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Abstract
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions
rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular
lignin deposition is critical for the structure–function relationship in each lignified cell type. Here, we describe the role of
xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells
in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin
deposition in these diverse cell types. By bringing together examples from different developmental contexts and different
plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.

Introduction
Back in the Silurian, some 400 million years ago, the
world was very different from the one we know now.
Plants had just started to colonize the land, developing
characteristics that enabled them to survive in a dry,
CO2-rich environment. Bryophytes, including mosses, liv-
erworts, and hornworts, dominated the landscape (see
Box 1). However, these plants were still highly dependent
on water and humid conditions for their survival and re-
production. In the early Devonian, the evolution of a stiff,
hydrophobic lignin polymer to reinforce plant cell walls
was a game-changer. This allowed plants to develop a lig-
nified vascular system to transport water far above the
ground. Taking advantage of the newly acquired rigidity
provided by lignin, vascular plants could grow taller and
colonize novel ecological niches (Weng and Chapple,
2010). Although there is evidence of lignin-like material
in algal lineages, it is the presence of a lignified xylem tis-
sue that defines vascular plants (Martone et al., 2009;
Sørensen et al., 2011). Moreover, xylem is not the only

lignified tissue. A diverse array of cell types rely on highly
localized patterns of lignin impregnation to provide spe-
cific functions and mechanics in different plants.Lignin is an
aromatic polymer of monolignols derived from the phenyl-
propanoid pathway. Monolignol biosynthesis has been ex-
tensively studied and reviewed elsewhere (Bonawitz and
Chapple, 2010; Dixon and Barros, 2019). Once exported to
the apoplast, monolignols are locally activated into radicals
by laccase and peroxidase oxidative enzymes, and form the
lignin polymer by random coupling in the cell wall. Cell
walls are usually made up of cellulose, hemicellulose, and
pectin, but the addition of lignin can change their proper-
ties (Cosgrove, 1997; Boerjan et al., 2003). Specifically, lignin
impregnation confers mechanical strength, rigidity, and
hydrophobicity (Gibson, 2012; Dixon and Barros, 2019).
Lignin is particularly resistant to degradation, to the point
where a whole field of research is devoted to solve this
problem for the biofuel industry (Li et al., 2008; Weng
et al., 2008).

The functions conferred by lignin depend not only on its
presence in the cell wall, but also on the spatial patterns of
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lignin deposition. In this review, we describe examples of spi-
raled or pitted patterns in xylem vessels (Figure 1), net-like
structures of Casparian strips in the endodermis (Figure 2),
and asymmetric, “U”-shaped depositions in cells of explosive
Cardamine fruit (Figure 3). These intricate and varied struc-
tures can either be very conserved across vascular plants; for
example, tracheary elements or Casparian strips, or associ-
ated with lineage-specific traits, such as explosive fruit of the
Cardamine genus. This review aims to link the structures
formed by lignin patterns in the cell wall to specific func-
tions, and to bridge the gap between diverse lignin patterns
and their genetic underpinnings.

Lignin for water pipes: xylem
Although nonvascular plants have water conducting cells
(see Box 1), lignified xylem tissue is an innovation of vascular
plants (Esau, 1960). These highly lignified, hollow cells are
ideal structures to fit end to end and function as water
pipes. The development of an efficient vascular system
allowed plants to transport water over vertical distances
greater than 100 m in the tallest trees, which was not possi-
ble with the hydroids found in bryophytes (Brodribb et al.,
2020). Therefore, xylem tissue provided two vital functions.
First, it allowed the transport of water and nutrients from
the root to the shoot, driven by the negative hydraulic pres-
sure generated by leaf transpiration. Second, it provided the
mechanical support necessary for plants to grow tall and ex-
tend their photosynthetic leaves far above the soil surface
(Esau, 1960).

Xylem tissues are composed of several cell types, the most
characteristic being tracheary elements and fibers
(Figure 1A). Tracheary elements function in water conduc-
tance and support, while fibers specifically function in me-
chanical support. The massive secondary cell wall of fibers is
usually plain or sometimes punctuated by small pits. In con-
trast, tracheary elements enable the passage of water and
are classed in two types depending on the presence of per-
forations in their cell wall. Long, thin tracheids, found in all
vascular plants, are nonperforated, but allow the flow of wa-
ter to pass through small pits, that is, holes in the secondary
cell wall where the remnant primary cell wall is highly

permeable. Vessel elements, found only in angiosperms, are
larger, hollow cells with perforations at each end, together
with bordered pits on their side walls (Figure 1A). Therefore,
the specialization of vessels and fibers in Angiosperms sepa-
rates the two functions of water transport and structural
support that are performed only by tracheids in most
Gymnosperms (Bailey, 1953).

Tracheary elements rely on a lignified secondary cell wall
for hydrophobicity—to channel water through thin pipes,
flowing from one cell to the other through the perforations
and pits patterned in the wall—and for strength—to resist
the extreme negative hydraulic pressure induced by transpi-
ration and to avoid implosion, also called transverse buck-
ling (Sperry, 2003; Stroock et al., 2014). Despite providing
the same mechanical functions, the lignified secondary cell
walls of tracheary elements can show a variety of different
patterns in primary xylem (Figure 1B). This xylem tissue is
derived from the procambium during primary growth and
differs from secondary xylem, which is derived from the vas-
cular cambium after the transition to secondary growth
(Esau, 1960). Protoxylem cells in the primary xylem present
a delicate helical pattern, while metaxylem cells are mostly
covered with lignified secondary cell walls except for the
pits. In-between these two extremes, a range of lignin pat-
terns can be observed, from annular, reticulated to scalari-
form (Figure 1B; Esau, 1960; Schuetz et al., 2013; Rů�zi�cka
et al., 2015). Protoxylem cells differentiate in the context of
growing tissues and face the problem that lignification
restricts cell growth. A helical lignin pattern solves this prob-
lem by functioning like the hosepipe of a vacuum cleaner—
allowing flexibility and continuous axial elongation while
providing resistance. In contrast, metaxylem cells differenti-
ate later in development after the plant body has elongated.
Since flexibility is no longer required, these cells tend to
have pitted or reticulate patterns of lignin (Figure 1B; Esau,
1960; Rů�zi�cka et al., 2015) .

The genetic regulation of these intricate lignin patterns
has been the focus of much work, including studies that le-
verage the power of the model species Arabidopsis
(Arabidopsis thaliana; Rogers and Campbell, 2004; Schuetz
et al., 2013; Nakano et al., 2015; Rao and Dixon, 2018).
Several master regulators of xylem differentiation have been
identified: NST1 (NAC SECONDARY WALL THICKENING
PROMOTING FACTOR 1) and NST3/SND1 (SECONDARY
WALL-ASSOCIATED NAC DOMAIN PROTEIN 1) were
shown to control fiber differentiation, while VND6 and 7
(VASCULAR-RELATED NAC-DOMAIN) drive metaxylem
and protoxylem formation, respectively (Kubo et al., 2005;
Mitsuda et al., 2007; Yamaguchi et al., 2008, 2011; Schürholz
et al., 2018). Ectopic expression of VND6 and VND7 are suf-
ficient to induce pitted and helical patterns of lignified sec-
ondary cell walls, respectively, in nonxylem cell types (Kubo
et al., 2005; Yamaguchi et al., 2008; Schürholz et al., 2018).
These transcription factors control a complex gene regula-
tory network that is discussed elsewhere (Nakano et al.,
2015; Rů�zi�cka et al., 2015; Taylor-Teeples et al., 2015). Exactly

ADVANCES

• Precise patterns of local lignin deposition have
important functions in diverse tissue contexts.

• Mechanisms of local lignin deposition have a
distinct genetic basis in different cell types.

• Requirement of peroxidases versus laccases for
lignin polymerization differs according to
developmental context.

• Innovations in lignin patterning drove
phenotypic divergence across different
evolutionary time scales.
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how these master regulators determine different lignin pat-
terns is not yet clear, but much progress has been made to-
wards understanding the mechanisms that regulate local
lignin deposition.

Cortical microtubules play a key role in this process. Their
local accumulation at the cell cortex determines the trajec-
tories along which cellulose synthase complexes at the
plasma membrane extrude cellulose microfibrils into the sec-
ondary cell wall (Hepler and Newcomb, 1964; Paredez et al.,
2006; Wightman and Turner, 2008; Watanabe et al., 2015).
Pits form in the lignified secondary cell walls of metaxylem
cells via the depolymerization of cortical microtubules,
which consequently prevents cellulose synthesis and lignin
deposition in pit regions (Figure 1C). Specifically, activated
RHO-RELATED PROTEIN FROM PLANTS 11 (ROP11) local-
izes to the plasma membrane at pit sites, and recruits
MICROTUBULE-DEPLETION DOMAIN 1 (MIDD1) and
kinesin-13A in order to depolymerize cortical microtubules
(Figure 1C; Oda et al., 2010; Oda and Fukuda, 2012, 2013).
The localization of activated ROP11 is likely to be patterned
by a reaction-diffusion mechanism involving the opposite
actions of the activator ROP GUANINE NUCLEOTIDE
EXCHANGE FACTOR 4 (ROPGEF4) and the inhibitor ROP
GUANOSINE TRIPHOSPHATASE-ACTIVATING PROTEIN 3
(ROPGAP3); Figure 1C; Oda and Fukuda, 2012; Nagashima
et al., 2018). The shape of the active ROP11 domains is likely
to be maintained by feedback from microtubules,
microtubule-associated proteins, and actin signaling (Sasaki
et al., 2017; Sugiyama et al., 2017, 2019; Nagashima et al.,
2018). However, a different mechanism may regulate helical
patterning of lignified secondary cell walls, since mutations
in many of the genes described above have only weak phe-
notypes in protoxylem (Schneider et al., 2021).

Secondary cell wall patterns are lignified through targeted
polymerization of monolignols. The monolignols that are

required for fiber and vessel lignification are produced cell
autonomously for interfascicular fibers, but also noncell
autonomously for vessel elements. Following the good-
neighbor hypothesis, vessel elements can receive monoli-
gnols from adjacent xylary parenchyma cells or ray cells in
order to lignify post-mortem (Pesquet et al., 2013; Smith
et al., 2013, 2017). It is not yet clear how monolignols move
from the cytoplasm to the cell wall, as active transport and
passive diffusion are both described as possibilities (Miao
and Liu, 2010; Alejandro et al., 2012; Perkins et al., 2019;
Vermaas et al., 2019). Once they reach the apoplast, these
mobile monomers are locally polymerized into lignin via oxi-
dation by laccases and peroxidases and subsequent radical
coupling (Meents et al., 2018). Recent work shows how this
polymerization can generate a concentration gradient to
drive passive diffusion of monolignols from the cytoplasm
to the cell wall (Perkins et al., 2022).

Laccases and peroxidases are secreted glycoproteins that
play an important role in determining where and when lig-
nin is locally polymerized. Laccases seem to have a predomi-
nant role in vessel elements since lac4 11 17 triple mutants
have severe growth phenotypes and strongly reduced stem
lignification (Berthet et al., 2011; Zhao et al., 2013). However,
specific laccases and peroxidases might function in different
parts of the cell wall (Hoffmann et al., 2020). For example,
while LAC4 (LACCASE), LAC17, and PER72 (PEROXIDASE)
are embedded in the secondary cell wall of xylem vessels
and fibers, PER64 and PER71, and transiently LAC4, localize
to the cell corners and middle lamellae of fibers at the onset
of lignification (Schuetz et al., 2014; Chou et al., 2018;
Hoffmann et al., 2020). Interestingly, different laccases might
not only determine where lignin is polymerized in the cell
wall, but also which types of monolignols are integrated into
lignin, as observed in gymnosperm compression wood
(Hiraide et al., 2021). Exactly how laccases and peroxidases

BOX 1 WATER TRANSPORT WITHOUT LIGNIN.
A lignified vascular system was a major innovation of vascular plants. However, nonvascular plants already pos-
sessed cell types with similar functions (Brodribb et al., 2020). Sclereids and water-conducting hydroids are spe-
cialized cell types found in many living and extinct bryophytes. Hydroids have no cellular content like tracheary
elements, but their cell walls are not lignified and generally lack pits. Sclereids are functionally related to fiber
cells and have thick cell walls that lack lignin (Ligrone et al., 2000). Surprisingly, these cell types are regulated in
bryophytes by ancestral VND and NST/SND genes, which are master regulators of xylem differentiation in
Arabidopsis. For example, PpVNS1 (VND, NST/SND, SMB-related gene 1), PpVNS6, and PpVNS7 regulate the devel-
opment of hydroids and sclereids in the moss Physcomitrium patens. PpVNS gene function was astonishingly con-
served between P. patens and Arabidopsis, and sufficient to induce ectopic lignin deposition when transformed
in Arabidopsis (Xu et al., 2014). This raised the question whether water-conducting hydroids in bryophytes could
provide the same function as lignified xylem tissues. The efficiency of water transport and resistance to buckling
and cavitation in hydroids was recently demonstrated in the moss Polytrichum commune (Brodribb et al., 2020).
Moreover, although P. commune lacks stomata, it can regulate water exchange through leaf curling. However,
poor water use efficiency (i.e. the exchange ratio of water for photosynthetic CO2) and sensitivity to humidity
probably prevented bryophytes from competing with vascular plants for ecological niches far above the ground
surface (Brodribb et al., 2020). Therefore, lignified xylem and fibers were just one of a suite of innovations associ-
ated with the improved water use efficiency of vascular plants.
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are targeted to specific cell wall domains is still unclear.
Evidence suggests that cortical microtubules might guide
the secretion of these oxidative enzymes and cell wall poly-
saccharides independently of cellulose during protoxylem
development (Chou et al., 2018; Meents et al., 2018;
Takenaka et al., 2018). Once secreted, oxidative enzymes
could also be immobilized in the secondary cell wall matrix,
since LAC4 showed reduced mobility in secondary com-
pared to primary cell walls (Chou et al., 2018). Therefore,
bridging the gap between microtubules and the lignin

polymerizing machinery will be an important step towards
understanding lignin pattern formation in xylem cells.

Lignin for apoplastic barriers: Casparian
strips and compensatory lignin
While xylem relies on the strength and hydrophobicity of
lignin to form rigid tubes carrying water across the plant,
other tissues use these same properties to create tight bar-
riers between cells (see Box 2). The lignified Casparian strips
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Figure 1 Lignin patterns in xylem cells provide rigidity and water transport across the plant. A, Xylem tissues comprise several lignified cell types:
vessels elements and tracheids, which are tracheary elements that transport water and fibers. B, Lignin patterns (red) observed in primary xylem
tissues: from left to right, annular, spiraled, reticulated-scalariform, pitted. Protoxylem cells tend to have annular or spiraled patterns, while meta-
xylem cells are mostly pitted. Primary cell wall shown in blue. C, Mechanism of bordered pit formation in Arabidopsis metaxylem viewed from the
side (left) and facing the plasma membrane (right). Activated ROP11 forms islands in the plasma membrane by a process that could be explained
by Turing’s reaction diffusion mechanism (Oda and Fukuda, 2012). Activated ROP11 recruits MIDD1 and AtKinesin-13A proteins to depolymerise
microtubule ends. Microtubules restrict expansion of ROP11 islands in the membrane. Figures inspired from Oda and Fukuda (2013).
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provide this barrier function in the root endodermis. The
endodermis surrounds the root vasculature and regulates
what can go in and what should stay out. Importantly, it
also ensures that what enters the root does not leak out fol-
lowing its natural gradient. To effectively control ion homeo-
stasis, the direct apoplastic route for charged ions to diffuse
between cells is blocked by lignified Casparian strips, so that
ion fluxes are redirected towards endodermal cells following
the symplastic or the coupled trans-cellular pathway (i.e. the
successive import and export of ions across plasma mem-
branes; Enstone et al., 2002; Naseer et al., 2012; Pfister et al.,
2014; Barberon, 2016; Barberon et al., 2016). This apoplastic
block, caused by lignified Casparian strips, is independent of
suberin lamellae that appear later in endodermal develop-
ment and block the coupled trans-cellular pathway for ion
transport (Naseer et al., 2012; Barberon et al., 2016).
Casparian strip mutants with a fully permeable root show
major shoot ionomic changes, severe growth defects and re-
duced fitness, illustrating the importance of the apoplastic
barrier for the bi-directional control of ion homeostasis
(Pfister et al., 2014; Kamiya et al., 2015; Doblas et al., 2017;
Reyt et al., 2021).Unlike the xylem, Casparian strips are not

lignified secondary cell wall depositions, but are formed
by a local impregnation of lignin in the primary cell wall
of living endodermal cells, spreading across the middle la-
mellae between cells. Casparian strips are tightly associ-
ated with the plasma membrane, even after plasmolysis
(Bonnett, 1968; Enstone et al., 2002; Roppolo et al., 2011;
Reyt et al., 2021). Each Casparian strip is a delicate, ring-
like structure of lignin, deposited along the anticlinal and
transverse walls of an endodermal cell. This links all endo-
dermal cells together and locally seals the apoplastic
space (Figure 2A; Caspary, 1865; Alassimone et al., 2010;
Geldner, 2013). In this way, local lignin deposition enables
the endodermis to function as a gate-keeper of the ab-
sorption system of the plant.

How the endodermis is able to localize lignin deposition
precisely at the Casparian strip domain has been the focus
of several genetic studies in Arabidopsis. CASP transmem-
brane proteins (CASPARIAN STRIP DOMAIN PROTEINS
1–5) localize and oligomerize at the Casparian strip domain,
where they are required to scaffold the formation and fusion
of the Casparian strip into a continuous band (Figure 2C;
Roppolo et al., 2011, 2014). CASP genes are targets of the
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Figure 2 Casparian strips and compensatory lignin—two ways to seal the apoplast. A, Casparian strips are localized lignin impregnations (red) of
the primary cell wall (blue), forming a band that surrounds each endodermal cell and seals the apoplast. Cartoon shows three adjacent cells: from
left to right, transparent view of cut cell, nontransparent views of cut and uncut cells showing Casparian strip in surface view. B, Compensatory lig-
nin (red) deposited in the primary cell wall (blue) in endodermal cell corners in response to defects or absence of Casparian strips (e.g. myb36 mu-
tant). C, Casparian strip formation relies on the precise localization of CASP proteins that are likely to act as a scaffold for lignin polymerizing
enzymes. When completed, the Casparian strip blocks the diffusion of CIF1/2 peptides. Cartoon shows Casparian strip in median view. D, When
the Casparian strip is defective or absent (e.g. myb36 mutant), CIF1/2 can diffuse through the apoplast and reach the SGN3–SGN1 complex. This
triggers ROS production necessary for monolignol activation by peroxidases, and subsequent compensatory lignin polymerization. PCW, primary
cell wall; CASP, CASPARIAN STRIP DOMAIN PROTEIN; SGN, SHENGEN; CIF, CASPARIAN STRIP INTEGRITY FACTOR.
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transcription factor MYELOBLASTOSIS PROTO-ONCOGENE
36 (MYB36); Roppolo et al., 2011; Kamiya et al., 2015). The
positional information that targets CASPs to the Casparian
strip domain is not yet clear, but involves the exocyst com-
plex subunit EXO70A1 and the putative extracellular prote-
ase LOTR1 (Kalmbach et al., 2017; Kolbeck et al., 2022).
Lignification of the Casparian strip requires monolignols,
produced autonomously by the endodermis (Andersen
et al., 2021), to be activated by peroxidases to form the lig-
nin polymer. Peroxidases reduce H2O2 to oxidize monoli-
gnols, and both PER64 and NADPH-oxidase RESPIRATORY
BURST OXIDASE HOMOLOG F (RBOHF), which is required
for local production of reactive oxygen species (ROS), pre-
cisely co-localize with CASP proteins at the Casparian strip
(Roppolo et al., 2011; Lee et al., 2013; Barbosa et al., 2019).
Uclacyanin1, a copper-containing phytocyanin potentially in-
volved in redox reactions, is also required for, and localizes
to, Casparian strips (Reyt et al., 2020). Although several lac-
cases show endodermal expression, lignification of the
Casparian strip depends on peroxidases rather than laccases,
as a nonuple laccase mutant (lac1 3 5 7 8 9 12 13 16) did
not display a Casparian strip phenotype. In comparison,
Casparian strips were completely abolished in a quintuple
peroxidase mutant (per3 9 39 72 64; Rojas-Murcia et al.,

2020). This is very different to xylem lignification, which
mostly depends on laccases as described above (Zhao et al.,
2013; Schuetz et al., 2014).

Surprisingly, characterization of various Casparian strip
mutants in Arabidopsis revealed a second and distinct lignin
impregnation in the endodermis. Localized in the primary
cell wall at the outer cell corners of the endodermis (facing
the soil), this ectopic lignification is triggered in response to
defects in the Casparian strip diffusion barrier (e.g. myb36
mutant, Figure 2B; Roppolo et al., 2011; Hosmani et al.,
2013; Kamiya et al., 2015; Li et al., 2017). This so-called
“compensatory” or “stress”-lignin is chemically distinct from
the Casparian strip and goes hand in hand with early su-
berin deposition (Doblas et al., 2017; Reyt et al., 2021; Wang
et al., 2019a). In contrast to the Casparian strip, stress-lignin
does not depend on autonomous monolignol production
(Andersen et al., 2021). Compensatory lignification is the re-
sult of an overstimulation of the SGN (SCHENGEN) path-
way. This pathway functions as a surveillance system to
monitor the integrity of Casparian strips and is required for
the formation of a continuous Casparian strip domain dur-
ing normal development (Figure 2C; Pfister et al., 2014;
Alassimone et al., 2016; Doblas et al., 2017). Two small pepti-
des CIF1 and 2 (CASPARIAN STRIP INTEGRITY FACTORS)
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are produced in the root stele, and, when sulfated by the
SGN2 tyrosylprotein sulfotransferase, can freely diffuse
through the apoplast across the root (Doblas et al., 2017;
Nakayama et al., 2017; Fujita et al., 2020; Okuda et al., 2020).
In the endodermis, their cognate receptor SGN3/GSO1
(GASSHO1) surrounds the Casparian strip domain (Pfister
et al., 2014). However, the downstream receptor-like cyto-
plasmic kinase SGN1, which is required for signaling, is lo-
cated only at the outer domain of the endodermis

(Figure 2C; Alassimone et al., 2016; Fujita et al., 2020).
Therefore, the three partners (CIF–SGN3–SGN1) can meet
at the outside corners of Casparian strips only when the
barrier is leaky or missing, letting CIF1/2 diffuse across the
endodermis (Doblas et al., 2017). Thus, in most Casparian
strip mutants, CIF1 and 2 continuously overstimulate the
SGN complex, leading to local ROS production by RBOHF
and RBOHD at the cell corners and subsequent oxidation
and polymerization of monolignols (Figure 2D). This causes

BOX 2 DUAL LIGNIN FUNCTIONS IN THE FLORAL ABSCISSION ZONE.
Lignin is a hallmark of abscission. This important process is required for shedding leaves in autumn, discarding
floral organs after fertilization, opening dehiscent fruit, and dispersing seeds. The abscission or dehiscence zone
that forms between the plant and its shedding structure, usually comprises a lignified region adjacent to a non-
lignified region where cell autolysis occurs (Ballester and Ferrándiz, 2017; Lee, 2019). The general dogma that lig-
nin seals the wound generated by the abscission process was considerably updated by a detailed study of floral
organ abscission (Lee et al., 2018). Rather than uniform lignification sealing the exposed cell surface, a honey-
comb structure of lignin forms a brace surrounding the secession cells on the shed organs (see figure in Box 2).
This lignin structure was found to have a dual function. First, it braces the layer of separating cells together and
guarantees their proper detachment from the flower receptacle. A testable hypothesis is that the lignin brace
provides mechanical properties such as transverse shear stiffness. Second, the lignification of secession cell corners
acts as a barrier to spatially limit the diffusion of cell wall degrading enzymes in the abscising organ. This ensures
that cell wall breakdown is precisely targeted to a narrow zone of abscising cells. The function of lignin as a diffu-
sion barrier might, therefore, be more important than previously thought for abscission processes.

Lignin brace

R
eceptacle side

Secession cells

Petal / sepal side

Cell wall processing enzymes

petal

sepal

receptacle

Box 2 figure Honeycomb lignin structure in Arabidopsis petal and sepal abscission zones. During floral organ abscission, petals and sepals detach
from the flower at the receptacle. Cells at the boundary of petals and sepals, called secession cells (blue), develop a honeycomb structure of lignin
(red) at their corners. This lignin structure acts as a brace to keep secession cells together and forms an apoplastic barrier to limit the diffusion of
cell wall processing enzymes (dark red and yellow crescents) in the abscission zone. Figure inspired from Lee et al. (2018).
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ectopic lignin deposition, which forms an alternative apo-
plastic barrier at the outside cell corners in an attempt to
compensate for gaps in the Casparian strips (Figure 2B;
Roppolo et al., 2011; Hosmani et al., 2013; Kamiya et al.,
2015; Doblas et al., 2017; Li et al., 2017; Fujita et al., 2020).
Thus, the SGN pathway has a dual role in the formation of
two distinct but complementary types of apoplastic barriers
in the root endodermis.

Whether these two different lignin structures are equally
effective barriers is unclear. Stress-lignin can essentially com-
pensate for the permeability of Casparian strip mutants,
whereas the absence of both types of apoplastic barriers
causes a fully permeable root (e.g. myb36 sgn3 double mu-
tant) (Roppolo et al., 2011; Hosmani et al., 2013; Kamiya
et al., 2015; Li et al., 2017; Reyt et al., 2021). However,
Casparian strip mutants with compensatory lignin still
display a slight delay of the apoplastic block compared to
wild type. One possible explanation is that the compensa-
tory lignin barrier is slightly less efficient than the Casparian
strips, as the lignified cell wall corners are not directly at-
tached to the plasma membrane (Reyt et al., 2021).
Although plasma membrane attachment is always observed
when Casparian strips are functional, there is so far no evi-
dence that this is strictly required, in turgid cells, for an ef-
fective apoplastic block (Alassimone et al., 2010; Roppolo
et al., 2014; Reyt et al., 2021). An alternative possibility to ex-
plain the delayed apoplastic block associated with compen-
satory lignin, is that it simply takes longer to deposit lignin
throughout the large endodermal cell corners, compared to
the restricted size of the Casparian strips. Compensatory lig-
nin would eventually form an effective apoplastic barrier,
which is seen by the complete block of apoplastic tracers in
the later part of the root (Roppolo et al., 2011; Hosmani
et al., 2013; Kamiya et al., 2015; Li et al., 2017; Reyt et al.,

2021). Future studies investigating the function of the
Casparian strip attachment to the plasma membrane might
help to test these hypotheses.

Although the genetic regulation of Casparian strips and
compensatory lignin share common components in
Arabidopsis, is it so far unclear whether the pathways that
form these distinct lignin patterns are conserved across dif-
ferent species, and how such pathways evolved (Li et al.,
2018; Wang et al., 2019b, 2020). Comparing SCHENGEN and
immune response pathways might help to shed light on the
relationship between developmental and immune-induced
apoplastic barriers (see Box 3). Moreover, characterizing the
formation of Casparian strips, compensatory lignin and
immune-response lignin in different species might provide
new insights into the degree of conservation and divergence
between these mechanisms.

Lignin for rapid movements: exploding seed
pods
In contrast to the conserved functions of lignin structures
found in either the xylem or the endodermis, patterns of lo-
cal lignin deposition can also be associated with trait diver-
gence, at more shallow evolutionary time scales. For
example, the seed pods of Cardamine hirsuta, a close relative
of Arabidopsis (Hay and Tsiantis, 2006; Hay et al., 2014), em-
ploy an explosive mechanism to disperse their seeds, which
relies on a specific pattern of local lignin deposition. During
the explosion of C. hirsuta seed pods, the two valves coil
rapidly at speeds greater than 10 m s–1, launching the seeds
on ballistic trajectories to spread over a large area (Hofhuis
et al., 2016). This is an effective dispersal strategy for a ru-
deral species like C. hirsuta and is found in various plants,

BOX 3 COMPENSATORY LIGNIN—A DEFENSE RESPONSE REPURPOSED FOR DEVELOPMENT?
Lignin deposition is a classical response to pathogens (Miedes et al., 2014). However, it has only recently been
demonstrated that lignification is dependent on microbe-associated molecular pattern (MAMP)-triggered and ef-
fector-triggered immune responses (MTI and ETI; Chezem et al., 2017; Lee et al., 2019; Kim et al., 2020).
Stimulation of PEPR1 (PEP1 RECEPTOR) and PEPR2 receptor kinases by their ligand AtPep1 induces strong lignin
deposition in the root (Engelsdorf et al., 2018). Lignification is also triggered by flagellin treatment of Arabidopsis
plants that ectopically express the immune receptor FLAGELLIN SENSING 2 in different root tissues (Emonet
et al., 2021). Intriguingly, SCHENGEN-dependent compensatory lignin in the endodermis shares many similarities
with MTI-induced lignin. Both pathways use receptors, co-receptors, and associated kinases from the same gene
families and induce MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) phosphorylation cascades that activate
MAPK3 and MAPK6 (Creff et al., 2019; Fujita et al., 2020; Okuda et al., 2020). In addition, both pathways induce
ROS production through RBOHF and RBOHD, which is required for monolignol activation by peroxidases. The
SCHENGEN ligand, CIF2, induces transcriptional changes in both defense and lignin biosynthesis genes in
Arabidopsis roots (Fujita et al., 2020), including MYB15 that controls lignin deposition in response to MTI and
ETI (Chezem et al., 2017; Kim et al., 2020). SCHENGEN- and immune-lignin are also similarly rich in H-monoli-
gnols (Reyt et al., 2021). Together, this raises the intriguing possibility that the SCHENGEN pathway could be a
neofunctionalization of the immune pathway, incorporating stress response into the endodermal developmental
program. Whether induction of the immune response could be sufficient to replace the SCHENGEN pathway is
an interesting question that can now be addressed using localized and targeted induction of the MTI pathway
through FLS2 ectopic expression (Emonet et al., 2021).
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including invasive weeds like the touch-me-not Impatiens
glandulifera (Deegan, 2012).

How do the small seed pods of C. hirsuta achieve such as-
tonishing speeds? The key is a mechanical instability
(Skotheim and Mahadevan, 2005) used to rapidly transform
stored elastic potential energy into kinetic coiling energy.
This mechanism relies on a unique pattern of polar lignin
deposition in a single-cell layer of the fruit valve, called the
endocarp b (Hofhuis et al., 2016). This fruit layer is com-
monly lignified; for example, forming the hard stone in
peach or cherry fruit (Dardick and Callahan, 2014).
Compared to the nonexplosive fruit of Arabidopsis, where
endocarp b cells are lignified uniformly, these cells are asym-
metrically lignified in C. hirsuta (Figure 3A). Lignin is depos-
ited in three thick rods on the adaxial side of each endocarp
b cell, forming a “U” shape in cross section with thin hinges
connecting each rod (Figure 3A). The hinged geometry of
these lignified cells allows the fruit valve to employ a rapid
release mechanism like a toy slap bracelet. The curved cross-
sectional geometry of the valve imposes an energetic barrier,
such that tension produced by differential contraction of
valve tissues generates stored elastic potential energy.
Unusually, this contraction is an active process that is driven
by turgor pressure, rather than by drying of the fruit tissues
(Hofhuis et al., 2016). Once sufficient tension is established,
the thin hinges in the lignified cell walls open, causing the
valve to change from a curved to a flat cross-section
(Hofhuis et al., 2016). This change in geometry overcomes
the energetic barrier and triggers rapid coiling of the valve.

The relationship between the structure of the lignified en-
docarp b cell wall and its function in exploding seed pods,
was studied in C. hirsuta using genetics and mathematical
modeling. A mutant lacking the lignified endocarp b cell
layer was isolated from a forward genetics screen in C. hir-
suta, and found to be caused by mutation of the putative
ortholog of the DNA-binding protein BRASSINOSTEROID-
INSENSITIVE 4 (Hofhuis et al., 2016). This mutant has non-
explosive fruit, indicating that the lignified endocarp b cell
layer is required for explosive coiling of the fruit valves.
Mathematical modeling was used to show that it is the pre-
cise pattern of lignin in endocarp b cell walls that is required
for explosion. Simulations of a model that described the
elastic energy in the fruit valve were compared using a
hinged versus a uniformly lignified wall geometry. These
results showed that the hinged wall geometry is critical for
explosive energy release (Hofhuis et al., 2016). Predictions
from these model simulations were tested using ectopic ex-
pression of the VND7 transcription factor in C. hirsuta fruit
valves. This created uniformly lignified endocarp b cells that
could no longer “open” and function as a rapid energy re-
lease mechanism. These seed pods failed to explode, show-
ing that the asymmetric pattern of lignin deposition in
endocarp b cells is required for explosive seed dispersal
(Hofhuis et al., 2016).

Recent work has started to explore the genetic regulation
of localized lignin deposition in C. hirsuta fruit. Another

mutant from the screen described above (Hofhuis and Hay,
2017) showed a reduction in endocarp b cell wall lignifica-
tion and a consequent reduction in seed dispersal range.
This phenotype is caused by the loss of SPL7 (SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE 7) gene function (P�erez
Antón et al., 2022). The SPL7 transcription factor is a con-
served regulator of copper homeostasis and is required for
copper to accumulate in the fruit of C. hirsuta. This finding
led to the discovery that endocarp b cell wall lignification is
laccase dependent. Laccases are copper-requiring enzymes
and their activity depends on the SPL7 pathway to provide
sufficient copper for lignification. Specifically, C. hirsuta
LAC4, LAC11, and LAC17 proteins perfectly co-localize with
lignin in the endocarp b cell wall and are required for lignifi-
cation (P�erez Antón et al., 2022). These are the same lac-
cases that are required for xylem lignification in Arabidopsis
(Berthet et al., 2011; Zhao et al., 2013). This laccase depen-
dence differs from the peroxidase-dependent lignification of
Casparian strips described above (Rojas-Murcia et al., 2020).

Polar deposition of the lignified endocarp b secondary cell
wall is not only required for explosive seed dispersal in
C. hirsuta, but evolved in striking association with the trait.
Phylogenetic comparisons within the Brassicaceae, showed
that this polar lignin pattern is an innovation of the
Cardamine genus where the trait of explosive seed dispersal
evolved (Hofhuis et al., 2016). In contrast, the endocarp b
cells of other nonexplosive Brassicaceae have symmetrically
lignified cell walls. Within this strict association, one
Cardamine species stands out as an exception. Cardamine
chenopodifolia is amphicarpic—in addition to the aerial ex-
plosive fruit found in all Cardamine species, it also produces
subterranean fruit (Persoon, 1807). These fruits are nonex-
plosive and produce only a handful of large seeds. In con-
trast to peanut plants (Arachis hypogaea), that flower in the
air then bury their fruit, the main stem of C. chenopodifolia
does not bolt, and produces cleistogamous flower buds that
are immediately buried into the ground by extensive growth
of their long pedicels (Cheplick, 1983). These distinctive
properties already inspired botanists in the 19th century to
record that the different fruit types had different patterns of
endocarp b lignification (Gorczy�nski, 1930). The presence of
polar lignin deposition in aerial explosive fruit, and symmet-
ric lignification in subterranean nonexplosive fruit, makes
this an interesting species for comparative studies of lignin
patterning (Figure 3B).

Conclusion
The evolution of lignin, and its subsequent deployment in
different tissue types of the plant body, underpinned key
innovations associated with the diversification of vascular
plants. The ability to precisely control the subcellular deposi-
tion of lignin was fundamental for these adaptations.
Although recent advances have started to uncover the
mechanisms of local lignin deposition in different cell types,
the degree of conservation versus divergence between these
mechanisms, and across species, is far from being
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understood. In this review, we discussed examples of differ-
ent lignin patterns from distinct developmental contexts, in
order to highlight how advances in one field of research
could influence others. For example, lignin polymerizing
enzymes
co-localize precisely with lignin in each cell type, suggesting
that this step of lignin formation is a key determinant of
patterning. The relative requirement for peroxidases versus
laccases, however, differs between cell types. Lignin pattern-
ing in the xylem relies on local depletion of the secondary
cell wall (Figure 1C), and it will be interesting to understand
whether or not the hinged patterns in endocarp b cell walls
of explosive fruit rely on a similar mechanism. Sites of
Casparian strip lignification in endodermal cells are deter-
mined by CASP protein localization (Figure 2C), and identi-
fying factors that determine the polarity of lignin deposition
in endocarp b cells may indicate to what extent cell-specific
mechanisms determine local lignin deposition. Moreover,
surveillance systems similar to the SGN pathway have been
found to probe other nonlignified barriers (Creff et al., 2019;
Doll et al., 2020). Identifying analogous systems in different
tissues might help to understand the evolution of these
pathways. Comparative studies may, therefore, be a way for-
ward to understand how mechanisms of lignin deposition
can arise and be modified or redeployed to evolve specific
forms and functions (see Outstanding Questions). Current
advances in long read sequencing and genome editing

(CRISPR-Cas9) offer exciting opportunities to address these
questions in a range of plants and will prove indispensable
to understand the development and diversity of lignin pat-
terns and functions.
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