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The nucleotide-binding domain (NBD) and leucine-rich repeat

(LRR) containing (NLR) proteins are intracellular immune

receptors that sense pathogens or stress-associated signals in

animals and plants. Direct or indirect binding of these stimuli to

NLRs results in formation of higher-order large protein

complexes termed inflammasomes in animals and

resistosomes in plants to mediate immune signaling. Here we

focus on plant NLRs and discuss the activation mechanism of

the ZAR1 resistosome from Arabidopsis thaliana. We also

outline the analogies and differences between the ZAR1

resistosome and the NLR inflammasomes, and discuss how

the structural and biochemical information available on these

two large types of protein complexes sheds light on signaling

mechanisms of other plant NLRs.
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Introduction
The nucleotide-binding domain (NBD) and leucine-rich

repeat (LRR) containing (NLR) proteins are a family of

critical intracellular immune receptors in both animals

and plants [1,2]. NLRs contain a conserved tripartite

domain structure typically carrying an N-terminal signal-

ing domain, a central nucleotide-binding and oligomeri-

zation domain (NOD) and a C-terminal leucine-rich

repeat (LRR) domain. Similar domain structure is also

present in the apoptotic protein Apaf-1. The NOD mod-

ule can be further divided into an NBD, helical domain 1

(HD1) and a winged helical domain (WHD). Helical

domain 2 (HD2) follows NOD in animal NLRs but is
www.sciencedirect.com 
lacking in plant NLRs. Most plant NLRs contain either a

colied-coil (CC) or toll/interleukin 1 receptor/resistance

(TIR) domain at their N-termini. NLRs belong to the

STAND (signal-transduction ATPases with numerous

domains) ATPases of the AAA+ superfamily.

NLRs in animals detect pathogen-associated molecular

patterns (PAMPs), host-derived damage-associated molec-

ular patterns (DAMPs) or pathogen-derived effectors in the

cytosol to activate innate immunity [3,4]. In response to

ligand perception, animal NLRs oligomerize and then

recruit pro-caspase-1 directly or through the adaptor mole-

cule apoptosis-associated speck-like protein containing a

caspase recruitment domain (ASC). This leads to the

formation of cytosolic multiprotein complexes termed

inflammasomes mediating caspase-1 activation [5–7]. Once

activated, caspase-1 matures IL-1b and IL-18 and cleaves

the gasdermin D (GSDMD) substrate to induce pyroptosis,

an inflammatory form of cell death [8–11]. The best char-

acterized NLR inflammasomes are the NAIP-NLRC4

pairs [12��,13��,14,15]. NLRs in plants confer specific rec-

ognition of pathogen-derived effectors, initiating effector-

triggered immunity (ETI) characterized by localized cell

death at the site of infection known as hypersensitive

response (HR) [1,16–18]. While sharing conserved struc-

ture and function, CC-NLRs and TIR-NLRs vary in their

mechanisms of activating the resistance response. EDS1

and the CC-NLRs NRG1s and ADR1/ADR1-Ls function

downstream of signaling mediated by TIR-NLRs [19–26],

whereas NDR1 is important for signaling mediated by

some CC-NLRs [27–30]. Furthermore, the TIR domain

ofTIR-NLRswas recently showntohave NADaseactivity,

which is required for HR cell death [31,32]. In contrast,

there has been no enzymatic activity assigned to the CC

domain. Despite the differences, both CC and TIR

domains function as a signaling module to mediate immune

responses [22,33–36]. A recent study showed that the

CC-NLR ZAR1 (HOPZ-ACTIVATED RESISTANCE

1) from Arabidopsis thaliana forms a higher-order complex

called ‘resistosome’ comparable to the NLR inflamma-

somes [37��]. ZAR1 forming a constitutive complex with

RKS1 recognizes the Xanthomonas campestris effector

AvrAC, which uridylylates PBL2 and enables the modified

protein (PBL2UMP) to interact with RKS1 in the preformed

complex to activate ZAR1-mediated immunity [38,39].

In this review, we outline on the structural and biochem-

ical aspects of plant NLRs and discuss the analogies and

differences between the ZAR1 resistosome and NLR

inflammasomes in their activation.
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Autoinhibited and activated conformations of
NLRs
Thus far, several structures of NLR proteins including

ZAR1 [40��], NRC1 [41], NLRC4 [42��], NLRP3 [43��],
and NOD2 [44�] in their inactive states have been solved.

The NOD modules of these structures are highly con-

served with an ADP molecule bound (Figure 1). The

bound ADP forms a conserved set of interactions with

NBD, HD1, and WHD. Notably, the interaction between

WHD and ADP is mediated by a conserved histidine

residue (Figure 1), which is from the ‘MHD’ motif

of plant NLRs [45]. Mutations of this residue resulted

in constitutively active NLRs [45–51], demonstrating an

essential role of this interaction in NLR autoinhibition.

The inactive conformation structure of NRC1, which

only contains NOD, demonstrates that other domains

are not required for autoinhibition of the NLR. In con-

trast with the subdomains of NOD, the C-terminal

domains of these proteins (except NRC1) are variably

positioned. Nonetheless, structural comparison showed

that the C-terminal LRR domains of ZAR1 [40��] and

NLRC4 [42��] and C-terminal WD40 domain of Apaf-1
Figure 1

ZAR1NRC1

NLRC 4 NOD2 N

LRR
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(a)

Structural comparison of NLR proteins in their inactive state.

(a) The structures indicated are shown in the same orientation with their NO

subdomains are indicated at the upper right corner. NBD: nucleotide bindin

coiled-coil; LRR: leucine-rich repeat; WD40: also known as beta-transducin

(W-D) dipeptide.

(b) Structural alignment of the NOD modules is shown in (a). The bound AD

shown in stick.
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[52�] similarly function to sequester the three proteins in a

monomeric state. Unlike the disordered CARDs from the

inactive NLRC4 and Apaf-1, the CC domain of ZAR1

(ZAR1CC) contacts with HD1 and WHD. The interaction

likely acts to keep the CC domain inactive, because

ZAR1CC but not ZAR1CC�NBD is immune-active when

expressed in Nicotiana benthamiana [53]. HD2 which is

lacking in the plant NLRs also contributes to autoinhibi-

tion of NLRC4, NLRP3 [43��] and NOD2 [44�].

Structural comparison of ZAR1 [37��], NLRC4 [12��,13��]
and Apaf-1 [54�] in their active states showed conserved

positioning of the three subdomains of NOD (Figure 2).

By comparison, the C-terminal domains of these three

proteins are presented to strikingly different positions.

Structural alignment between inactive and active states of

the three proteins revealed that structural remodeling

occurs to them during activation [12��,13��,37��,54�]. In

all the three cases, the C-terminal segment rotates around

the hinge region between WHD and HD1. Our recent

cryo-EM studies [37��,40��] indicated the existence of an

intermediate state between the inactive and active state
Apaf-1

LRP3

WD40-1

LRR

WD40-2

(b)

NBD
HD1
WHD
HD2
CC
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D (NBD-HD1-WHD) modules aligned. Color codes for some

g domain; HD1: helical domain 1; WHD: winged helix domain; CC:

 repeats with �40 amino acids in length, often terminating in a Trp-Asp

P molecules and the conserved histidine residues from WHD are
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Figure 2

Apaf-1

NLRC4

ZAR1
RKS1

PBL2UMP

RKS1

ZAR1 resistosome

Apaf-1 apoptosome

NLRC4 inflammasome

Cyc C

CC NBD HD1

WHD LRR

RKS1 PBL2UMP

(a)

(b)
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Activation of the ZAR1 resistosome, the Apaf-1 apoptosome and the NLRC4 inflammasome.

(a) The first, second, and third rows show different states of ZAR1, Apaf-1, and NLRC4, respectively. The first and the second columns show the

inactive and active states of the three proteins, respectively. Shown in the third and fourth columns are structures of oligomers of the three

proteins in two orientations. The last column shows lateral dimeric NODs of ZAR1 (first row), Apaf-1 (second row), and NLRC4 (third row) in the

same orientation and the N-terminal segment involved in the homodimerization is highlighted in blue. Color codes are the same as those in

Figure 1a.

(b) Cartoon illustration of ligand-induced ZAR1 activation. The first, second, and third panels represent inactive, active, and oligomerized states of

ZAR1, respectively. Color codes for proteins and structural domains are shown in the right frame.
of ZAR1. Compared to that in inactive ZAR1, NBD in

this state rotates outward about 60 degrees induced by

ligand (the uridylylated form of PBL2) binding, which

acts to promote exchange of ADP with ATP or dATP.

ATP or dATP binding likely restores the conformation of

NBD in the intermediate state and triggers conforma-

tional changes in the C-terminal segment of ZAR1, thus

converting the intermediate state into a fully active one.

Thus, sequential conformational changes in ZAR1 are

required for its activation. A similar mechanism is likely

used by Apaf-1 for formation of the Apaf-1 apoptosome

[54�]. Activation of NLRC4 may differ from that of ZAR1

and Apaf-1. (d)ATP does not seem to be essential for

formation of the NLRC4 inflammasome. Consistently,

the arginine residue required for (d)ATP binding by

ZAR1 (Arg297) and Apaf-1 (Arg265) is substituted with

threonine. Furthermore, the active conformation of
www.sciencedirect.com 
NLRC4 is self-propagated once activated [12��,13��].
These results suggest that NLRC4 activation may not

involve formation of an intermediate state.

(d)ATP binding and hydrolysis of NLR proteins
Many NLRs have been demonstrated to require an intact

P-loop for their functions in vivo [47,50,55–58]. Structural

evidence for this comes from studies of ZAR1 and Apaf-1.

ATP or dATP is absolutely required for formation of the

ZAR1 resistosome [37��] and the Apaf-1 apoptosome

[54�]. Structures of active ZAR1 and Apaf-1 showed that

dATP/ATP acts to stabilize the active conformation of

ZAR1 or Apaf-1 via interaction of the g-phosphate of the

bound dATP/ATP with linker between HD1 and WHD.

A double mutation of the two arginine residues coordi-

nating to the g-phosphate group of the bound dATP

resulted in loss of AvrAC-induced ZAR1 oligomerization,
Current Opinion in Plant Biology 2020, 56:47–55
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immune response and HR cell death [37��]. In contrast

with ZAR1 and other P-loop demanding NLRs, some

NLRs do not require an intact P-loop for their function.

For example, mutations of P-loop had little effect on the

pathogen-induced immune activity of the NLRs RGA5

[59], RRS1 [60] ADR1-L2 [21], and NRG1 [26]. Simi-

larly, flagellin-induced assembly of the NAIP5-NLRC4

inflammasome was not affected by mutations in the

P-loop of NAIP5 [61]. Nonetheless, an ATP molecule

was found to bind to NAIP5 from the flagellin-induced

NLRC4-NAIP5 heterodimeric complex [62��]. However,

unlike that of the ZAR1-bound or Apaf-1-bound dATP,

the g-phosphate of the NAIP5-bound ATP does not

interact with other domains than NAIP5NBD and

NAIP5HD1. This structural observation indicates that

the ATP molecule is not involved in stabilization of

the active conformation of NAIP5 and provides an expla-

nation for the dispensable role of the P-loop in formation

of the NAIP5-NLRC4 inflammasome. In contrast with

NAIP5, NLRC4 from the NAIP5-NLRC4 heterodimeric

complex or the NLRC4 inflammasome was observed not

to bind ATP [62��,63��]. While in an active conformation,

NLRC4 in the NAIP5-NLRC4 heterodimeric complex

is much less well defined than NAIP5, suggesting

that NLRC4 self-association can stabilize its active

conformation.

Some of NLRs have been shown to catalyze breakdown

of ATP into ADP and free phosphate ion. The biochemi-

cal reaction presumably switches NLRs from an active

into an inactive conformation. However, whether the

NLR proteins are in an active form was not reported in

these studies. This is important since inactive Apaf-1 but

not Apaf-1 from the apoptosome possesses ATPase activ-

ity [64]. This can be case with ZAR1, because the five

dATP molecules in the ZAR1 resistosome remain intact.

Notably, the ATP-binding site of the Apaf-1/CED-4

apoptosomes [54�,65�] or the ZAR1 resistosome [37��]
is composed of residues from the same subunit, whereas

those of canonical ATPase comprise residues from two

adjacent subunits [66]. Further investigations using active

NLR proteins will assist in defining the role of ATPase

activity of NLRs in their activation.

Biochemical function of ligand binding of
NLRs
Modes of ligand recognition by plant NLRs are diversi-

fied including direct and indirect recognition, recognition

through paired NLRs and integrated domains [1,67,68].

Regardless of the recognition mechanisms, ligand binding

was hypothesized to induce conformational changes in an

NLR and consequently promote its oligomerization.

Indeed, this hypothesis is supported by cryo-EM studies

of ZAR1 [37��,40��] and Apaf-1 [54�], though the two

proteins employ different mechanisms for ligand recog-

nition. ZAR1-RKS1-PBL2UMP or Apaf-1-cytochrome

c oligomerizes into a large protein complex only in
Current Opinion in Plant Biology 2020, 56:47–55 
the presence of ATP or dATP, indicating that either

of the two small molecules functions to induce oligomer-

ization. Unexpectedly, PBL2UMP binding induces con-

formational changes only in the NBD of ZAR1. Support-

ing the structural observation, PBL2UMP binding to RKS1

substantially impaired the ADP-binding activity of ZAR1

through an allosteric mechanism. This would favor ZAR1

association with ATP or dATP, which in turn induces

further conformational changes in ZAR1 for formation of

the ZAR1 resistosome. Thus, RKS1 in the preformed

ZAR1–RKS1 complex can be understood as an inactive

nucleotide exchange factor (NEF), which is activated by

PBL2UMP binding. Whether other NLR-guarded host

proteins can act as a NEF to mediate effector-triggered

NLR activation remains further to be investigated. It is of

interest to note that NEFs of Hsp70s are highly diversi-

fied in their structures and mechanisms of catalyzing

nucleotide exchange despite their conserved biochemical

function [69]. Biochemical data showed that cytochrome c

functions similarly to promote exchange of ADP with

ATP or dATP to induce formation of the Apaf-1 apopto-

some [70], suggesting that ligand itself can act as a

NEF to activate NLRs. This idea agrees with the equi-

librium model proposed for plant NLRs [71], wherein

effector binding functions to tilt the equilibrium between

inactive and active states of resting NLRs toward the

latter form.

NAIPs and NLRC4 are the paired NLRs in which NAIPs

specifically recognize bacterial components to induce

activation of NLRC4 [72,73]. In contrast with ZAR1 and

Apaf-1, ligand binding induces no oligomerization of

NAIP5. Cryo-EM studies showed that flagellin-

binding functions to stabilize the active conformation of

NAIP5 [62��,63��], which interacts with inactive NLRC4

and consequently induces self-activation to form the

NAIP5-NLRC4 inflammasome with a stoichiometry of

1:9 or 1:10 between NAIP5 and NLRC4. These results

indicate that ligand binding does not necessarily result in

oligomerization of an NLR, and the flagellin-activated

NAIP5 acts to seed oligomerization of NLRC4. Given that

the P-loop is not required for the activation of the NLRC4

inflammasome, these results suggest that ligands of NAIPs

are unlikely to act as a NEF. The reason for this might be

that NLRC4 employs an induced self-activation mecha-

nismfor inflammasomeassembly,whereas ZAR1 andApaf-

1 need to be in a fully activated state before assembled into

the resistosome and the apoptosome, respectively. Many

plant NLRs have been shown function in pairs to perceive

effector proteins with one acting as the sensor to recognize

ligand and the other as the helper to mediate immune

signaling [74], similar to the paired NAIP-NLRC4. In

contrast with NAIPs, however, some sensor NLRs in plants

have been shown to inhibit the activation of their paired

helper NLRs [59,75,76], suggesting that plant and animal

paired NLRs might differ in their activation mechanisms.

Determination of stoichiometry between the sensor and
www.sciencedirect.com
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the helper NLR would be critical to dissect how plant

paired NLRs are activated.

Oligomerization of NLRs
Structures of activated ZAR1, NLRC4 and Apaf-1

[12��,13��,37��,54�,65�] have been solved. Despite their

low sequence similarity, all the three proteins are capa-

ble of forming wheel-like structures (Figure 2). It is

noteworthy to mention that, in addition to wheel-like

structures, helical and curved structures have been

observed for NLR proteins [77–79]. The conserved

NOD module has a critical role in assembly of the

ZAR1 resistosome, the NLRC4 inflammasome and the

Apaf-1 apoptosome. In the three large protein com-

plexes, one side of NBD from one protomer stacks

against the opposite side of NBD from a neighboring

protomer, resulting in asymmetric and lateral packing of

NBDs and formation of the ring-like structures (Fig-

ure 2). Interestingly, a non-conserved segment N-termi-

nal to NBD wedges into two neighboring NBDs, making

extensive interactions stabilizing the NBD–NBD con-

tacts (Figure 2). Supporting an indispensable role of the

N-terminal segment in oligomerization, mutation of

Trp150 from the region completely disrupted ZAR1

pentamerization in vitro and ZAR1-mediated HR and

disease resistance [37��]. The ring-like structures formed

by NBDs are further strengthened by alternating con-

tacts between HD1 and WHD1 from adjacent subunits

in the resistosome and the apoptosome. In addition to

autoinhibition and ligand recognition, the LRR domain

participates in oligomerization of ZAR1. A similar role of

the LRR domain of NLRC4 was also demonstrated in

formation of the NLRC4 inflammasome [12��,13��]. A

more recent study suggested that the LRR domain is

required for NLRP3 activation [43��]. In contrast with

the disordered CARDs in the NLRC4 inflammasome

and the Apaf-1 apoptosome, the CC domains in the

ZAR1 resistosome pack against each other and form

an a-helical barrel interacting with the chamber formed

by ZAR1WHD and ZAR1LRR. This structural difference

implies that ZAR1 and animal NLRs may have distinct

signaling mechanisms. Formation of the a-helical barrel

structure by ZAR1CC agrees with self-association of

ZAR1CC [53]. Thus, all the subdomains are involved

in ZAR1 oligomerization. Oligomerization of the CC-

NLR RPP7 induced by HR4 (a homolog of RPW8) was

recently demonstrated in vivo [80]. Interestingly,

the LRR domain was found to be required for the

HR4-induced RPP7 oligomerization, although the

underlying mechanism remains unclear. In addition to

RPP7, a series of CC-NLRs oligomerization were also

reported in planta, including RPM1, Prf, RPS5 [81–83].

Homo-dimerization and hetero-dimerization of TIR

domains required for defense signaling is consistent

with oligomerization-mediated activation of TIR-NLRs

[34,60,84]. Consistently, oligomerization of the

TIR-NLRs RPP1 [85], N protein [86], and ROQ1
www.sciencedirect.com 
[23] has been shown before, though how oligomerization

is associated with their activation is unclear.

Signaling roles of the N-terminal CC and TIR
domains of plant NLRs
Overexpression of TIR or CC domains of many plant

NLRs is both necessary and sufficient for HR cell death,

indicating that the TIR or CC domain is a signaling

module to mediate immune activation. Recent studies

provided significant insight into the biochemical func-

tions of these two types of structural domains. Multiple

lines of evidence showed that the N-terminal amphi-

pathic helices in the ZAR1 resistosome form a funnel-

shaped structure, which is required for ZAR1 association

with the plasma membrane (PM) and ZAR1-mediated

immune signaling [37��]. The ZAR1 resistosome was

therefore proposed to function as a channel or a pore

to trigger HR and resistance. Several CC-containing

proteins were demonstrated to possess pore-forming

activity for cell death [87,88], suggesting that pore or

channel formation might be a conserved function of some

CC-NLRs. Indeed, a more recent study showed that the

N-termini of many CC-NLRs are functionally conserved

because the N-terminal amphipathic helix of ZAR1 and

the N-termini of several distantly related CC-NLRs can

functionally replace that of the CC-NLR NRC4 (NLR

required for cell death 4) [89�]. However, whether these

CC-NLRs can form a structure similar to that of the ZAR1

resistosome for activation of immunity remains unknown.

Furthermore, a large percentage (�80%) of CC-NLRs do

not carry the function-critical ‘MADA’ motif present in

ZAR1 and some other CC-NLRs [89�]. Recent studies

showed that NRCs act as helper NLRs for activation of

this type of CC-NLRs in Solanaceae [90–92]. Although

further studies are required to understand the underlying

mechanism, these studies represent a significant step

toward understanding how non-MADA-containing

CC-NLRs are activated. In the inactive ZAR1, the

pore-forming activity of the N-terminal amphipathic

helix is inhibited by contacts with ZAR1WHD and

ZAR1LRR. Conformational changes and fold switch are

therefore required to release the autoinhibited pore-

forming activity of the CC domain [37��,40��].

A biochemical function of the TIR domain of plant NLRs

was recently revealed by two independent studies

[31,32], both of which presented evidence that the

TIR domain from several TIR-NLRs or TIR only pro-

teins possess NAD-cleaving activity. Mutations of the

putative catalytic residue abolished HR cell death in N.
benthamiana, suggesting that the enzymatic activity is

required to activate downstream signaling. However,

these plant TIR proteins caused no depletion of NAD

when expressed in plants. The ADPR and v-cADPR

(variant cADPR) products were therefore suggested to

act as a trigger for HR cell death signaling. But the

possibility still remains that other chemicals can also
Current Opinion in Plant Biology 2020, 56:47–55
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be the substrates of plant TIR proteins. The NADase

activity of TIR domains can be induced by pathogen,

suggesting that oligomerization may be important for the

enzymatic activity. This is consistent with the observa-

tion that mutations disrupting self-interaction interface of

TIR resulted in loss of the NADase activity [31,32].

Cellular localizations of plant NLRs
Plant NLRs are intracellular and can localize to the PM,

endoplasmic reticulum (ER), Golgi apparatus and tono-

plast, chloroplast, nucleus, or cytoplasm [17]. The diverse

subcellular localizations of NLRs can presumably allow

plants to detect the presence of different pathogen effec-

tors. Coordination of nuclear and cytoplasmic pools of

some NLRs such as the CC-NLR Rx in potato has been

shown to be important for establishment of HR and

immunity [93–95]. Notably, some NLRs alter their sub-

cellular localizations following activation. For example,

activation of ZAR1 by AvrAC converts the cytosolic NLR

into a PM-localized protein, which is required for ZAR1-

mediated HR and immunity [37��]. Another example is

the TIR-NLR RPS4, which primarily resides in the

endomembranes in unchallenged conditions [96] but

becomes nucleus-localized to activate immune responses

[97] in response to the AvrRps4 effector. In the case of

ZAR1, simultaneous mutation of two negatively charged

residues located at the inner surface of the funnel-shaped

structure nearly abolished ZAR1-mediated immune

responses [37��]. Interestingly, however, the double

mutation had little effect on the AvrAC-induced PM

localization of ZAR1. Detection of cellular localization

of NLRs could be hindered by HR cell death induced by

their activation. Therefore, similar mutations if identified

in other CC-NLRs would be a useful tool for study of

cellular localizations of these NLRs. The putative cata-

lytic residue is important for the NADase activity of TIR

domains and activation of downstream signaling [31,32].

Mutations of this residue could serve a similar purpose for

investigation of the localizations of TIR-NLRs.

Perspective
During the past ten years, structural and biochemical

studies significantly advanced our understanding of the

mechanisms of action of NLR proteins. The knowledge

gained from these studies sheds light on signaling medi-

ated by plant NLRs. Many important yet challenging

questions concerning plant NLRs, however, remains to

be answered. One of these is to provide evidence of

whether the ZAR1 resistosome functions as a channel

or pore to mediate immune signaling. It is still unknown if

the resistosome is a trigger or an executor for HR cell

death. It is equally important to know whether the

mechanisms of the ZAR1 resistosome can be applied

to other CC-NLRs. Although NAIP-NLRC4 may act

as a template for understanding of plant paired NLRs,

our knowledge of how these plant NLRs are activated is

still limited. Thus far, there has been no structural
Current Opinion in Plant Biology 2020, 56:47–55 
evidence for ligand-induced oligomerization of TIR-

NLRs. It will be of interest to know whether and how

oligomerization are important for the NADase activity of

TIR domains. Moreover, how the enzymatic activity is

associated with activation of downstream components

such as EDS1 and NRG1 still remains enigmatic. Iden-

tification of the product(s) of TIR NADases would be a

key step toward addressing this question. NRG1s and

ADR1/ADR1-Ls have overlapping but not identical func-

tions [19,21–26]. Future studies will be needed to clarify

what determines the divergent functions of these con-

served CC-NLRs.
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