from pooled genotyping (y-axis) compared to the RR 
from simulated pool sequencing (x-axis) at 100 reads coverage in 10 MB 
(A) and 50 MB (B) genomic windows. Four samples, differing in marker 
or genotype count, are indicated by the numbers 1 to 4 for both A and 
B. The number of variants in the genomic windows is indicated by color, 
while the chromosomes are differentiated by shape. Suppl. Figure 6. The 
effect of the median marker distance on the  RRnPGM to  RRHGM correlation 
coefficients across all HvDRR populations. A - the effect of median marker 
distance (bp) on the Pearson correlation. B – the effect of the median 
marker distance on the Spearman correlation. C – the genome-wide 
distribution of inter-marker distance (bp) for four HvDRR populations, 
characterized by a low (yellow, HvDRR08, HvDRR43) and a high (turquoise, 
HvDRR11, HvDRR43)  RRnPGM to  RRHGM Pearson correlation.
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