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In brief

As cereal pollen grains reach maturity,

they form large starch deposits that later

nourish them on their way to fertilization.

Amanda et al. show that barley pollen

produces the hormone auxin to control

starch accumulation by enhancing

central carbon metabolism pathways that

generate energy as ATP, a limiting factor

in the synthesis of starch.
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SUMMARY

Pollen grains become increasingly independent of the mother plant as they reach maturity through poorly
understood developmental programs. We report that the hormone auxin is essential during barley pollen
maturation to boost the expression of genes encoding almost every step of heterotrophic energy production
pathways. Accordingly, auxin is necessary for the flux of sucrose and hexoses into glycolysis and to increase
the levels of pyruvate and two tricarboxylic (TCA) cycle metabolites (citrate and succinate). Moreover, bioac-
tive auxin is synthesized by the pollen-localized enzyme HvYUCCA4, supporting that pollen grains autono-
mously produce auxin to stimulate a specific cellular output, energy generation, that fuels maturation pro-
cesses such as starch accumulation. Our results demonstrate that auxin can shift central carbon
metabolism to drive plant cell development, which suggests a directmechanism for auxin’s ability to promote
growth and differentiation.

INTRODUCTION

The terminal stages of pollen development, termed maturation,

ensure that pollen grains released fromanthers arewell equipped

for successful fertilization with female gametophytes. Unicellular

haploid microspores, the product of male meiosis, acquire a lytic

vacuole and undergo asymmetric mitosis to produce bicellular

pollen grains with a vegetative cell encasing a generative cell. In

cereal crops, essential pollen maturation events include mitosis

of thegenerativecell toproduce twospermcells and theaccumu-

lation of starch as energy reserve and of mRNA transcripts, both

for later use during pollen germination and tube growth.1,2 Pollen

is strongly dependent on mother sporophytic tissues for re-

sources, most ostensibly sugars.3 However, the vegetative cell

of maturing pollen should express its own machinery for energy

generation, starch synthesis, germination, and pollen tube

growth. It is not knownwhat signalsactivate the timelyexpression

of such machinery and whether those signals emanate from the

sporophyte or from pollen grains themselves. MIKC*-type

MADS transcription factors from rice and Arabidopsis are the

only described gametophyte-specific regulators required for

maturation.4–6 However, it is unclear how the transcriptional pro-

grams activated by these factors in rice pollen mediate starch

accumulation and othermaturation processes. Similarly, the hor-

mone jasmonate is indispensable for Arabidopsis pollen matura-

tion,7 but transcriptomics data suggest that it acts predominantly

on the sporophyte, although it influences the expression of pol-

len-specific transporters.8

The hormone auxin is also necessary for postmeiotic stamen

and pollen development in Arabidopsis. Loss of function in two

auxin synthesis genes of the YUCCA (YUC) family, AtYUC2

and AtYUC6, blocks the progression of pollen mitosis.9,10

Interestingly, sporophytic microsporocytes, the progenitors of

pollen grains, are the apparent source of auxin for this

process.9,10 The molecular targets regulated by auxin to allow

pollen mitosis are not known. Lack of two auxin response factors

(ARFs), ARF6 and ARF8, arrests late stamen development,

which prevents anther opening and filament elongation11 and

results in nongerminating pollen.12 On the other hand, a

reduction in auxin synthesis or sensitivity is required to trigger

anther opening and advance pollen maturation in tobacco and

Arabidopsis.13–15 Maturing rice anthers accumulate high levels

of auxin16,17 and express auxin synthesis and signaling genes

specifically in pollen.16 However, the primary function of this

auxin wave in cereal pollen maturation is unknown, and only

the detrimental effects of uncontrolled auxin accumulation on

rice stamen maturation have been described.17,18

Starch accumulation in cereal pollen occurs in amyloplasts

that differentiate from proplastids.19,20 Starch synthesis genes

that are both specific and essential to cereal pollen have been

identified,21 but how maturing pollen controls starch production

remains unknown. Both transcriptional and posttranslational
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Figure 1. Phenotypic characterization of msg38

(A) Grain filling in Bowman and empty spikelets in msg38 inflorescences. Scale bars, 1 cm.

(B) At stage W9.75, anther opening (arrow) occurs in Bowman but fails in msg38. Scale bars, 500 mm.

(C) Purple color with Alexander staining indicates viable pollen.

(D) Dark blue staining with potassium iodide reveals starch deposition only in mature Bowman pollen.

(E) Macallum’s staining shows yellow potassium salt crystals (arrowheads) only in Bowman pollen. Scale bars in (C–E), 25 mm.

(F) Light micrographs of pollen visualized without liquid medium. Scale bars, 20 mm.

(legend continued on next page)
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regulatory mechanisms of starch synthesis enzymes have been

described in other nonphotosynthetic tissues such as potato tu-

bers.22 Moreover, ATP availability is considered the major flux

determinant of starch synthesis in heterotrophic tissues,23 and

mitochondrial respiration and metabolism are believed to regu-

late starch production.22 Accordingly, a high respiration rate

dependent on mitochondrial oxidative phosphorylation is asso-

ciated with enhanced starch buildup in lily pollen.24–26 Thus,

regulating a metabolic shift to a state of high energy production

may be a mechanism to control starch accumulation in hetero-

trophic tissues.

To understand the mechanisms that regulate and execute

pollen maturation processes, a thorough characterization of

the factors involved is necessary. Here, our functional analysis

of the barley geneMALE STERILE GENETIC 38 (MSG38) shows

that pollen grains autonomously produce auxin, which is

required for a metabolic transition that fuels starch production

and other processes of pollen maturation.

RESULTS

msg38 mutants are defective in pollen starch
accumulation
To identify factors required for pollen maturation in temperate

cereals, we use the barley collection of msg mutants,27 some of

which have been introgressed into the reference cultivar

Bowman.28 This includes msg38, which is fully sterile (Fig-

ure 1A) but without obvious defects in vegetative development

(Figure S1A). According to our modified Waddington

(W) scale29 (Table S1), the morphology of msg38 anthers

progresses normally during stamen maturation (Figure S1B).

However, at the stage of anther dehiscence (W9.75), anther

yellowing is incomplete and opening does not occur (Figure 1B),

due to delayed or failed separation of specialized septum and

stomium cells (Figure S1C). msg38 pollen appears viable but

shrunken (Figures 1C and S1D) and shows no stain for starch

and potassium (Figures 1D and 1E), an ion proposed to create

an osmotic gradient to allow rapid pollen hydration.30,31 Indeed,

when imaged without mounting medium, maturing Bowman

pollen appears dehydrated, but it expands progressively and

swells spontaneously during or after anther opening (Figures 1F

and 1G). Instead, msg38 pollen stops expanding after stage

W9.25, fails to swell (Figures 1F and 1G), and is unable to

germinate on fertile pistils (Figure S1E).

Starch granules grow in Bowman amyloplasts from

around stage W9 until W9.5, whereas the large lytic vacuole

characteristic of young pollen is resorbed and replaced with

multiple small vacuoles filled with electron-dense particles

(Figures 1H, 1I, and S2). In contrast, no or few starch granules

are visible in the plastids of msg38 pollen, the lytic vacuole

persists, and the small vacuoles appear empty (Figures 1H, 1I,

and S2). All other organelles seem normal (Figure S2A), and

the mutant pollen becomes tricellular with one vegetative and

two sperm cells (Figure S3). Thus, MSG38 is not required for

barley pollen mitosis, but it is essential for vacuole dynamics

and starch and potassium buildup during maturation. These

processes likely enable pollen expansion and hydration, which

in turn may increase the pressure on anther wall tissues to

facilitate anther opening.

Homozygousmsg38mutants segregatewith variable, reduced

frequencies in progenies of msg38/+ heterozygotes (16% ± 5%

SD, c2 test p = 3.7E�72; Table S2), indicating a gametophytic

defect. Accordingly,msg38/+ plants carry an excess of shrunken

pollen (9%) and a population of small pollen (15%) not present in

Bowman (Figures 2A–2C). Reciprocal test crosses withmsg38/+

partially support a lower transmission efficiency of msg38 in

pollen (Table S3). Furthermore, grain production in msg38/+

plants is unaltered (Figure 2D), indicating that themsg38mutation

does not affect the female gametophyte.

MSG38 encodes aYUCCAflavinmonoxygenase involved
in auxin synthesis
We identified the MSG38 gene combining map-based

cloning (Figure 3A; Data S1A) and gene variant detection in

transcriptomes of msg38 and Bowman stamens (Figure 3B).

MSG38 encodes HvYUC4, a putative flavin monoxygenase of

the YUCCA (YUC) family, whose members catalyze the direct

formation of the main bioactive auxin indole-3-acetic acid (IAA)

from indole-3-pyruvic acid (IPyA32,33; Figures 3C, 3D, and S4;

Data S1B). CRISPR-Cas9 editing of HvYUC4 produced two

new loss-of-function mutations, msg38-2 and msg38-3 (Fig-

ure 3C), that fully recapitulate the original msg38 phenotype

(Figures S5A and S5B; Tables S2 and S3). YUC proteins form

four phylogenetic clades (Figure S6). MSG38/HvYUC4 is part

of grass-specific subclade 2b and is a close paralog of

AtYUC2 and AtYUC6 in subclade 2a (Figure 3E). In contrast to

MSG38/HvYUC4, these Arabidopsis proteins are redundantly

required for early pollen development and multiple aspects

of vegetative development.9,10 Five mutant alleles in HvYUC2,

the barley ortholog of AtYUC2/6, do not cause obvious vegeta-

tive or reproductive defects, and yuc2-1 msg38-2 double mu-

tants are indistinguishable from msg38-2 single mutants

(Figures S5C–S5E). Moreover, the stamen transcriptome shows

very low levels ofHvYUC2 (Data S1C). Thus, pollen development

in flowering plants may generally require clade 2 YUC proteins;

however, the duplication that originated group 2b YUCs

may have allowed both functional specialization in reproduc-

tive development and functional divergence toward pollen

maturation in grasses.

To test if MSG38/HvYUC4 participates in auxin synthe-

sis during barley stamen maturation, we performed auxin

metabolite profiling. msg38 stamens over accumulate IPyA and

its precursor L-tryptophan (Trp) at maturation stages (Figure 3F).

Instead, although IAA levels increase exponentially in Bowman

stamens from microspore stage (W8.25–W8.5) until pollen

maturation (W9.25–W9.35), they remain low inmsg38 (Figure 3F).

(G) Mean (± SD) pollen area; n = 30 pollen grains from 3 independent inflorescences for each data point. Significant differences (asterisks) between Bowman and

msg38 at each stage determined with t test.

(H) Gradual accumulation of starch granules (arrows) detected with PAS-fuchsin. Only Bowman pollen resorbs the lytic vacuole (v). Scale bars, 10 mm.

(I) Representative transmission electron micrographs of mature pollen with starch granules (arrows) and small vacuoles (arrowheads). Scale bars, 2 mm.

See also Figures S1–S3 and Table S1.
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ox-IAA and three other IAA degradation products also follow this

pattern (Figure 3F; Data S1D). Thus, MSG38/HvYUC4 catalyzes

the direct formation of IAA during barley stamen maturation.

Noticeably, oxIAA and oxIAA-Glc in Bowman stamens

accumulate to�50–100 times higher levels than IAA, the highest

of all detected auxin metabolites, indicating a rapid degradation

of the active hormone (Figure 3F; Data S1D).

MSG38/HvYUC4 is a pollen-specific protein
MSG38/HvYUC4 transcripts are undetectable in vegetative

tissues and in inflorescences with meiotic stamens (W6–W7.5).

They appear first in Bowman reproductive organs at W8,

increase in stamens exponentially like IAA, peak around

W9.25, and decline rapidly afterward (Figure 4A). Thus,

MSG38/HvYUC4 functions specifically in reproductive tissues

within a limited time window. Although MSG38/HvYUC4 tran-

scripts are also detected at W8 in msg38 mutant tissue, they

only increase by one order of magnitude and are still detectable

atW9.5–W9.75 (Figure 4A), indicating that auxin exerts feedback

regulation on a gene associated with its own synthesis.
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Figure 2. Pollen morphology and fertility of

heterozygous msg38/+

(A) Pollen visualized with Alexander’s stain.

msg38/+ plants carry three pollen morphologies:

normal, small, and shrunken, whereas most

Bowman pollen is normal with a low frequency of

shrunken pollen. Scale bars, 50 mm.

(B) Area quantification in regular-shaped pollen

grains. Shrunken pollen not considered. Box plot

whiskers represent ±1.53 the interquartile range;

horizontal lines, medians; dots, individual mea-

surements. The subpopulation of small pollen in

msg38/+ causes a significant difference (asterisk)

in the mean pollen size when compared with

Bowman, as determined with t test. n = 710

(Bowman) and 1,294 (msg38/+) pollen grains ob-

tained from six independent inflorescences per

genotype.

(C) Mean frequency (±SD) of pollen types in 6 in-

florescences per genotype. Significant differences

(asterisks) determined with t tests.

(D) Fertility (number of grains divided by the num-

ber of spikelets per inflorescence) under green-

house conditions in three genotypes: Bowman

and wild-type siblings in segregating populations

(homozygous MSG38+/+ and heterozygous

msg38/+). No significant difference between the

genotypes with one-way ANOVA test (p = 0.37).

Number of inflorescences quantified per geno-

type = 59 (Bowman and MSG38+/+) and 68

(msg38/+). Box plot features as in (A).

See also Tables S2 and S3.

In situ localization first detectsMSG38/

HvYUC4 transcripts inW9 anthers, mainly

in pollen grains and vascular tissues and

less strongly in the endothecium (Fig-

ure 4B). However, an MSG38-fluorescent

protein fusion driven by a 3-kb MSG38/

HvYUC4 endogenous promoter localizes

exclusively in pollen, also from W9 on-

wards (Figure 4C), and restores the fertility of msg38-2 mutants

(Figure 4D). Thus, MSG38/HvYUC4 functions solely in pollen

grains to catalyze local auxin production and drive pollen

maturation. In this scenario, no auxin import from sporophytic

tissues is required, in agreement with the gametophytic nature

of the msg38 mutation. We hypothesize that auxin exported

from wild-type pollen in msg38/+ heterozygotes is imported

into mutant msg38 pollen, which can then develop normally

or with varied success, explaining the relatively high yet

reduced, variable transmission of msg38 from pollen

(Tables S2 and S3). This contrasts with other knockout gameto-

phytic mutations, where no or very few homozygous mutants

can be recovered.21

MSG38/HvYUCCA4 is required to boost energy
metabolism during pollen maturation
The msg38 mutant defects mainly concern pollen grains after

stage W9, coinciding with the beginning of starch formation.

Moreover, MSG38-fluorescent protein fusions are first found

only from stage W9, and we detected the highest levels of
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Figure 3. MSG38 encodes a YUCCA flavin monoxygenase involved in auxin synthesis

(A) Genetic map of the msg38 locus in a 0.8 cM interval of barley chromosome 3. See marker information in Data S1A.

(B) Location of RNA-seq polymorphisms detected between Bowman andmsg38 (red bars), with themsg38 gene variant indicated. See STAR Methods for how

this variant was identified as unique to msg38. Note that the majority of polymorphisms are part of chromosome 3, indicating that most other chromosomal

regions carry a Bowman background. Yellow, approximate location of pericentromeric regions.

(C) Structure ofMSG38/HvYUC4 gene and location of the threemsg38mutant alleles (red). Boxes depict exons (coding regions in black, untranslated regions in

white).

(D) Biosynthesis and degradation of bioactive IAA.

(E) Phylogeny of closest MSG38/HvYUC4 relatives. Monocot, black; eudicot, red. Numbers are node posterior probabilities. See Data S1B and S2 for protein

sequence information.

(legend continued on next page)
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bioactive auxin at stages W9.25 andW9.35. Thus, we compared

the transcriptomes of msg38 and Bowman stamens at W9.25

and W9.35 to identify potential targets of auxin signaling that

carry out pollen maturation (Figures 5A and 5B; Data S1C and

S1E). Differentially expressed genes (DEGs, |fold change (FC)|

R 1.5; FDR-adjusted p % 0.05) form six clusters (Figures 5C

and 5D; Data S1E). Most DEGs (64%) are downregulated in

msg38 and fall in clusters 1 and 2. Cluster 1 contains genes

more strongly expressed at W9.25 than W9.35 in Bowman,

such as MSG38/HvYUC4, and is enriched for auxin-responsive

genes (Data S1F and S1G). More noticeably, it includes genes

encoding almost every step of canonical heterotrophic ATP gen-

eration: from sugar transport and degradation to ATP synthase

activity (Figure 6A; Data S1F, S1H, and S1I). qRT-PCR confirmed

coexpression of Hexokinase5 (glycolysis) and Cytochrome c

(oxidative phosphorylation) with MSG38/HvYUC4 (Figure 6B).

msg38 stamens show downregulation of only three starch syn-

thesis genes, including AGP-L1, a subunit in the first committed

step of the pathway22 (Figures 6A and 6B; Data S1I). Machine

learning predicts that, similar to auxin-responsive genes, most

energy and starch metabolism genes downregulated in msg38

carry putative upstreambinding sites to ARFs, the transcriptional

regulators effecting auxin responses (Figures 6C and 6D; Data

S1J). Metabolite profiling (Data S1K) shows thatmsg38 stamens

at W9.35 tend to over accumulate sucrose, glucose, and

fructose (Figure 6E). Thus, auxin signaling is not required

for photosynthate import into stamens but rather for both

sucrose breakdown and normal flux through glycolysis. Accord-

ingly, msg38 stamens contain lower levels of pyruvate, the

output of glycolysis, and of citrate and succinate, two important

metabolites of the TCA cycle (Figure 6E). Ultimately, mutant sta-

mens contain �7 times less starch than Bowman’s (Figure 6F).

Overall, the data support that auxin promotes starch synthesis

in barley pollen mainly by boosting the expression of genes

required for energy generation. We conclude that this boost

shifts pollen metabolism to a high energy production state to

support the demand for ATP, the predominant factor driving

starch synthesis in heterotrophic tissues.23

An excess of genes encoding starch degradation enzymes,

transporters, and cytoskeleton and signal transduction

components are also downregulated in msg38 (Figure 6A; Data

S1F, S1I, and S1L). These genes are typical of mature pollen tran-

scriptomes and likely part of a transcript pool stored for use after

pollen release,2 including homologs of known factors of pollen hy-

dration and tube growth (Data S1M). Several of these gene cate-

gories are enriched in cluster 2, where transcripts reach higher

levels at W9.35 than W9.25 in Bowman (Figures 5C and 5D;

Data S1F), suggesting that auxin induces them in a second

gene expression wave, close to the completion of maturation.

DISCUSSION

As cells progress through development, their demand for

energy and building blocks also changes. Thus, shifts in the

flux of metabolic pathways are required during developmental

progressions to support such varying demands.34 Hormones

and transcriptional regulators that effect metabolic transitions

in developing animal cells are well documented, particularly

for the switch to aerobic glycolysis that characterizes

proliferating cells.35,36 In contrast, mechanisms of metabolic

reprogramming during normal plant development are just

emerging.37,38 Here, we show that the timely accumulation

of auxin can shift central carbon metabolism to drive the

development of a specific cell type. We propose that auxin

may also activate similar metabolic shifts in other processes

requiring a high energy production state, such as that re-

ported for starch accumulation during barley grain develop-

ment.39 In fact, auxin is required for starch buildup in

maize kernels and pea seeds; however, this auxin require-

ment was linked until now only to the activation of starch syn-

thesis genes40,41 and to an influence in sucrose import or

utilization.40

Our results also show that barley pollen autonomously pro-

duce large amounts of auxin, whose primary function is to

activate a gene expression program directly linked to concrete

cellular outputs such as energy production. We hypothesize

that once pollen receives enough sucrose from the mother plant,

auxin ensures the completion of pollen development into a

dehydrated structure that stores energy in the form of starch,

ready for its terminal functions, germination, tube growth, and

fertilization.

Our work provides mechanistic support to classical physio-

logical experiments showing that auxin promotes mitochondrial

respiration as prerequisite for cell growth and division.42,43 We

hypothesize that shifting the flux of central carbon metabolism

may be a general function of auxin to allow cell growth or

differentiation. A similar hypothesis was raised before,44 but

no mechanism was envisioned. Moreover, the pleiotropic

effects of other auxin-deficient mutants prevented separating

a putative direct role of auxin in metabolism from its function

in the development of basic structures such as leaf stomata

and veins, which are themselves necessary for normal carbon

metabolism.44 We also propose that, in addition to the obvious

effect that energy and building block acquisition may have in

organ growth, differences in energy metabolism may potentiate

the fate of differentiating cells. Thus, auxin may not simply

instruct cells to acquire a fate but may also actively modify their

metabolism so that the specific bioenergetic demands of that

fate are met.

The emerging mechanisms of metabolic reprogramming

known in plants so far concern nutrient perception37,38 and

abiotic stress responses.45 For example, the kinases

SNF1-RELATED (SnrK1) and TARGET OF RAPAMYCIN (TOR)

integrate energy status or sugar availability to dynamically

adjust plant metabolism via posttranslational modification of

primary metabolism enzymes46 or nuclear gene expression

factors.37 Responses to nutrients or abiotic stress often involve

activation of hormone signaling, presumably to optimize plastic

(F) Quantification of auxin-related metabolites in Bowman and msg38 inflorescences (W8) and stamens (all other stages). Small circles are individual mea-

surements; color lines connect means (color stars); black lines, ±1 SD. n = 4 except for BowmanW8.75–W9 (n = 3). Black asterisks indicate significant differences

between Bowman and msg38 at a given stage determined with one-tailed t tests. See Data S1D.

See also Figures S4–S6.
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Figure 4. Expression of MSG38/HvYUC4 during pollen maturation

(A) qRT-PCR ofMSG38/HvYUC4 in pooled stamens and pistils (W8) and stamens (all other stages). Samples below dotted line, not detectable (ND). Data pooled

from two independent experiments: n = 4 for W9.35 and W9.5–9.75, except Bowman W9.5–9.75 (n = 3); for all other stages, n = 8, exceptmsg38 W9.25 (n = 7).

Box plot whiskers represent ±1.53 the interquartile range; horizontal lines, medians; black triangles, means; small circles, individual measurements. Asterisks

indicate significant differences between Bowman and msg38 at a given stage determined with one-tailed t tests.

(B) MSG38/HvYUC4 RNA in situ hybridization in Bowman anthers. Arrows point to positive purple signals in pollen, vasculature, and endothecium.

(legend continued on next page)
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growth.47 Therefore, a function of auxin, and potentially other

hormones, in effecting metabolic transitions would also provide

a direct mechanism for controlling plant development in

response to those external stimuli. Importantly, this would

also suggest that hormone signaling could directly adapt meta-

bolism to the conditions imposed by stress or nutrient

availability.

Sugar accumulation is a prerequisite of starch synthesis in

cereal pollen3, but according to our data, it occurs indepen-

dently of auxin. Thus, it is possible that sugar import into

pollen both precedes and triggers auxin synthesis to enable

the metabolic switch required for starch production. In this

scenario, SnrK1, TOR, or other sugar perception mechanism

could promote the expression of MSG38/HvYUC4 in response

to sugar levels. Accordingly, SnrK1 is necessary for starch

accumulation in barley pollen.48 On the other hand, it is also

formally possible that auxin exerts its effect on energy

metabolism more indirectly via activation of SnRK1 or TOR

signaling.

In Arabidopsis, auxin is necessary before the first micro-

spore mitosis,10 an earlier stage of pollen development that

coincides with the initiation of a transient buildup of starch

granules.49 This suggests the intriguing possibility that

Arabidopsis pollen also uses auxin to promote starch

formation with a transcriptional program similar to barley but

with different timing.

Several aspects of plant development rely on auxin

gradients generated cooperatively by local auxin synthesis

and long-distance polar transport from buds or young

organs.50 Instead, early genetic and expression analyses in

Arabidopsis already suggested that anthers themselves are

the main source of auxin during stamen maturation.13,14 Later

work showed more specifically that young Arabidopsis pollen

grains rely on auxin produced by their progenitor sporophytic

microsporocytes.9,10 This and our findings with barley pollen

suggest that in flowering plants the male gametophyte (or its

immediate progenitor) autonomously produce auxin to drive

its own development. Still, other evidence suggests that auxin

transport is also important for stamen maturation in Arabidop-

sis. First, translocation from anthers to filaments may promote

filament elongation.14 Second, normal pollen maturation,

anther opening, and filament elongation require auxin

transport from the tapetum to the middle layer51; such a

gradient could potentially serve as a signaling attenuation

mechanism. Our data show that MSG38/HvYUC4 in pollen is

responsible for the bulk of auxin synthesis in maturing barley

stamens. It remains to be determined if auxin translocation

from barley pollen to the anther sac or other tissues

creates any gradients and if these have a biological function.

However, normal filament elongation in the msg38 mutant

(Figure S1B) indicates that auxin from pollen is not necessary

for this process in barley.

MSG38/HvYUC4 specifically catalyzes auxin synthesis in

maturing barley stamens without apparently participating in

other plant processes. It is likely that its orthologs in YUC

subclade 2b, composed of grass-only members, perform the

same specific function. Thus, one can envision targeted

chemical inhibition of these YUCs to induce male sterility without

affecting plant performance and, as such, represents a novel

strategy for large-scale hybrid seed production in crop cereals.
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Figure 6. Auxin boosts energy metabolism in barley stamens

(A) log2 FC of DEGs involved in ATP and starch metabolism. Gray solid trace shows FC values for each gene relative to log2 FC = 0 (dotted gray lines).

(B) qRT-PCR of representative DEGs. Samples, box plots, and statistics as in Figure 4A.

(C) Significant scores (>0.85) of model-predicted ARF binding sites within 53-bp fragments (boxes) in 2-kb regions upstream of ATP/starch metabolism and

auxin-responsive genes downregulated in msg38. Genes tested in (B) are indicated in red.

(D) Machine learning bag-of-k-mer ZmARF35 model. The receiver operating characteristic (ROC) plot indicates that the predictions of the ZmARF35 machine

learning model are 97% correct as measured by the area under the ROC curve (AUC). (F) The precision-recall curve shows that the precision of the model’s pre-

dictions is 95%.

(E) Log2 relative levels of sucrose, hexoses, pyruvate, and TCA cycle organic acids in five biological replicates of Bowman andmsg38 stamens at stage W9.35.

Relative levels calculated from the ratio of normalized values of each replicate to the mean of normalized values of all five Bowman replicates. Asterisks indicate

significant differences between the mean of Bowman and msg38 values determined with one-tailed t test.

(F) Starch levels in the same samples of (E) are significantly lower inmsg38 as determined with one-tailed t test. Box plot as in Figure 4A, except that medians are

vertical lines.

See also Data S1E–S1M.
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81. Jöst, M., Hensel, G., Kappel, C., Druka, A., Sicard, A., Hohmann, U.,

Beier, S., Himmelbach, A., Waugh, R., Kumlehn, J., et al. (2016). The

INDETERMINATE DOMAIN protein BROAD LEAF1 limitsbarleyleafwidth

by restrictinglateralproliferation. Curr.Biol. 26, 903–909. https://doi.org/

10.1016/j.cub.2016.01.047.

82. Hensel, G., Kastner, C., Oleszczuk, S., Riechen, J., and Kumlehn, J.

(2009). Agrobacterium-mediated gene transfer to cereal crop plants:

current protocols for barley, wheat, triticale, and maize. Int.J. Plant

Genomics 2009, 835608. https://doi.org/10.1155/2009/835608.
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Golden Gate plasmid for gene editing:

Promoter, U6 (Triticum aestivum, pICSL9003)
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Position 4 end linker (pICH50900)
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Golden Gate for gene editing: Binary

Vector Backbone; Level M acceptor (pAGM8031)

Lawrenson et al.64 AddGene 48037
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This paper pMP154
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This paper pMP157
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ivan F.

Acosta (acosta@mpipz.mpg.de).

Materials availability
Plasmids and seeds are available from the lead contact under a transfer agreement with Max Planck Institute for Plant Breeding

Research.

Data and code availability

d Raw RNAseq data have been deposited at the European Nucleotide Archive (ENA) and are publicly available as of the date of

publication. The accession number is listed in the key resources table. All other data (quantifications andmicroscopy images) is

available in the main text, the supplementary materials or from the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material
Barley (Hordeum vulgare subsp. vulgare) cultivar Bowman and segregating populations of msg38 seeds were obtained from the

GRIN-USDA seed bank. We generated transgenic plants via stable transformation in ‘‘Golden Promise Fast’’, the Ppd-H1

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Zen 2.3 blue edition Carl Zeiss Microscopy GmbH www.zeiss.com/microscopy/int/products/

microscope-software/zen.html

Fiji (ImageJ v1.52n) Schindelin et al.65 https://imagej.net/software/fiji/downloads

Leica Application Suite X v3.5.7 Leica Microsystems www.leica-microsystems.com/

FastQC v0.11.5 Bioinformatics Group,

Babraham Institute

https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

Trimmomatic v0.35 Bolger et al.66 http://www.usadellab.org/cms/

?page=trimmomatic

Bowtie 2 Langmead and Salzberg67 http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

SAMtools v1.3.1 H. Li68 http://www.htslib.org/

Picard v1.141 Broad Institute http://broadinstitute.github.io/picard

GATK v3.5-0 McKenna et al.69 https://gatk.broadinstitute.org/

VCFtools v0.1.13 Danecek et al.70 https://vcftools.github.io/

R v4.0.4 The R Foundation www.r-project.org/

RStudio 1.4.1106 RStudio Public

Benefit Corporation

https://www.rstudio.com/

MEGA-X v10.1.7 Kumar et al.71 www.megasoftware.net

MrBayes v3.2.7 Ronquist et al.72 http://nbisweden.github.io/MrBayes/

FigTree v1.4.4 A. Rambaut https://github.com/rambaut/figtree/releases

LinRegPCR 2020.0 Ruijter et al.73 https://medischebiologie.nl/files/

Salmon v1.4 Patro et al.74 https://salmon.readthedocs.io/en/

latest/salmon.html

k-mer grammar for machine learning model Mejia et al.75 https://bitbucket.org/bucklerlab/

k-mer_grammar/

ChromaTOF v1.00 (Pegasus driver 1.61) Laboratory Equipment

Company (LECO)

https://www.leco.com/product/

chromatof-software

Xcalibur Software v4.3 Thermo Scientific Catalog# OPTON-30965
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introgression line of the transformable barley cultivar Golden Promise, which was kindly provided by Maria von Korff. The wild-type

Ppd-H1 allele in this line confers early flowering.63 Transgenic lines generated in this background include gene-edited mutant alleles

msg38-2, msg38-3 and yuc2-1 to yuc2-5, as well as MSG38pro-MSG38-Citrine.

Plant genotyping
The original msg38 mutant was found spontaneously in the cultivar Ingrid.27,52,53 The mutation has been backcrossed at least six

times into the cultivar Bowman28 and throughout this work we used mainly this introgression line, simply referred to as msg38.

Due to its complete male sterility, we currently maintain the msg38 mutant allele in heterozygous msg38/+ individuals. Progenies

of these plants are screened with PCR genotyping with primers 165 and 166 (Data S1A) to identify homozygous msg38 mutants

at seedling stage. msg38-2 and msg38-3 mutant alleles are genotyped with primers 165 and 225 (Data S1A).

Growth conditions
Seeds were sown in 96-well trays filled with a 1:1 mix of soil ED 73 Einheitserde� (Einheitserdewerke Werkverband e.V., Sinntal-

Altengronau, Germany) to BVB Substrates (1:1 vermiculite to coconut fiber). Between one or two weeks later, seedlings were

transplanted to 1-Liter pots containing the same substrate. Plants grew in greenhouses under long-day controlled conditions

(16h light, 22�C; 8h dark, 18 �C) and reached anthesis �7–8 weeks-after-planting in Bowman and �6–7 weeks-after-planting in

Golden Promise Fast.

METHOD DETAILS

Stamen and pistil imaging
Reproductive organs were dissected out of florets with fine forceps under a common stereomicroscope, visualized with a

Discovery.V12 stereomicroscope and imaged with a Stemi 503 color camera and Zen 2.3 blue edition software (Carl Zeiss).

Light microscopy
A Carl Zeiss Axio Scope.A1 was used for sample examination with light microscopy, and images were acquired with an Axiocam 512

color camera and Zen 2.3 blue edition software (Carl Zeiss).

Anther histology
Florets were fixed in freshly prepared 1x PBS (pH 7.4) containing 1% (v/v) glutaraldehyde, 4% (v/v) paraformaldehyde and 0.03%

Triton X-100. Samples were processed for embedding in LRWhite medium grade resin (London Resin Company Ltd) as described.54

Resin blocks with samples were trimmed (TM 60 block trimmer, Reichert-Jung) and transverse semi-thin sections (1 mm) were cut

with a diamond knife (DiATOME histo 6,0 mm) clamped to a microtome (UltraCut U1, Reichert-Jung). Sections were mounted in

epoxy-coated, 12-welled diagnostic microscope slides (Menzel) and stained with a Toluidine Blue + Borax solution (each 1%

w/v). After a brief rinse with running water, slides were stored dry for later imaging with light microscopy.

Pollen viability assay with Alexander’s staining
Florets at W9.75 (anther opening stage) were fixed in Carnoy’s solution (6:3:1 :: ethanol: chloroform: glacial acetic acid) and stained

with a simplification of Alexander’s method55 but with addition of chloral hydrate as described in the original protocol56 and the

followingmodifications. Fixed samples weremoved to staining solution in 1.5-ml tubes and incubated at 100 �C for 1.5 h. The staining

solution was replaced twice with mounting solution (70 % glycerol in 10 mM Tris-HCL, pH 8.0) and the samples were cleared on a

rotary wheel overnight before pollen imaging.

Detection of pollen starch with light microscopy
Anthers at W9.75 were halved transversally and immersed in I2/KI solution (0.3 g/1.5 g per 100 ml H2O) in 1.5-ml tubes, as

described.57 After staining, anthers were vortexed and spun briefly to collect pollen grains for imaging.

Basic fuchsin in the periodic acid-Schiff reaction was used to visualize starch granules in more detail in 1-mm semi-thin sections

of florets (‘‘Anther histology’’ above). The first part of the staining was as described.58 In brief, the sections were incubated with 0.5%

(w/v) periodic acid solution in 0.3% (w/v) nitric acid for 10 mins at room temperature. Slides were washed with running distilled water

for 1–2 mins and incubated with Schiff’s reagent (0.5%w/v basic fuchsin in water) for 30 mins. Subsequent destaining with 5% (w/v)

sodium metabisulfite caused the insoluble polysaccharide to turn purple or pink.59

Detection of potassium salt crystals in pollen
We prepared Macallum’s solution as described,60 under a fume hood: 5 g cobalt nitrate were dissolved in a mix of 10 ml water and

2.5 ml acetic acid to make solution A, and 15 sodium nitrate were dissolved in 25 ml water to make solution B. Both solutions were

mixed and shaken for a fewminutes to allow evaporation of generated nitrous fumes. The solution can be stored for maximum of two

weeks. Transversally halved anthers at W9.75 were placed in Macallum’s staining solution in 1.5-ml tubes for 30 mins. The solution

was replaced with ice-cold water for 5 mins. Pollen grains collected after a brief vortex and centrifugation were mounted in a 1:1

solution of 50% glycerol: 2.5% ammonium sulfide for imaging.
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Area of fresh pollen without mounting medium
For all stages before anther opening, anthers were opened carefully with fine forceps under a stereomicroscope to collect pollen

grains, whichwere spread on dry glass slideswithout cover slip nor liquidmountingmedium for imaging. Pollen areasweremeasured

with Fiji65 from images converted to grayscale 8-bits. Since pollen grains appear dehydrated at most stages, they were measured

only when the folded external wall was facing upwards, as in Figure 1F. Fiji’s functions threshold,watershed, paintbrush and analyze

particles (varying the parameter size) were used to select, separate, clean andmeasure pollen grains, respectively.We used the same

method to quantify the area of fixed pollen grains treated with Alexander’s stain (see above) for the plots in Figures 2B, 2C, and S5B.

Scanning electron microscopy
Pollen fromW9.75 anthers wasmounted on pin stubs using double-sided adhesive and conductive tabs. Samples were then sputter-

coated with gold and imaged with a Zeiss Supra 40VP scanning electron microscope (Carl Zeiss).

Pollen germination assay
We followed two published protocols76,77 with some modifications. Pistils approaching stage W9.75 were manually pollinated with

Bowman or msg38 pollen. Nineteen hours after pollination spikelets were fixed in ethanol: acetic acid (3:1) for 30 mins, rinsed with

water and placed in 1M NaOH for 30 mins at 55�C, before staining with 0.1% (w/v) aniline blue in 0.1 M K2HPO4 (pH 8.5) at room

temperature for 1 hour in the dark. Samples were mounted in perfluorperhydrophenanthren (Sigma-Aldrich/Merck) and examined

with an SP8 laser confocal scanning microscope (Leica Microsystems), a 405 nm laser beam line and a HyD detector (emitted

fluorescence captured between 447–471 nm).

Pollen nuclei visualization with DAPI staining
Transversally-halved anthers were placed in 1.5-ml tubes with DAPI staining solution (1mg/ml DAPI, 1% Triton-X in 1x PBS, pH 7.4)

and incubated for 1 hour at room temperature. Anthers were dissectedwith fine forceps to extract pollen grains on amicroscope slide

containing 70% glycerol in 10 mM Tris-HCl, pH 8.0. Pollen was examined with the SP8 laser confocal scanning microscope (405 nm

laser beam line and HyD detector; emitted fluorescence captured between 445–470nm).

Transmission electron microscopy
Stamens were high-pressure frozen, freeze substituted and imaged as described78 with minor modifications. The last steps of

the freeze substitution program were: 12 h at -20�C, transition to 4�C at 12�C/h (2 h) and 3.5 h at 4�C. Sections were contrasted

with 0.1 % potassium permanganate in 0.1 N H2SO4 for 1 min, before staining with uranyl acetate and lead citrate. To improve

visualization, the contrast of all images within a given panel was changed with the same settings in Adobe Photoshop 21.2.11.

MSG38 gene identification
Previous high-throughput genotyping of the msg38-Bowman introgression lines identified two regions in chromosomes 2 and 3

potentially carrying the MSG38 locus.28 We confirmed linkage of the mutation with the region in the lower arm of chromosome 3.

Further genotyping of msg38 segregating populations with public and newly identified DNA markers, narrowed down the locus to

a 0.8 cM interval (Figure 3A; Data S1A).

Concurrently, we performed RNAseq of msg38 and wild-type Bowman stamens at stages W9.25 and W9.35 to detect gene

variants within that interval. Total RNA was extracted (see below) from four biological replicates per genotype per stage, each

containing the stamens of 7 to 18 florets. Ribosomal RNA depletion, library preparation and RNA sequencing of 20 million 100-bp

single reads were performed at the Max Planck-GenomeCentre Cologne.

Sequencing data was quality-checked with FastQC v0.11.5. Reads were trimmed with Trimmomatic v0.3566 and the following

parameters: ILLUMINACLIP: Trimmomatic-0.35/adapters/TruSeq3-SE.fa:2:30:10 LEADING: 3 TRAILING: 3 HEADCROP: 10

SLIDINGWINDOW: 4:15 MINLEN: 50. Trimmed reads of all replicates per genotype were pooled and aligned with Bowtie 267 to

the predicted transcriptome of the reference Morex V1 genome.61 Output *.sam files were sorted, indexed and converted to

*.bam format with SAMtools v1.3.168 and read duplicates were marked with the MarkDuplicates tool of Picard v1.141 (http://

broadinstitute.github.io/picard). A dictionary and a *.fai index were generated from the reference transcriptome with SAMtools

and Picard. Gene variants were called with the HaplotypeCaller tool of GATK v3.5-069 and the options SplitNCigarReads and InDel

realignment (RealignerTargetCreator and IndelRealigner). This produced a *.g.vcf file including variant information for all transcrip-

tome positions. We also obtained from NCBI’s SRA repository, raw RNAseq data of six barley cultivars: Barke (ERR150449), Betzes

(ERR150450), Optic (ERR150454), Quench (ERR150455), Sergeant (ERR150456) and Tocada (ERR150457). Moreover, Wilma van

Esse andMaria von Korff kindly provided *.bam files of unpublished RNA seq data of cultivars Barke, Bonus, Donaria, Foma, Kindred,

Mesa, Montcalm and Scarlett. All these additional datasets were subjected to the procedures outlined above to produce variant

*.g.vcf files for each genotype. These files were combined in a single *.vcf with the GenotypeGVCFs option of GATK. This was

then converted to a tab-delimited file with vcf-query of VCFtools v0.1.13.70

To identify variants unique to msg38, the variant file was processed further with R. We excluded the following: a) all variants that

appeared ‘heterozygous’ inmsg38 or that had <3 read depth or <30GATK quality score; b) allmsg38 variants that were present in any

other genotype; c) all variants that showed heterozygosity in any genotype. This filtering left only one polymorphism unique tomsg38

in chromosome 3: the deletion of cytosine 261 in the predicted coding sequence of HORVU.MOREX.r2.3HG0205730 (Morex V2
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reference genome assembly),62 which encodes HvYUC4. The deletion shifts the reading frame after codon 88 (out of 355), and

shortens it to 237 codons. Sanger sequencing confirmed that this variant is only present in the msg38 mutant and not in cultivars

Ingrid and Bowman. The approximate location of the pericentromeric regions in Figure 3B were estimated according to.79

Phylogenetic analysis
YUCCA protein sequences were obtained from EnsemblPlants (http://plants.ensembl.org) using its pre-generated gene trees as

guide. Sequences were then manually curated with data from species-specific repositories (e.g. TAIR, maizegdb.org, etc.) and

the Gene database at NCBI. Data S1B contains sequence identifiers and curation notes and Data S2 includes all FASTA protein se-

quences, which were aligned inMEGA-X v10.1.771 with theMUSCLE algorithm.80 The less conserved regions at the N- and C-termini

were removed from the alignment, which was exported in NEXUS format to generate a phylogenetic tree with MrBayes v3.2.7,72 us-

ing a Bayesian Inference mixed amino acid model, the Markov Chain Monte Carlo (MCMC) algorithm and 800.000 generations with

the standard deviation of split frequencies below 0.01. The tree was visualized with FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/

figtree/), with a Physcomitrella patens YUCCA as root, and posterior probabilities added to the nodes.

Agrobacterium-mediated stable plant transformation
Immature embryos of Golden Promise Fast were cultured on Barley Callus Induction Medium containing 5 mg/L dicamba as

described.81 The generated callus tissue was then exposed to Agrobacterium strains carrying the plasmids of interest as reported82

and cultured for 48 hours between filter papers moistened with Barley Co-Cultivation Medium.82 Callus selection and plant regen-

eration were as described.82

Gene editing
Two sgRNAs targeting MSG38 were designed with the E-CRISP tool (http://www.e-crisp.org/E-CRISP/, sgRNA1: GGAGGCATCGCA

CGTACAAC and sgRNA2 GTCGTCAGCGCCGAATTCAA). Two other sgRNAs targeting HvYUC2 (HORVU.MOREX.r2.3HG0238160)

were later designed with the Cas-Designer tool (http://www.rgenome.net/cas-designer/, sgRNA1: GATCACTGGAGTGAAAGTGA and

sgRNA2 GGTTCCTGGTCCTATTATCG). sgRNA specificity was verified with blastn searches on the barley genome. Tom Lawrenson

and Wendy Harwood kindly provided the We used published Golden Gate vectors to deliver and express the CRISPR-Cas9-sgRNA

system in barley,64 except that two sgRNAs were expressed from a single plasmid as described for Brassica oleracea.64 (see key

resources table for vector list.) The transgene-segregating progeny of Golden Promise Fast plants stably transformed with the

CRISPR-Cas9-sgRNA plasmid, was screened for transgene absence with a quick hygromycin resistance test on a piece of cotyledon

tissue. Transgene absence was independently confirmed by PCR in hygromycin-susceptible individuals with primers 81unil and

82unil (Data S1N). These individuals were then screened for heritable mutations by PCR and Sanger sequencing.

Auxin metabolite profiling
For each biological replicate, the following stages of Bowman and msg38 samples were collected in 1.5-ml tubes: W8 (two

inflorescences), W8.25–W8.5 (stamens from 17–30 florets), W8.75–W9 and W9.25–W9.35 (stamens from 13–17 florets). Four

biological replicates per stage per genotype were harvested. The fresh weight of each replicate was recorded before freezing in liquid

nitrogen and storing at -80�C. The extraction, purification and LC-MS analysis of endogenous IAA, its precursors and metabolites

were carried out as described.83 Aapproximately 15 mg of frozen material per sample were homogenized using a bead mill (27

hz, 10 min, 4�C; MixerMill, Retsch GmbH, Haan, Germany) and extracted in 1 ml of 50 mM sodium phosphate buffer containing

1% sodium diethyldithiocarbamate and the mixture of 13C6- or deuterium-labelled internal standards. After centrifugation

(14000 rpm, 15 min, 4�C), the supernatant was divided in two aliquots. The first aliquot was derivatized by cysteamine (0.25 M;

pH 8; 1h; room temperature; Sigma-Aldrich). The second aliquot was immediately processed further as follows: The pH of the extract

was adjusted to 2.5 with 1MHCl and applied on a preconditioned solid-phase extraction columnOasis HLB (30mg 1 cc,Waters Inc.,

Milford, MA, USA). After sample application, the column was rinsed with 2 ml 5%methanol. Compounds of interest were then eluted

with 2 ml 80%methanol. The derivatized fraction was purified alike. Mass spectrometry analysis and quantification were performed

by an LC-MS/MS system comprising a 1290 Infinity Binary LC System coupled to a 6490 Triple Quad LC/MS Systemwith Jet Stream

and Dual Ion Funnel technologies (Agilent Technologies, Santa Clara, CA, USA).

RNA Extraction and qRT-PCR
For stage W8, we collected reproductive organs (stamens + pistil from �40–50 florets) and for all other stages, we sampled only

stamens from 7–13 florets. Tissue was collected in 1.5-ml tubes containing a small metal bead, and immediately frozen in liquid ni-

trogen. Samples were grounded with a TissueLyser II (Qiagen) whose tube holders were pre-frozen at -80C for 10 minutes, then pre-

soaked in liquid nitrogen, to guarantee grinding under freezing temperatures. Total RNA was extracted as described,84 except that 3

units of Promega’s DNAse were used. RNA was quantified with a Qubit assay (ThermoFisher Scientific) and all samples were diluted

to a 200 ng/ml concentration. cDNAs were synthesized in a 96-well PCR plate with 500 ng total RNA and M-MLV Reverse Transcrip-

tase RNAse H(-) (Promega), scaling down the recommended reaction volume to 10 ml. cDNAs were diluted to 200 ml with water and

2.5 ml were used for qRT-PCRwith GoTaq polymerase (Promega) and 0.5X SYBRGreen I (ThermoFisher Scientific) in 384-well plates

and a LightCycler� 480 II with software v1.5.1.62 (Roche). A putative ADP-ribosylation factor gene (HvADP,

HORVU.MOREX.r2.3HG0246760) was used for normalization. The data was analyzed with LinRegPCR 2020.073 and expression
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values calculated in Microsoft Excel 2019: after normalization, the mean expression of each gene at W9.25 was set to 1 and all other

samples were calibrated accordingly.

RNA in situ hybridization
To generate antisense and sense probe templates, a 450-bp MSG38 fragment was amplified from Bowman stamen cDNA by PCR

with two separate primer pairs that added a T7 promoter (P374+377 for antisense probe and P375+376 for sense probe,

Table S17; Data S1N). Purified templates were used to synthesize RNA probes with T7 RNA polymerase and DIG RNA Labeling

Mix (Roche). Tissue processing and RNA hybridization were performed mostly as described85,86 with some modifications. Bowman

florets were collected and fixed in 1x Phosphate-buffered saline (PBS, pH 7.4) containing 50% ethanol, 3.7% paraformaldehyde,

2.5% glutaraldehyde, 5% glacial acetic acid, 0.1% Triton X-100 and 0.1% Tween-20. After 1 h of vacuum infiltration, fixation pro-

ceeded overnight at 4�C. Samples were dehydrated through an ethanol series and step-wise infiltrated with Histoclear and paraffin.

We prepared 10-mm sections of paraffin-embedded tissue with a rotary microtome (RM2065, Leica Microsystems) and placed them

on coated glass slides (SuperFrostTM Ultra Plus, Thermo Scientific). Sections were dewaxed with Histoclear and rehydrated in an

ethanol series, digested with 0.125 mg/ml Pronase (Roche – Sigma Aldrich) in 50 mM Tris pH 7.5 and 5 mM EDTA, treated with

0.2% glycine to stop the protease, re-fixed in 3.7% formaldehyde, acetylated with 1% acetic anhydride in 0.1M triethanolamine,

pH 8.0), rinsed with 1x PBS and dehydrated through an ethanol series. For one pair of slides, 1 out of 50 ml of synthesized RNA probe

was diluted in 40 ml of 50% formamide and denatured at 80�C for 2 min. This was added to 160 ml of 80�C-pre-warmed hybridization

solution (1.25X in situ salts [0.375MNaCl, 12.5mMTris buffer pH 8.0, 12.5mMSodiumphosphate buffer pH 6.8, 6.25mMEDTA], 50%

deionized formamide, 12.5%dextran sulfate, 1.25XDenhardt’s solution [Carl Roth], 0.125mg/ml yeast tRNA [Roche – SigmaAldrich]).

The hybridization mix was pipetted on one section slide, which was then ‘sandwiched’ with a second section slide. Slides were

elevated in a plastic box containing paper towels saturated with 50% formamide to maintain humidity. Hybridization proceeded over-

night at 55�C. Slide sandwiches were carefully separated by dipping in wash solution (0.2x SSC: 60 mM NaCl, 6 mM sodium citrate)

and washed twice at 55�C for 30–60 min. Slides were treated with 20 ug/ml RNase A in 1x NTE (0.5 M NaCl, 10 mM Tris-HCl pH 7.5,

1 mM EDTA) at 37�C, rinsed twice with 1x NTE at the same temperature and washed again with 0.2x SSC at 55� C for 1 h. Next, the

detection of probe hybridizationwas carried out at room temperature. Slides were rinsed in 1x TBS (0.4MNaCl, 0.1M Tris-HCl pH 7.5)

and then blocked successively with 0.5% Blocking Reagent (Roche – Sigma Aldrich) in 0.15 M NaCl, 0.1 M Tris-HCl pH 7.5 (45 min)

and with buffer A (1% BSA in 0.15 M NaCl, 0.3%, 0.1 M Tris-HCl pH 7.5, Triton X-100, 45 min). Anti-Digoxigenin-AP, Fab fragments

(Roche – Sigma Aldrich) were diluted 1:500 in buffer A and added to pairs of slides, which were sandwiched as before and incubated

1 h. After draining the antibody solutionwith Kimwipe paper, sandwiched slideswere separated andwashed 4 times in buffer A (20min

each). Colorimetric detection used as substrates 3.5 ml each of NBT and BCIP ready solutions (Roche – Sigma Aldrich) per 1 ml of

detection buffer (0.1M Tris-HCl pH 9.6, 0.1MNaCl, 50mMMgCl2). Slides were sandwiched and elevated in box chambers humidified

with water-saturated paper towels. Detection proceeded for 24 to 48 h in the dark until signal was visible. Slides were dipped in water

to stop the reaction, dehydrated through an ethanol series and mounted with Eukitt� (Sigma-Aldrich) for imaging.

MSG38pro-MSG38-Citrine reporter lines
The gene body of MSG38 and its 5,898-bp upstream region were obtained by PCR amplification on genomic DNA of the cultivar

Morex (primers 401 and 402; Data S1N). The fragment was fused in frame with the gene encoding Citrine Fluorescent Protein via

Gateway cloning to create pMP155. The destination vector was pMP154, amodification of pEDO097pFR24GW,87 where the in planta

selection cassette was replaced with a hygromycin gene driven by a 2x 35S promoter. However, Agrobacterium strains carrying

pMP155 did not growwell. Therefore, the plasmid was digested with KpnI to remove 2,906 bp from the 50 end of the upstream region.

The plasmid was then re-circularized by ligation to generate pMP157, carrying a shorter upstream region (3,027 bp) in front of

the MSG38 gene body. Twenty-five T0 plants from 7 independent transformation events in Golden Promise Fast were obtained.

Transgene expression was preliminarily evaluated in mature anthers of 22 of these plants and a positive fluorescent signal was found

in 18 plants, always in pollen grains only. T1 progenies from 5 independent events were grown and the expression pattern in pollen

was confirmed. Four independent lines were propagated and analyzed further. Moreover, they were crossed tomsg38-2mutants. F2

and F3 progenies were selected by hygromycin resistance, msg38-2 genotyping and Citrine fluorescence segregation in pollen

grains to identify msg38-2 homozygous mutants that were homo- or hemizygous for the transgene. To specifically amplify the

endogenous MSG38 gene in the transgenic background, primer 649 (specific to Golden Promise and not Morex) was used in

combination with primer 165 (Data S1A) to genotype msg38-2.

For imaging, stamenswere counterstainedwith 100 mg/ml propidium iodide for 30mins,mounted in perfluorperhydrophenanthren,

and visualized with the SP8 laser confocal scanning microscope (Leica Microsystems). For Citrine Fluorescent Protein, we used the

514-nm laser beam line and HyD detector (emission 520 – 537 nm) and for propidium iodide, the 561-nm laser beam line and HyD

detector (emission 613nm - 629 nm). Z-stack images were 3D-reconstructed with Leica Application Suite X v3.5.7, with these

settings: opacity=30, Min=5, Max=100, gamma=1 for propidium iodide images and opacity=30, Min=5, Max=80, gamma=0.7 for

citrine fluorescent protein images.

Transcriptome analysis
The experimental set-up of the transcriptome analysis is described in the section ‘‘MSG38 gene identification’’. We used the

default settings of the mapping-based mode in Salmon v1.474 for RNAseq transcript quantification. This required to create first
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a decoy-aware index of the predicted high confidence transcriptome in the reference Morex V2 genome,62 with the entire genome

as decoy sequence. We performed the following analyses with R. All supplementary tables with transcript data show the raw

counts for each replicate. We retained only transcripts with >1 count per million (cpm) in all replicates, resulting in an ‘‘expressed’’

set of 19,240 genes (Data S1D). The data was normalized with the TMM method in edgeR.88 Grouping of all biological replicates

according to all expressed genes was assessed with principal component analysis and with Euclidean distances plotted with

pheatmap. This identified two msg38 replicates (W9.25 R3 and W9.35 R2) as outliers (Figures 5A and 5B), which were excluded

from further analyses. We used limma89 to identify differentially expressed genes (DEGs) between msg38 and Bowman at each

stage (W9.25 or W9.35) with a linear model fit on log2-transformed cpm values and P adjustment for false discovery rate

(FDR). This produced 3,153 DEGs with a |fold change (FC)| R 1.5 and FDR-adjusted P % 0.05. Hierarchical clustering on

DEGs was performed with Pearson correlation coefficients as distance metric, and was drawn as a heatmap with the function

annHeatmap2 of Heatplus. We obtained a recently reported de novo GO term annotation of the Morex V2 high confidence

transcriptome from J. Zhong.90 Then, we performed Gene Ontology (GO) enrichment analysis in each of the DEG hierarchical

clusters with the weigh01 algorithm of the package TopGO.91

We independently confirmed enrichment by manual or semi-automatic curation of genes encoding specific families or functions.

For auxin-responsive genes (Data S1G), the corresponding Arabidopsis proteins from TAIR were used to blastp the Morex V2

proteome; conversely, barley genes annotated as auxin-related in Morex V262 were used to blastp the Arabidopsis proteome. In

this way, we eliminated spurious annotations or identified previously unannotated genes. A similar procedure was applied to genes

encoding sugar transporters (Data S1H), and starch synthesis and degradation enzymes (Data S1I). In this case, the Arabidopsis

genes were obtained from Hedhly et al.92 We believe that we have identified all existing Morex V2 genes in these categories. Lists

of barley and rice energy production genes (Data S1I) were downloaded from PlantCyc (https://plantcyc.org/); the barley list was

compared to the rice list for completion, based on the orthologous gene groups (orthogroups) reported by J. Zhong.90 Due to the

large size of this list, curation for spurious sequences was done only for genes expressed in our transcriptome; thus, the list of energy

production genes may not be exhaustive. Finally, predicted or characterized rice transporter genes obtained from three databases

[ARAMEMNON,93 TransportDB94 and Rice Transporter Database] were used to identify the corresponding barley genes using J.

Zhong’s orthogroups. This large list was not curated further. ARAMEMNON was also used to identify rice members of transporter

families linked to pollen hydration and tube growth, as summarized by Michard et al.95 and the barley orthologs were found in J.

Zhong’s orthogroups (Data S1M).

Prediction of auxin response factor (ARF) binding sites with a machine learning model
We used a machine learning model developed from the DNA binding preference of maize ZmARF35, determined with DNA affinity

purification sequencing [DAP-seq96]. We fitted a bag-of-k-mers (bok) model for ZmARF35 based on the DAP-seq enriched peaks

from maize. The bok machine learning model was generated as described previously.75,97 In brief, the set of ZmARF35 enriched

peaks and its negative control peaks (enriched by HALO-GST tag) were collected from ZmARF35 DAP-seq dataset96 and

randomly divided between training (80%) and testing (20%). We fitted the ZmARF35 bok model from a regularized logistic

regression with k value equal to 7 bp. The logistic regression used for bok model corresponds to the implementation of the python

library scikit-learn (version 0.19.0). The skill of the model is represented in Figure 6D. To predict the potential ZmARF35 binding

profile in the Morex V2 barley reference genome, we implemented the scored k-mer vocabularies derived from the trained

ZmARF35 model to calculate the predicted probability of ZmARF35 binding a barley fragment of interest. A fragment was

considered bound with a predicted probability > 0.85.97 We extracted the 2-kb upstream sequence from the ATG of all genes

expressed in our transcriptome and then fragmented each sequence with a window size of 53 bp. The resulting 53-bp and residual

(<53-bp) fragments were evaluated with the ZmARF35 bok model. The predicted binding probabilities and fragment positions

were plotted with pheatmap in R.

Metabolite profiling and starch measurements
W9.35 stamens from 24 to 31 florets from two inflorescences were dissected with fine forceps and harvested as one biological

replicate into 1.5 ml tubes on liquid nitrogen. In total, 5 biological replicates per genotype were analyzed. Metabolite profiling was

carried out by gas chromatography (GC)–mass spectrometry (ChromaTOF software v1.00, Pegasus driver 1.61; LECO) as described

previously.98 The chromatograms and mass spectra were evaluated using Xcalibur� software (Thermo Scientific). Metabolite iden-

tification was manually checked by the mass spectral and retention index collection of the Golm Metabolome Database.99 Peak

heights of the mass fragments were normalized on the basis of the fresh weight of the sample and the added amount of an internal

standard (ribitol). Relative levels of eachmetabolite per sample (Data S1K) were obtained as the ratio between each replicate and the

mean of all five Bowman replicates.

Starch levels in the same barley stamen samples were determined with an enzyme-based glucose assay in the GC extraction

pellet, essentially as described.100 Briefly, the pellet was resuspended in 1 ml of deionized water and divided in two aliquots, both

of which were boiled at 95�C in a water bath for 20 min. After cooling and a spin at 20000 g for 1 min, the water was discarded.

We added 50 ml of starch digestion mix (200 mM sodium acetate, 6.3 U/ml amyloglucosidase, 50 U/ml a-amylase, freshly prepared)

to the first aliquot for digestion at 37�C for 4 hr. Afterwards, we added 100 ml of glucose assay mix (100 mM 2-(4-[2-hydroxyethyl]-1-

piperazinyl)-ethanesulfonic acid-KOH (HEPES-KOH), pH 7.5, 2 mM MgCl2, 20ml 10 mM ATP, 20ml 10 mM NAD+, 0.3ml 1500 U/ml

hexokinase) to both digested and undigested samples and brought them to a final volume of 200 ml in a 96-well flat-bottommicrotiter
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plate. Meanwhile, we obtained an absorbance plot of glucose standards at 340 nm to determine the linear range and calculate the

slope of the standard curve. Baseline absorbance of samples at 340 nm was recorded. After adding 0.45 U of Glucose 6-phosphate

dehydrogenase (G6PDH), absorbance at 340 nm was recorded again as ODG6PDH. The starch content was calculated as

(ODG6PDH of digested samples�ODG6PDH of undigested samples) � (ODbaseline of digested samples�ODbaseline of undi-

gested samples).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests used and the exact value of n are found in the figure legends. The description of n for each experiment/analysis is

explained in the figure legends and/or the corresponding method details above. Statistical differences between means of Bowman

andmsg38 data were determined inMicrosoft Excel 2019 with one-tailed Student’s t-tests after evaluating homogeneity of variances

with F-tests, or, where indicated, with one-way ANOVA. The R software environment v4.0.4 in RStudio v1.4.1106 was used for sta-

tistical analysis, data processing and plot drawing. The heatmaps in Figures 6A and 6E were created with heatmap.2 of the package

gplots. Unless otherwise indicated, all other plots were drawn with the package ggplot2. Two outlier replicates in the transcriptome

analysis were excluded following principal component analysis and Euclidean sample distance analysis (see ‘‘transcriptome anal-

ysis’’ above; Figures 5A and 5B).
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