The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity

Graphical abstract

Highlights

- An enhancer genetic screen shows synergy of RCO and KNOX1 genes in leaflet formation
- This synergy explains generation of linear shape elements of dissected leaves
- Live imaging of growth unravels the cellular basis of RCO and KNOX1 synergy
- Control of growth anisotropy is a novel facet of KNOX1 action in leaflet formation

Authors

Yi Wang, Sören Strauss, Shanda Liu, Bjorn Pieper, Rena Lymbouridou, Adam Runions, Miltos Tsiantis

Correspondence
tsiantis@mpipz.mpg.de

In brief

Wang et al. use a genetic screen and live imaging to show that synergy of RCO and KNOX1 homeobox genes creates a preferred developmental path for leaflet formation in crucifer plants. The cellular basis for this synergy is a combination of prolonged growth, repressed growth, and anisotropic growth of different cells in the leaf bud.

Wang et al., 2022, Current Biology 32, 3773–3784
September 12, 2022 © 2022 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.cub.2022.08.020

CellPress
The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity

Yi Wang,1 Sören Strauss,1 Shanda Liu,1 Bjorn Pieper,1 Rena Lymbouridou,1 Adam Runions,2 and Miltos Tsiantis1,3,*
1Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl von Linne Weg 10, 50829 Cologne, Germany
2Department of Computer Science, University of Calgary, Calgary, AB T2N1N4, Canada
3Lead contact
*Correspondence: tsiantis@mpipz.mpg.de
https://doi.org/10.1016/j.cub.2022.08.020

SUMMARY

Leaves of seed plants provide an attractive system to study the development and evolution of form. Leaves show varying degrees of margin complexity ranging from simple, as in Arabidopsis thaliana, to fully dissected into leaflets in the closely related species Cardamine hirsuta. Leaflet formation requires actions of Class I KNOTTED1-LIKE HOMEobox (KNOX1) and REDUCED COMPLEXITY (RCO) homeobox genes, which are expressed in the leaves of C. hirsuta but not A. thaliana. Evolutionary studies indicate that diversification of KNOX1 and RCO genes was repeatedly associated with increased leaf complexity. However, whether this gene combination represents a developmentally favored avenue for leaflet formation remains unknown, and the cell-level events through which the combined action of these genes drives leaflet formation are also poorly understood. Here we show, through a genetic screen, that when a C. hirsuta RCO transgene is expressed in A. thaliana, then ectopic KNOX1 expression in leaves represents a preferred developmental path for leaflet formation. Using time-lapse growth analysis, we demonstrate that KNOX1 expression in the basal domain of leaves leads to prolonged and anisotropic cell growth. This KNOX1 action, in synergy with local growth repression by RCO, is instrumental in generating rachises and petiolules, the linear geometrical elements, that bear leaflets in complex leaves. Our results show how the combination of cell-level growth analyses and genetics can help us understand how evolutionary modifications in expression of developmentally important genes are translated into diverse leaf shapes.

INTRODUCTION

A key challenge in biology is to understand how development influences or biases morphological evolution. One way to address this challenge is to ask whether there are particular genes or combinations of developmental genes whose evolutionary modifications create preferred paths for morphological change. Current evidence suggests that such “hotspot” genes exist, which leads to the question of what intrinsic properties these genes have. One idea is that hotspot genes are predisposed to underpin morphological change because their positions in regulatory networks allow them to generate diversity with minimal pleiotropy, thus preventing reduced fitness. Less attention has been given to how the cell-level effects of hotspot genes are linked to their capacity to cause diversity in form. Understanding how gene action generates organ shape requires investigating its effects on cellular growth. Plants are attractive systems to study this problem because their development unfolds without cell migration; therefore, the genetic regulation of tissue and organ form can be conceptualized as the cumulative effect of changes in amount, duration, and direction of cellular growth and proliferation.

Leaves of seed plants show a tremendous degree of heritable morphological variation, providing fertile ground for studying interactions of development and evolution. Based on the shapes of their margins, leaves of seed plants can be broadly classified as simple, with an entire blade, or dissected (also termed compound) into leaflets. Leaflets are borne on the rachis, a central stalk, by smaller stalks called petiolules (Figure 1A). Rachises and petiolules are both narrow, bladeless structures that characterize leaflets and can be considered linear geometrical elements that distinguish simple from dissected leaves. Both simple and dissected leaves can display shallow outgrowths in the form of teeth, serrations, and lobes, leading to further variation in leaf complexity (Figure 1A). Arabidopsis thaliana has simple serrated leaves while its relative Cardamine hirsuta has dissected leaves (Figure 1A).

Two main genetic pathways have been shown to play a central role in the evolution of leaf complexity in the crucifer lineage, as well as more broadly in seed plants, each defined by a different class of homeobox genes: Class I KNOTTED-LIKE HOMEobox (KNOX1) and HD-ZIP I REDUCED COMPLEXITY (RCO) encoding homeodomain transcription factors. KNOX1 genes are required for meristem maintenance broadly in plant species. They are typically not expressed in simple leaves, while their expression in leaves of many seed plant species contributes to the formation of leaflets or lobes. There are four KNOX1 genes in C. hirsuta and A. thaliana: SHOOTMERISTEMLESS (STM), BREVI-PEDICELLUS/KN1-like in Arabidopsis thaliana1 (BP1/KNAT1), KNAT2, and KNAT6. KNOX1 genes are expressed in C. hirsuta
but not in *A. thaliana* leaves, they are required for leaflet development. KNOX1 expression in leaves is repressed by ASYMMETRIC LEAVES1/ROUGH SHEATH2/PHANTASTICA (ARP) transcription factors across seed plant species. In *A. thaliana* leaves, ASYMMETRIC LEAVES1 (AS1) directly represses *BP*, *KNAT2*, and *KNAT6* expression (but not *STM*) via forming a complex with ASYMMETRIC LEAVES2 (AS2), a lateral organ boundaries (LOB) transcription factor. Similar to KNOX1, RCO is expressed in *C. hirsuta* leaves and required for leaflet formation. RCO was secondarily lost in the *A. thaliana* lineage, which contributed to leaf simplification. Re-introduction of *ChRCO* into the *A. thaliana* genome as a transgene is sufficient to increase leaf complexity. RCO represses growth at the boundaries between leaflets/lobes, and this action is partly mediated by regulating cytokinin homeostasis. RCO-type genes are also required for leaflet complexity in *Capsella rubella*, *rape*seed, and cotton. Although neither KNOX1 misexpression nor *ChRCO* transgenic plants in *A. thaliana* generate leaflets, the combination of KNOX1 and *ChRCO* is sufficient to produce leaflet-like outgrowth and reconstruct dissected leaves in *A. thaliana*. A number of questions arise from these studies. Is the concurrent expression of RCO and KNOX1 in leaves a preferred developmental path for leaflet formation? What is the precise cell-level effect of KNOX1 on leaflet formation? While the cumulative evidence supports a role for KNOX1 conferring a longer duration of cellular growth in leaf development, the various facets of KNOX1 action and their relevance for leaflet formation require more investigation.

Here, we addressed the issues above by re-introducing RCO into the genome of *A. thaliana* and conducting a mutant screen. We aimed to identify, in an unbiased fashion, genes that can...
support leaflet formation in A. thaliana when RCO is present. This screen yielded multiple as1 and as2 loss-of-function alleles, in which ectopic KNOX1 expression in the basal midrib/petiole region of leaf primordia caused leaflet formation when RCO is active in leaves. Through time-lapse imaging and growth analysis, we showed that KNOX1-dependent, prolonged, and anisotropic cell growth in the basal leaf region, combined with local growth repression by RCO, contributes to leaflet formation, particularly to the generation of rachises and petiololes—the linear elements that distinguish simple from dissected leaves. Our results indicate that the combination of RCO and KNOX1 in leaves is a preferred developmental pathway for leaflet formation in crucifers. They also highlight KNOX1-dependent anisotropic growth as an important component of KNOX1 action in leaflet formation.

RESULTS

as1;RCOg-V and as2;RCOg-V mutants have leaflets instead of lobes

To identify genes that enhance RCO to promote leaflet formation in A. thaliana, we screened ethylmethanesulfonate mutagenized RCOg-VENUS (RCOg-V) transgenic lines, which had lobed leaves (Figure 1A). We screened for enhancer mutations that transformed lobes into leaflets, thus resembling wild-type C. hirsuta (Oxford strain) (Figures 1A and 1B). We predicted that if the combination of RCO and KNOX1 expression in leaves represented a preferred developmental path for leaflet formation, then we should repeatedly uncover mutants causing KNOX1 expression in leaves from this screen. Alternatively, if there was no developmental bias for leaflet formation, then we would uncover mutations in many different pathways previously shown to influence A. thaliana leaf complexity. From this screen, only four such recessive enhancers were obtained. Notably, all four were novel loss-of-function alleles of the KNOX1 repressors AS1 and AS2 (Figures 1B and 1C; Table S1). We named these alleles as1-151, as1-155, as2-163, and as2-12. These alleles have missense mutations that do not change AS1/AS2 gene expression (Figure S1F). Rosette leaves of as1-151;RCOg-V, as1-155;RCOg-V, and as2-163;RCOg-V mutants displayed terminal and lateral leaflets with bladeless petiololes and rachises, similar to the dissected leaves in C. hirsuta (Figures 1A, 1F, 1I, and S1B–S1D), while as2-12;RCOg-V showed a weaker phenotype of short petiololes (Figure S1E). Because of the strong leaflet phenotype, we focused on as1-151;RCOg-V and as2-163;RCOg-V (as1/2;RCOg-V in short). We isolated the corresponding single mutants as1-151 and as2-163. Compared to Col-0 wild type, those two single mutants displayed deep serrations and lobes in the basal blade region, but no leaflets (Figures 1E and 1H). Additionally, we quantified the overall form of protrusions (serrations, lobes, and leaflets) in mature leaves by approximating protrusion shapes using triangles whose vertices coincide with the tip and adjoining sinuses of each protrusion. This analysis indicates that the protrusion shapes in as1/2;RCOg-V are similar to C. hirsuta (long triangles with a narrow base), whereas those of as1-151/as2-163 and RCOg-V are similar to Col-0 (short triangles with a broad base) (Figure 1J). The leaf phenotypes of the double and single mutants suggest that leaflet formation results from a synergistic effect of as1/as2 mutations and RCO expression in leaves. In addition to the leaflet phenotype, we observed shorter petiololes and proximal rachises in as1;RCOg-V compared to as2;RCOg-V (Figures 1F, 1I, and S1B–S1D). This observation is consistent with the fact that as1 mutants are more proximodistally compressed than as2 mutants and display a strong reduction in petiole length.

The leaflet phenotype of as1/2;RCOg-V is KNOX1 dependent

The AS1/AS2 complex suppresses BP, KNAT2, and KNAT6 expression in leaves. To understand the contribution of mis-expressed KNOX1 to leaflet formation in as1/2;RCOg-V plants, we tested whether the reduction of corresponding KNOX1 gene activity could suppress leaflet formation in as1/2;RCOg-V backgrounds. To this end, we generated as1-151;RCOg-V; bp-9;kn2-5;kn6-1 quintuple and as2-163;RCOg-V;bp-9;kn6-1 quadruple mutants (Figure 2A), where the function of BP, KNAT2, and KNAT6 was reduced owing to T-DNA insertions in their corresponding genes. To evaluate the contribution of these KNOX1 genes to as1/2;RCOg-V leaf shape, we conducted a multivariate shape analysis. We found that the enhancement of lobes to leaflets in as1/2;RCOg-V was largely KNOX1 dependent (Figures 2B and 2C). Consistent with these results, knocking down BP, KNAT2, and KNAT6 in as1/2;RCOg-V mutants by an artificial microRNA (35Spro:Amirkn126) also transformed leaflets into lobes (Figures S2A–S2C). The leafs in as1-151;RCOg-V; bp-9;kn2-5;kn6-1, as2-163;RCOg-V;bp-9;kn6-1, and 35Spro:AtKNOX1;as1-151;as2-163;RCOg-V were slightly deeper than in RCOg-V plants (Figures 2A–2C, S2A, and S2B). Thus, it is possible that residual KNOX1 activity in these mutants and/or KNOX1-independent effects of AS1/2, such as those involving ARF gene regulation, also contribute to leaflet formation. In addition, consistent with the weaker leaf phenotype of the as1-12;RCOg-V strain resulting from our screen (Figure S1E), we detected lower KNOX1 expression in its leaves compared to as1-151;RCOg-V, as1-155;RCOg-V, and as2-163;RCOg-V (Figure S1G).

The above results demonstrate that KNOX1 expression in leaves is necessary for leaflet formation in as1/2;RCOg-V plants. To test whether BP expression in the as2 domain is also sufficient to generate leaflets together with RCO, independently of as2 mutant alleles, we transformed RCOg-V plants with AtAS2pro:BP-mCherry, where BP-mCherry was expressed under the AS2 promoter (Figure S2I). We observed a lobe-to-leaflet transformation in these transgenic plants (Figures S2G and S2H). Nonetheless, AtAS2pro:BP-mCherry plants in wild-type background showed deep serrations/lobes in the basal leaf region, but no leaflets (Figures S2E and S2F), indicating that leaflet formation in transgenic plants requires the combination of KNOX1 and RCO in leaves. Together, these results demonstrate that KNOX1 expression in leaves is instrumental for generating the leaflet phenotype in as1/2;RCOg-V.

BP is misexpressed in the basal midrib/petiole region in as1/2;RCOg-V

To investigate the specific pattern of KNOX1 expression that is associated with leaflet formation in as1/2;RCOg-V, we used an AtBPpro:GUS reporter gene to compare the BP transcription pattern in leaf primordia of different lengths (~1,000 μm and ~3,000–5,000 μm) and expanding leaves (~1.5 cm) in Col-0, as1-151, as2-163, RCOg-V, and as1/2;RCOg-V mutants
To understand the cell-level basis for leaflet formation in as1/2;2;RCOg-V leaves, we performed live-imaging experiments in developing leaves of Col-0, as1-151, RCOg-V, and as2-163;RKOg-V using confocal microscopy (Figures 4 and 5). We selected as2-163;RCOg-V for this live-imaging analysis because its leaf shape is reminiscent of wild-type C. hirsuta, in that it does not have the short petioles and proximal rachises observed in as1-151;RCOg-V and the reported C. hirsuta as1 mutant leaves (Figures 1F, 1I, S1B, and S1C). We tracked leaf primordia from 4 to 8 days after initiation (DAI), during which as2-163;RCOg-V leaflets grew from initiation to a well-defined morphology with a narrowed base (Figures 4A, 4B, 5A, and 5B; Video S1). Previous

KNOX1 confers prolonged growth in the as2-163 and as1-2-163;RCOg-V leaf basal region
To understand the cell-level basis for leaflet formation in as1/2;2;RCOg-V leaves, we performed live-imaging experiments in developing leaves of Col-0, as1-151, RCOg-V, and as2-163;RKOg-V using confocal microscopy (Figures 4 and 5). We selected as2-163;RCOg-V for this live-imaging analysis because its leaf shape is reminiscent of wild-type C. hirsuta, in that it does not have the short petioles and proximal rachises observed in as1-151;RCOg-V and the reported C. hirsuta as1 mutant leaves (Figures 1F, 1I, S1B, and S1C). We tracked leaf primordia from 4 to 8 days after initiation (DAI), during which as2-163;RCOg-V leaflets grew from initiation to a well-defined morphology with a narrowed base (Figures 4A, 4B, 5A, and 5B; Video S1). Previous
results indicated that KNOX1 expression in leaves prolongs protrusion growth and leads to increased leaf complexity.16 Thus, we quantified cell growth parameters of area extension (relative growth of cell area) and cell proliferation in corresponding genotypes. Based on the misexpression of BP in the basal midrib/petiole region of as2-163 leaf primordia (Figure 3E), we focused our growth analysis on the basal 25% of cells in each leaf and analyzed the midrib and blade regions separately (Figure 4C). Additionally, we used the cyclin reporter CYCB1;2pro:CYCB1;2-GUS16 to monitor patterns of cell proliferation in leaves after the time-lapse window (Figures 4E–4H and S4D–S4G).

While as2-163 and Col-0 had a broadly similar distribution of cell growth parameters (Figures 4A and 4B), we observed significantly higher area extension in as2-163 basal midrib cells (after 6 DAI) and increased proliferation in as2-163 basal midrib/blade cells (6–7 DAI) compared to Col-0 (Figure 4D). Furthermore, we observed a prolonged CYCB1;2pro:CYCB1;2-GUS signal in basal protrusions of as2-163 compared to Col-0, after the time-lapse window (∼4 mm leaf primordia) (Figures 4F and 4H). Together, these results indicate that growth and proliferation are prolonged in the basal region of as2-163 leaves, which is consistent with the observed higher outgrowth rate of as2-163 basal protrusions during the time-lapse window, as well as later leaf development (Figures S4A–S4C). We also observed prolonged cell proliferation in as2-163:RCO-G-V basal leaf regions compared to RCO-G-V, as indicated by the CYCB1;2pro:CYCB1;2-GUS signal at the base of leaflets (Figures S4D–S4G). Overall, these results indicate that KNOX1-dependent prolonged cell proliferation contributes to the development of a complex marginal shape in as2-163 and leaflets in as2-163:RCO-G-V.

Elevated anisotropic growth contributes to leaflet formation in as2-163:RCO-G-V

Rachises and petiolules are major distinguishing shape elements of dissected and simple leaves. To understand the cell growth properties underpinning the formation of these linear elements in as2-163:RCO-G-V, we first identified the cell populations giving rise to them, using a reverse cell fate mapping analysis on our time-lapse data. We traced the progeny cells in rachises and petiolules (8 DAI) back to the original cells in young leaf primordia (6 DAI) and found that these two structures originated from cells located at the sinus between protrusions and the protrusion basal region, respectively (Figures 5A and 5C). These specific cell populations grew with higher anisotropy (ratio of the maximal and minimal principal growth directions) compared to RCO-G-V in the time-lapse window (Figures 5B, 5D, and 5H), with their maximal growth directions unified toward leaf tips (sinus cells) or leaflet tips (protrusion-base cells) (Figure 5B). Quantification of cell growth along the proximal-distal (PD) and medial-lateral (ML) axes of the leaf showed a reduced ML growth rate in sinus cells of as2-163:RCO-G-V compared to RCO-G-V (Figures 5E and 5F). Similarly, the protrusion-base cells in as2-163:RCO-G-V showed reduced growth along the lateral direction relative to the protrusion-tip-base PD axis (Figures 5I and 5J). Thus, highly anisotropic cell growth along the PD axis underlies the formation of rachises and petiolules in as2-163:RCO-G-V. Conversely, RCO-G-V sinus and protrusion-base cells showed more isotropic growth and contributed to forming leaf blade tissue (Figures 5B–5J and S5C). Consistent with these cell-level observations, quantification of leaflet and lobe shape development using the triangle approximation method presented in Figure 1J confirmed the relative narrowing of the base of leaflets compared to lobes in the time-lapse window (Figure 5K). After the time-lapse window, the anisotropic growth in as2-163:RCO-G-V petiolules likely persists, as the epidermal cells formed files and elongated toward the tip (Figures S5D and S5E). In short, these observations indicate that a localized wave of anisotropic growth shapes the rachises and petiolules, contributing to leaflet formation in as2-163:RCO-G-V. These observations are likely relevant to wild-type C. hirsuta leaves, because in that genotype, cell growth in rachises was also highly anisotropic (Figures 5L and 5M), as were cell shapes in rachises.
and petiololes (Figure S5B). Conversely, *C. hirsuta* *stm-1* mutants, which have reduced *KNOX1* activity and a simplified leaf phenotype (Figure S5A),14 displayed a more isotropic cell shape in sinuses and lobe bases, similar to those of the lobed leaves in *A. thaliana* RCOg-V plants (Figure S5C). Overall, these results indicate that *KNOX1* genes exert their effects on dissected leaf shape in part by modulating cell growth anisotropy.

To understand whether the anisotropic growth in *as2-163;RCOg-V* results from *KNOX1* alone or synergy of *KNOX1* and *RCO*, we compared cell growth anisotropy of...
Figure 5. Elevated anisotropic growth contributes to leaflet formation in as2-163;RCOg-V

(A and B) Heatmaps to show cell area extension (A) and growth anisotropy (B) of as2-163;RCOg-V and RCOg-V leaf primordia, during 5–8 DAI, visualized on the later time point. White lines in (B) indicate maximal cell growth directions where growth anisotropy > 1.3. The sinus and protrusion regions are magnified to show the details.

(C) Cell lineage tracing (6–8 DAI) of sinus cells in as2-163;RCOg-V and RCOg-V leaf primordia. Colors show the correspondence between cells at 6 DAI and their clonal sectors at 8 DAI. The proximal-distal (PD) and medial-lateral (ML) growth directions are indicated.

(D–F) Quantification of growth anisotropy (D), PD growth rates (E), and ML growth rates (F) of sinus cells in (C), between as2-163;RCOg-V and RCOg-V (6–8 DAI).

(G) Schematics of protrusion-base cells (colored in green or purple) in as2-163;RCOg-V and RCOg-V. PD growth to protrusion tips and relative ML growth directions are indicated.

(H–J) Quantification of growth anisotropy (H), PD growth rates (I), and ML growth rates (J) of protrusion base cells in (G).

(K) Protrusion geometry (length versus base width) between as2-163;RCOg-V and RCOg-V in the time-lapse window. Each arrow represents growth of one sample. Transparent ribbons indicate the 95% confidence intervals based on linear models. The background yellow triangles visualize protrusion shapes. as2-163;RCOg-V shows reduced growth in protrusion base width (p = 0.0002, likelihood ratio test).

(L) Heatmaps to show 5–8 DAI growth anisotropy in C. hirsuta wild-type leaf primordia.

(M) Cell lineage tracing of the sinus cells in C. hirsuta wild-type leaf primordia in 5–8 DAI.

The 8th ± 1 rosette leaf primordia were used for time-lapse and cell growth analysis (n = 3 per genotype). For (C)–(J), n = 47–82 cells were measured per sample. Differences in (D)–(F) and (H)–(J) were tested for significance by nested ANOVA and post hoc comparison. Scale bars, 50 μm (C); 100 μm (the others). See also Figures S5 and S6 and Video S1.
as2-163;RCOg-V and as2-163 to Col-0 in the time-lapse window (Figures S6A–S6C). Both genotypes showed higher growth anisotropy in the basal blade region when analyzed with pooled growth data from all time intervals (Figure S6B). However, in individual time intervals, we observed that as2-163;RCOg-V, but not as2-163, displayed higher growth anisotropy than Col-0 in the basal blade/midrib region (Figure S6C). These results indicate that KNOX1 is sufficient to elevate growth anisotropy in leaf primordia, and this action is enhanced by RCO in as2-163;RCOg-V. In summary, these observations indicate that RCO and KNOX1 act synergistically to elevate growth anisotropy, which in the context of growth repression by RCO and KNOX1-mediated growth prolongation (Figures 4D, S4B, and S4C), sculpts leaflets from the emerging leaf blade.

DISCUSSION

RCO and KNOX1 action represents a developmentally privileged avenue for leaflet formation

While many genes have the potential to influence trait development, only a subset of them contributes to trait evolution. Prior work has shown that in the case of leaves, RCO and KNOX1 homeobox genes were repeatedly used during evolution to cause diversification of leaf form. In this work, we asked whether these genes together represented a preferred developmental path for leaflet emergence and what the cellular basis for such a phenomenon might be. As a starting point, we used an Arabidopsis strain where RCO introduction as a transgene partially reversed the loss of RCO that occurred in the evolutionary lineage of *A. thaliana*. We showed that upon mutagenizing this strain, KNOX1 expression in leaves resulting from loss of AS1/AS2 function caused leaflet formation. The unbiased nature of this experiment and the recovery of solely multiple independent as1/as2 alleles that can convert lobes to leaflets suggest that in crucifers, the combination of RCO and KNOX1 action in leaves creates a developmentally favored path for leaflet formation.

Our time-lapse analysis further suggests that this “evolutionarily privileged” position of RCO and KNOX1 in crucifer leaflet formation likely reflects their combined ability to control cell and tissue growth: local growth repression, which deepens the sinus region (RCO); a prolonged growth window, which allows increased marginal outgrowth (KNOX1); and high growth anisotropy, which characterizes the rachis/petiolule for leaf subdivision (KNOX1, enhanced by RCO) (Figure 6). In species where RCO is absent in the genome, an equivalent action might be performed by its paralogs such as GhLMI1 in cotton or other types of genes with local growth repressive action such as the AUX-IAA gene in *Entire* in tomato.

It is of note that in our screen we recovered mutations in KNOX1 repressors rather than mutations in cis-regulatory regions that caused KNOX1 expression in leaves. This result likely reflects the fact that core binding motifs of transcription factors are much shorter than gene coding regions, making it more difficult to recover relevant mutations. Mutagenesis with CRISPR-Cas9 coupled with creating chimeras between *A. thaliana* and *C. hirsuta* KNOX1 regulatory regions will be a good avenue for identifying specific cis-elements responsible for the diversification of KNOX1 expression between the two species.

as1/2 mutants highlight a KNOX1 expression domain sufficient to cause leaflet formation in the presence of RCO

Our work indicates that KNOX1 confers prolonged cell growth and proliferation in as2-163 leaf primordia (Figures 4D–4H). This result is consistent with previous work that suggests that STM expression under the leaf margin promoter BLS (BLSPWM:STM) prolongs growth of protrusions. Furthermore, we demonstrated that KNOX1 expression in leaves elevates growth anisotropy in cells at the base of leaf primordia, thus contributing to the formation of rachises and petiolules in the context of RCO (Figures S5B–S5J and 6D). In contrast, as2-163 leaves lack the deep sinus to separate protrusions in the early patterning stage (Figure 6B), while RCOg-V leaves lack
anisotropic growth in the sinus and protrusion base (Figure 6C), resulting in blade formation in the sinus region that connects successive protrusions. Previously, an abstract geometric computational model was reported to simulate diverse compound leaf shapes. In that model, two hypothetical growth factors were invoked to explain the development of the linear geometric elements characterizing compound leaves. The first suppressed lateral growth in sinuses, allowing for the emergence of linear rachises, whereas the second suppressed widening of petiolo1e bases, allowing them to maintain a linear form despite the elongation of the adjoining rachis. Our results are consistent with this model, as RCO can be considered to capture the first factor while KNOX1 (in synergy with RCO) underlies highly anisotropic cell growth in rachises and petiolo1es, thus capturing the action of the second factor (Figure 6D). Overall, by incorporating KNOX1 action on anisotropy as a key role in generating linear geometric elements (rachises and petiolo1es), our work bridges theoretical predictions and experimental observations to understand how cell-level growth properties are translated into complex leaf shapes. These ideas are also broadly consistent with the KNOX1-associated tissue cell polarity switch and anisotropic growth in barley Hooded mutant flowers, therefore helping unify interpretations of how KNOX1-mediated effects on cell-level growth properties may influence organ form in diverse systems.

Notably, RCO enhances the effect of KNOX1 on growth anisotropy in as2-163/RCOg-V leaves compared to as2-163 (Figure S6). One possible explanation for this enhancement is that RCO and KNOX1 downstream targets synergistically affect cellular components that set cell growth anisotropy: for example, the cytoskeleton and cell wall. Another explanation might be that local growth repression by RCO in the rachis and petiolo1ule cells reduces physical interconnections between cells, thus accentuating KNOX1 effects on anisotropy.

Another advancement of our results over previous work is that, unlike the deeply lobed leaves of A. thaliana BLSpro:STM, as1-151 and as2-163 show less severe leaf phenotypes (Figures 1E and 1H) but still enhance RCOg to make leaflets. Compared to BLSpro:STM, which is expressed along the leaf margin, BP is misexpressed more proximally and medially in the early leaf primordia of as1-151 and as2-163. Thus, these as1/as2 alleles uncover a phenocritical (here we use “phenocritical” to describe the time and domain of gene expression that is important for a particular gene to regulate development) KNOX1 expression domain at the leaf base that supports leaflet production when RCO is expressed in leaves. This pattern of KNOX1 expression in as1/as2 leaf primordia is similar to the pattern of ChSTM expression in the dissected leaves of C. hirsuta, highlighting the importance of the proximal and medial part (basal midrib/petiolo1e region) of the leaf primordium for dissected leaf development and evolution. Targeted transgenic approaches, including genetic mosaics and single-cell gene expression profiling, will be required to fully understand the effects of KNOX1 transcription factors on cell-level growth and tissue growth patterns in this domain.

One potential consideration of our studies is that in line with other work in the field, we used the term KNOX1 to collectively refer to STM, BP, KNAT2, and KNAT6 genes. This designation is justified on the basis of sequence similarity and genetic evidence for redundancy of these genes, particularly STM and BP, in meristem maintenance and dissected leaf formation. It is also justified by the fact that ectopic expression of different KNOX1 genes in A. thaliana leaves generates similar lobed leaf phenotypes, and the result that both BLSpro:STM and as1/as2 produce leaflets together with RCO. However, it should be borne in mind that paralogue-specific differences exist in the function of these KNOX1 genes, which need further investigation.

Crosstalk between RCO and KNOX1 genes

Although previous work indicated that RCO activity does not grossly influence KNOX1 expression (Figures 3B), our genetic results provide evidence for more subtle crosstalk between these genes. First, additional foci of BP expression were observed at the leaflet base in as1/2;RCOg-V leaves (Figures S3D and S3F), compared to as1-151 and as2-163 (Figures S3C and S3E). Second, RCOg-V expression was expanded to a bilateral pattern in as1/as2 mutants and the transgenic lines expressing BP under the AS2 promoter (Figures 3G–I and S2J). Given that KNOX1 and RCO transcription factors both promote cytokinin activity and that cytokinin activity may feed back to promote KNOX1 expression, it is conceivable that this hormone mediates the KNOX1/RCO crosstalk that we found here. In this context, it will also be interesting to explore whether such crosstalk also promotes STM expression in leaves. Further work in both A. thaliana and the endogenous context of C. hirsuta will be required to fully investigate the causes and consequences of this crosstalk for leaf morphology, including the precise contribution of the bilateral expression of RCO to leaflet development.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Plant materials and growth conditions
- **METHOD DETAILS**
 - EMS mutagenesis screen
 - Crossing and genotyping
 - Quantitative PCR
 - β-Glucuronidase (GUS) staining
 - Confocal microscopy
 - Time-lapse experiments and growth analysis
 - Leaf shape and protrusion morphospace analysis
 - Leaf epidermal impressions
 - Plasmid construction and plant transformation
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cub.2022.08.020.
ACKNOWLEDGMENTS

We thank Angela Hay for helpful discussions and comments on the manuscript, Ismene Karakasilioti for comments on the manuscript, Mohsen Hajei-dari for help with the EMS mutagenesis screen, Neha Bhatia and Peter Huijser for help with confocal microscopy, and Essra Gabal and Ling Dong for technical assistance. This work was supported by a Max Planck Society core grant to M.T.

AUTHOR CONTRIBUTIONS

Y.W. and M.T. designed experiments. Y.W., S.L., and R.L. performed experiments. S.S. analyzed time-lapse data. B.P. contributed to statistical analysis. A.R. contributed to the leaf shape space analysis. Y.W., S.S., and M.T. wrote the paper with input from the other authors. M.T. designed and directed the study.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Current Biology

Current Biology 32, 3773–3784, September 12, 2023
STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemicals, peptides, and recombinant proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethyl methanesulfonate (EMS)</td>
<td>Sigma-Aldrich</td>
<td>Cat#M0880</td>
</tr>
<tr>
<td>X-gluc</td>
<td>Roth</td>
<td>Cat#0018</td>
</tr>
<tr>
<td>Mango Taq</td>
<td>Bioline</td>
<td>Cat#BIO-21083</td>
</tr>
<tr>
<td>Phusion High-Fidelity DNA Polymerase</td>
<td>NEB</td>
<td>Cat#M0530</td>
</tr>
<tr>
<td>½ MS Medium including vitamins</td>
<td>Duchefa Biochem</td>
<td>Cat#M0222.0050</td>
</tr>
<tr>
<td>Hygromycin</td>
<td>Roth</td>
<td>Cat#CP12.1</td>
</tr>
<tr>
<td>Plant Preservative Mixture (PPM)</td>
<td>Plant Cell Technology</td>
<td>250</td>
</tr>
<tr>
<td>Critical commercial assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNeasy Plant Mini Kit</td>
<td>QIAGEN</td>
<td>Cat#74904</td>
</tr>
<tr>
<td>SuperScript VILO cDNA Synthesis Kit</td>
<td>Invitrogen</td>
<td>Cat#11754050</td>
</tr>
<tr>
<td>Power SYBR Green PCR Master Mix</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#4367659</td>
</tr>
<tr>
<td>Experimental models: Organisms/strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. thaliana: wild type Col-0</td>
<td>NASC</td>
<td>N60000</td>
</tr>
<tr>
<td>A. thaliana: RCOpro:RCOg-VENUS (RCOg-V)</td>
<td>Vuolo et al.33</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-155;RCOg-V</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-12;RCOg-V</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-1</td>
<td>Semiarti et al.25</td>
<td>CS3374</td>
</tr>
<tr>
<td>A. thaliana: as2-1</td>
<td>Semiarti et al.25</td>
<td>CS3117</td>
</tr>
<tr>
<td>A. thaliana: bp-9;kn2-5;kn6-1</td>
<td>Belles-Boix et al.36</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V;bp-9;kn2-5;kn6-1</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V;bp-9;kn6-1</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V;35Spro:Amirkn126</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V;35Spro:Amirkn126</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V;ev(pML-Hyg)</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V;ev(pML-Hyg)</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: AtAS2pro:AtBP-mCherry;RCOg-V</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: AtAS2pro:AtBP-mCherry</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: AtBPpro:GUS</td>
<td>Ori et al.27</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;AtBPpro:GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;AtBPpro:GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V;AtBPpro:GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V;AtBPpro:GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: RCOg-V;AtBPpro:GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: DR5v2pro:Tdtomato</td>
<td>Zhang et al.37</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: RCOg-V;DR5v2pro:Tdtomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as1-151;RCOg-V;DR5v2pro:Tdtomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V;DR5v2pro:Tdtomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: UBQ10pro:PM-Tdtomato</td>
<td>Segonzac et al.58</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;UBQ10pro:PM-Tdtomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. thaliana: RCOg-V:UBQ10pro:PM-TdTomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V:UBQ10pro:PM-TdTomato</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: CYCB1;2pro:CYCB1;2-GUS</td>
<td>Donnelly et al.</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;CYCB1;2pro:CYCB1;2-GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: RCOg-V:CYCB1;2pro:CYCB1;2-GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>A. thaliana: as2-163;RCOg-V:CYCB1;2pro:CYCB1;2-GUS</td>
<td>This study</td>
<td>N/A</td>
</tr>
<tr>
<td>C. hirsuta: wild type Oxford</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>C. hirsuta: chstm-1</td>
<td>Rast-Somssich et al.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Oligonucleotides

All the oligonucleotides | This study | Table S2

Recombinant DNA

pML-Hyg-3SSpro:Amikn126 | This study | N/A
pML-Hyg-AtAS2pro:AtBP-mCherry | This study | N/A

Software and algorithms

Leica application suite X | Leica | https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/
Fiji (ImageJ 1.53g) | Schindelin et al. | https://fiji.sc/
MorphoGraphX (MGX) (version 2.0) | Barbier de Reuille et al. | https://morphographx.org/
Leaf Interrogator (LeafI) | Zhang et al. | https://gitlab.mpcdf.mpg.de/g-adamrunions/leafinterrogator_zhang_et_al
R (version 4.1.1) | R Core Team | https://www.r-project.org/
FFmpeg (version 5.0) | FFmpeg | https://ffmpeg.org/

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Miltos Tsiantis (tsiantis@mpipz.mpg.de).

Materials availability
All unique/stable reagents generated in this study are available from the lead contact with a completed Materials Transfer Agreement.

Data and code availability
- Microscopy data reported in this paper will be shared by the lead contact upon request.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant materials and growth conditions
A. thaliana and C. hirsuta plant materials were listed in key resources table. Soil-grown plants were cultivated in greenhouses under long-day conditions (16-hour light: 8-hour dark, with supplemental lighting when nature light intensity was below 75 \(\mu\text{mol m}^{-2}\ \text{s}^{-1}\)) at 22°C, except for chstm-1 which was cultivated in climate chambers (Reftech) under short-day conditions [8-hour light (20°C): 16-hour dark (18°C), light intensity 110 \(\mu\text{mol m}^{-2}\ \text{s}^{-1}\), humidity 65%] to promote leaf generation (Figure S5). A. thaliana seeds were cold-stratified within 1/1000 agar solutions (w/v) at 4°C for two days, then pipetted to wet soil surface to grow. C. hirsuta seeds were sowed on wet soil surface, cold-stratified at 4°C for one week, then grown in the greenhouse. For hygromycin-resistance screen, A. thaliana seeds were sterilized by 70% ethanol (v/v), sowed on ½ MS plates with 1.5% plant agar (w/v) and 25 mg/L hygromycin (Roth), stratified at 4°C for two days, then grown in climate chambers (Reftech) under long-day conditions [16-hour light (20°C): 8-hour dark (18°C), light intensity 110 \(\mu\text{mol m}^{-2}\ \text{s}^{-1}\), humidity 65%].

For time-lapse experiments, about 17 day-after-sowing old A. thaliana soil-grown plants were used, and their cotyledons/older leaves were removed to expose the 8th ± 1 rosette leaves for imaging. The dissected plants were then transferred into Ø60mm Petri
dishes filled with ½ MS Medium including vitamins (Duchefa Biochem), supplemented with 1.5% plant agar (w/v), 1% sucrose (w/v) and 0.1% PlantPreservative Mixture (Plant Cell Technology, v/v). Between imaging, plants were transferred to growth chambers and cultured in vitro under long-day conditions as described above.

METHOD DETAILS

EMS mutagenesis screen

EMS mutagenesis was performed in homozygous RCOg-Venus transgenic seeds (*A. thaliana* Col-0 ecotype) by treating the seeds with 100 mM EMS (Sigma) for 4 hours (M1 seeds). M1 plants were self-pollinated to generate the M2 seeds. M2 seeds were harvested in pools of five plants. 220 pools (1100 M2 families) and 216 plants per pool were screened and four enhancers were obtained with leaflet phenotypes. AS1 and AS2 were considered as candidates because of the phenotypic similarity of those enhancers to a previously reported *C. hirsuta* as1 mutant. We performed Sanger sequencing to identify the mutation sites of *as1-151, as1-155, as2-163* and *as2-12*, and this was followed by allelism tests. *as1-151;RCOg-V* and *as2-163;RCOg-V* were backcrossed to RCOg-V twice to remove background mutations. *as1-155;RCOg-V* and *as2-12;RCOg-V* were backcrossed to RCOg-V once. For allelism tests, the *as1*/*as2* mutants obtained from the screen were crossed with *as1-1* (CS3374) and *as2-1* (CS3117).

Crossing and genotyping

atbp-9;knat2-5;knat6-1 was crossed to *as1-151;RCOg-V* or *as2-163;RCOg-V* mutants. F1 plants were self-pollinated to generate the F2 populations. F2, F3 and F4 populations were genotyped to obtain *as1-151;RCOg-V;bp-9;kn2-5;kn6-1* quintuple and *as2-163;RCOg-V;bp-9;kn6-1* quadruple mutants. The F4 plants were used for leaf shape analysis. A CAPS marker was designed to genotype *as1-151* (as1-151_gf and as1-151_gt, Xmal to cut the wild-type PCR product), and a dCAPS marker was used to genotype *as2-163* (as2-163_gf and as2-163_gt, PstI to cut the wild-type PCR product). For *bp-9*, *BP-14* and *new_BP-3* were used to amplify the wild-type band (2kb), while *BP-14* and *dSpnm1* for the mutant band (1.5kb). For *knat2-5*, *knat2-5_LP* and *knat2-5_RP* were used to amplify the wild-type band (1.5kb), while *knat2-5_RP* and *JMLB1* for the mutant band (1kb). For *knat6-1*, *knat6-1_LP* and *knat6-1_RP* were used to amplify the wild-type band (1.5kb), while *knat6-1_RP* and *JMLB1* for the mutant band (1kb). All PCRs were performed using Mango Taq polymerase (Bioline) except for the bp-9 wild-type band where we used Phusion polymerase (NEB). The primers used for genotyping are listed in Table S2.

AtBP_{pro}-GUS homozygous plants were crossed to *as1-151;RCOg-V* or *as2-163;RCOg-V* mutants. Homozygous *as1-151;AtBP_{pro}-GUS, as2-163;AtBP_{pro}-GUS, as1-151;RCOg-V;AtBP_{pro}-GUS, as2-163;RCOg-V;AtBP_{pro}-GUS and RCOg-V;AtBP_{pro}-GUS plants from the F3 populations were used for GUS staining. The same method was applied to introduce UBQ10_{pro}-PM-TdTomato, 38 DR5v2_{pro}-TdTomato, 37 and CYCB1;2_{pro}-CYCB1;2-GUS (first named as cyc1At::GUS, 40 with the first ~150 amino acids fused with GUS) into *as1-151;RCOg-V* and *as2-163;RCOg-V* backgrounds.

Quantitative PCR

For the qPCR experiment in Figures S1F and S1G, *as1-151;RCOg-V, as2-163;RCOg-V, as1-155;RCOg-V, as2-12;RCOg-V* and Col-0 plants were grown on soil under long-day conditions. The 8th young rosette leaves (4-5 mm length) from 20-day-old plants were used for RNA extraction. There were three biological replicates for each genotype, and each replicate included 10-12 leaves. For Figure S2C, *A. thaliana pML-Hyg-35S_{pro}-Akin1126* and *pML-Hyg* transgenic plants were grown on ½ MS plates with 25μg/ml hygromycin under long-day conditions. 2-week-old seedlings without roots were used for RNA extraction. There were three biological replicates for each genotype, and each replicate included more than 12 seedlings. The total RNA was extracted by Qiagen RNeasy Plant Mini Kit, then reverse-transcribed by SuperScript VILO cDNA Synthesis Kit (Invitrogen) to generate the first-strand cDNA. Quantitative PCR was performed in QuantStudio 3 Real-Time PCR System (ThermoFisher) with Power SYBR Green PCR Master Mix (ThermoFisher). AtUBQ10 was used to normalize and quantify the expression of target genes. The primers used are listed in Table S2. Relative expression was calculated by 2^ΔΔCT. qPCR results were plotted by R package ggplot2.

β-Glucuronidase (GUS) staining

The aerial part of plants was harvested and fixed in 90% acetone (v/v) for 30 min at room temperature. Then the samples were washed three times with GUS-staining buffer [50 mM phosphate buffer pH 7.2, 2 mM K4Fe(CN)6, 2 mM K3Fe(CN)6, 0.1% Triton X-100 (v/v), 10 mM EDTA] and then incubated at 37°C with 1 mg/ml of 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-gluc, Roht) in GUS-staining buffer. Samples were incubated for 10 hours (AtBP_{pro}-GUS and CYCB1;2_{pro}-CYCB1;2-GUS). After incubation, the staining buffer was removed, then 20%-50%-70% ethanol (v/v) was applied to clear the samples. GUS staining images were collected with a Nikon SMZ18 stereomicroscope and a Zeiss Axiophot light microscope.

Confocal microscopy

A Leica SP8 upright confocal laser-scanning microscope was used for confocal imaging. Time-lapse images were captured with a long working-distance water immersion objective lens (20x/0.5, 40x/0.8, or 25x/0.95). The other confocal images were captured with these water-immersion objective lenses or a dry 10x/0.30 lens. Excitation was performed using an argon laser with 488 nm for GFP, 512 nm for VENUS, and a DPSS laser with 561 nm for Tdtomato/mCherry. Images were collected at 493-515 nm for GFP, 520-550 nm for VENUS, 580-620 nm for mCherry, 575-620 nm for Tdtomato, and 660-749 nm for chlorophyll auto-fluorescence. Images were
processed using Leica application suite X and Fiji to generate maximum projections from representative confocal micrographs (Figures 3G–3I, S2I, and S2J).

Time-lapse experiments and growth analysis

For each sample used in the time-lapse experiment, the cotyledons and older leaves were removed to expose the 8th ± 1 rosette leaves for imaging. The abaxial epidermis of the leaves was imaged at 24h intervals. Cell outlines were visualized by UBP10pro:PM-TdTomato. Confocal stacks for the time-lapse series were acquired at 512x512 or 1024x1024 resolution, at 400Hz speed, with 0.6-1.5 μm distance in Z-dimension depending on the leaf size. No line or frame average was used in order to minimize the imaging stress. Samples larger than the scanning area were imaged in parts and the stacks were stitched in MorphoGraphX (MGX) software.

The cell lineage tracing and growth analysis were performed using MorphoGraphX. Raw images were processed using the standard pipeline to obtain cellular segmentation on a curved organ surface mesh (see the MorphoGraphX user guide for details). Next, the cell lineages were determined for all time points to quantify the growth parameters (area extension, cell proliferation and growth anisotropy) and generate the heatmaps. Area extension was computed as the relative growth of cell area between two time points.

$$\text{area extension} = \frac{\text{cell area (timepoint 2)} - \text{cell area (timepoint 1)}}{\text{cell area (timepoint 1)}} \times 100\%$$

Here “cell area (timepoint 2)” refers to the clonal sector including all cells that were originated from a single cell at time point 1. Cell proliferation was computed as the number of cells at time point 2 that were originated from a single cell at time point 1. Growth anisotropy was computed as the ratio of the maximal and minimal principal growth directions.

For reverse cell fate mapping, the corresponding cell lineages through multiple days were computed by linking the parent relations between successive days, thus allowing the tracing of leaf structures, i.e. rachises and petiolules, back to the original cell populations (similar to the analysis in Kierzkowski et al.). For the analysis shown in Figures 4C, 4D, S6B, and S6C, cells at the base of the first time point were manually selected as the origin to compute a distance coordinate system for the cells in the leaf. Based on those coordinates, we determined the basal 25% of the leaf cells (Figure 4C) which were used for the analysis (similar to the analysis in Zhang et al.). Moreover, we divided the leaf into midrib and leaf blade cells based on geometrical cell features at the last time point. For further analysis of growth directions (Figures 5E and 5F), we used the organ coordinates to compute the proximal-distal axis in leaves. The medial-lateral axis was defined as the orthogonal direction to the proximal-distal axis. The Principal Directions of Growth were computed and their proximal-distal and medial-lateral components were determined using the previously defined organ axes. Similarly, in Figures 5I and 5J we computed the proximal-distal and medial-lateral axes of protrusions, by creating a distance field defined by a manually selected cell at the protrusion tip. To analyze sinus cells in Figures 5C–5F, we used 6 DAI leaves to manually select a region consisting of five layers of cells in the sinus region between the protrusions, and excluded cells that were part of the younger protrusion. The basal protrusion cells in Figures 5G–5J were selected as basal 50% of all protrusion cells. For plot and statistical analysis, all cellular data of geometry and growth were exported from MorphoGraphX and subsequently analyzed using R and ggplot2. For Figures 5L and 5M, the published time-lapse data of C. hirsuta wild type were reanalyzed to understand the growth anisotropy in rachises. To create Video S1 we used MorphoGraphX to export frames of morphed segmented meshes of the different genotypes with their interpolated heatmaps. Those frames were used to create the animation using the open-source software FFmpeg.

Leaf shape and protrusion morphospace analysis

Plant leaves were flattened onto white paper using transparent adhesive films, then digitally scanned with 800dpi resolution to obtain the silhouettes. Leaf shape space principle component analysis (Figure 2B) was performed using the software Leaf Interrogator as described previously with two modifications. First, there were 9 out of 20 as1-151;RCOg-V leaf silhouettes bearing leaflets only on either side (5 right, 4 left). Because this type of leaf shape variance is not related to leaf complexity, those 4 leaf silhouettes bearing leaflets on the right side were flipped to make sure all 9 silhouettes showed left-side leaflets. Second, scale normalization was obtained by scaling each contour by the inverse of the centroid size to guarantee scale invariance. The protrusion morphospace plots with triangle approximation (Figures 1J, 5K, S4A, and S4B) were based on previously reported analysis, with the protrusion triangles (length and basal width) measured from the silhouettes or confocal images by the software Fiji. The R package ggplot2 was applied to draw the box/point/ribbon plots and the protrusion morphospaces.

Leaf epidermal impressions

Leaf epidermal impressions were taken from the abaxial surface of rosette leaves by using transparent nail polish (Maybelline New York). The nail polish was applied to the leaf surface. After 10 minutes, the dried polish layer was peeled by fine forceps, mounted on slides, and imaged using the differential interference contrast (DIC) mode of a Zeiss Axioptic light microscope.

Plasmid construction and plant transformation

For pML-Hyg-35Spro:Amikn126, the artificial miRNA was designed based on the web microRNA designer WMD3 (http://wmd3.weigelworld.org). Two amiRNAs were tandemly linked to knock down AtBP (TAATACGACGTATAAACTCCC) and AtKNAT2/AtKNAT6.
(TTATATCGCAGTAGGTTTCCC). The amiRNA scaffold was synthesized (Genscript Biotech) and inserted into pBJ36-35S-OSCS by Xhol/XbaI. The cassettes were cut by NotI and inserted into pML-Hyg. For pML-Hyg-AtAS2pro:AtBP-mCherry, the AtAS2 promoter (4465bp) was amplified from A. thaliana genomic DNA with SalI/Xmal in the primers by Phusion high-fidelity DNA polymerase (NEB). AtBP-mCherry (the coding sequences of AtBP fused with mCherry) was synthesized with Xmal/XbaI in the flanking regions (Genscript Biotech). The AtAS2 promoter and AtBP-mCherry sequences were ligated into pBJ36 by SalI/Xmal/XbaI, then the whole cassettes were cut by NotI and inserted into pML-Hyg. Constructs were transformed into A. thaliana using Agrobacteria GV3103 and by the floral dip method.65 pML-Hyg-35Spro:Amikn126 and pML-Hyg (empty vector) were transformed into as1/2;RCOg-V plants. pML-Hyg-AtAS2pro:AtBP-mCherry was transformed into RCOg-V plants. T1 seeds were germinated on \(\frac{1}{2}\) MS plates with 25 mg/L hygromycin (Roth) for screening. Hygromycin-resistant T1 seedlings were transplanted on soil to grow and phenotype. T2 plants were screened by hygromycin again to confirm the transgene and phenotype. qPCR was used to validate the function of 35Spro:Amikn126 (Figure S2C). Fluorescent signal was examined to validate the expression of AtAS2pro:AtBP-mCherry (Figure S2I and S2J). To phenotype AtAS2pro:AtBP-mCherry plants in Col-0 background, four independent AtAS2pro:AtBP-mCherry;RCOg-V lines were crossed to Col-0. The F2 generations were genotyped to exclude presence of RCOg-V in the genome.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed by R.61 The numbers of samples and replicates that were analyzed have been indicated in the figure legends. The significance threshold used was \(p < 0.05\). For Figures 2C, S1F, and S1G, one-way ANOVA combined with Tukey HSD tests was applied to test the differences among genotypes. For Figures 4D, S5–S7, 5H–5J, and S6C, nested ANOVA and post-hoc comparison (Tukey) were applied to test the significance of differences, with genotype treated as a fixed effect and sample treated as a random effect. For Figures S2C and S6B, Welch two-sample t-test was applied. For Figures 5K and S4A, A likelihood ratio test was applied to compare the protrusion growth (the estimated slopes of lineage models). The test was based on the principle that, if there was no difference in the relation between length and base size for each genotype, then there would be no significant improvement for a model allowing the slope for each genotype to be different over a model that had a single slope for all genotypes.