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Abstract 

Genome assembly is one of the most important problems in computational genomics. Here, we suggest address-
ing an issue that arises in homology-based scaffolding, that is, when linking and ordering contigs to obtain larger 
pseudo-chromosomes by means of a second incomplete assembly of a related species. The idea is to use alignments 
of binned regions in one contig to find the most homologous contig in the other assembly. We show that ordering 
the contigs of the other assembly can be expressed by a new string problem, the longest run subsequence problem 
(LRS). We show that LRS is NP-hard and present reduction rules and two algorithmic approaches that, together, are 
able to solve large instances of LRS to provable optimality. All data used in the experiments as well as our source code 
are freely available. We demonstrate its usefulness within an existing larger scaffolding approach by solving realistic 
instances resulting from partial Arabidopsis thaliana assemblies in short computation time.
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Introduction
Genome assembly from sequencing reads enables the 
analysis of an organism at its genome level and is one 
of the most important problems in computational 
genomics. The first step is usually to assemble the 
reads based on overlap- or k-mer-based approaches to 
create contigs, which then need to be put into correct 
order and orientation in a scaffolding phase to gener-
ate the final assembly. The presence of a high-quality 
chromosome-level reference genome of the same spe-
cies can significantly simplify assembly generation as it 
can be used as a template to order these contigs [1, 2]. 
However, for many species, such a reference genome is 
not available.

There are two commonly used approaches for scaffold-
ing. First, different types of maps provide anchors for 
the contigs in the genome. These could be, for example, 

genetic maps, physical maps or cytological maps pro-
viding markers with known positions in the genome 
and known distances between each other [3]. The other 
approach is to use long-range genomic information to 
link multiple contigs and put them into correct order and 
orientation. Prominent examples are linked barcoded 
reads like 10X sequencing [4], Hi-C data based on chro-
matin conformation capture [5] and optical mapping [6].

Yet another way for contig scaffolding is to use two or 
more incomplete assemblies from closely related samples 
[7]. Regions of unconnected contigs for one sample might 
be connected with the help of another, related sample, 
e.g., a genome assembly of an individual of the same spe-
cies, providing an overall gain in information for both 
samples. Local similarities between contigs from different 
samples can be used to align and order them. Ideally, this 
leads to long chromosome-like sequences called pseudo-
chromosomes, where the contigs of different samples are 
aligned like shingles next to each other, as illustrated in 
Fig. 1(a). Note that this setting differs from the problem 
of assembly reconciliation [8], where the task is to build 

Open Access

Algorithms for
Molecular Biology

*Correspondence:  gunnar.klau@hhu.de
1 Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, 
Düsseldorf, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6340-0090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00191-8&domain=pdf


Page 2 of 11Schrinner et al. Algorithms Mol Biol           (2021) 16:11 

a consensus assembly from two or multiple input assem-
blies from the same species but which does not make use 
of homology information from different species. 

Note that structural rearrangements such as transloca-
tions or inversions and repeat regions between genomes 
can result in non-sequential and non-unique mappings 
within contigs and can thus lead to misleading connec-
tions between contigs. These events need to be con-
sidered when finding homologous contigs as shown in 
Fig. 1(b).

In the simplest setting of two incomplete assemblies 
we are given two sets of contigs A = {A1, . . . ,Al} and 
B = {B1, . . . ,Bm} computed from two different sam-
ples. As already stated, the contigs are not ordered with 
respect to genome positions, and it is this order we rather 
want to compute. More precisely, we aim at inferring the 
most likely order from between-sample overlaps among 
the contigs.

Assuming we want to order the contigs in B, we first 
map the contigs A1, . . . ,Al against the contigs of B, divide 
every contig Ai of A into smaller, equally sized chunks, 
called bins and determine the best matching contig in 
B for every bin after. If Ai actually overlaps with multi-
ple contigs in B, we should be able to partition Ai into 
smaller parts based on mapping the bins to different 
contigs in B. However, sequencing or mapping errors as 

well as mutations between the samples can cause some 
bins to map onto a “wrong” contig, i.e., a contig belong-
ing to a different area than the bin. Therefore a method to 
find the best partition of Ai needs to distinguish between 
actual transitions from one B-contig to another and noise 
introduced by errors or mutations.

Figure  2 illustrates the different steps in solving this 
problem. Starting from a binned contig from A, here A1 
for illustration, and its mapping preferences to the unor-
dered contigs in B, we reformulate this ordering problem 
as a string problem. In essence, we want to find the long-
est subsequence of the input string of mapping prefer-
ences that consists only of consecutive runs of contigs 
from B where each such run may occur at most once. This 
subsequence corresponds to an ordering of the contigs in 
B, which can be transferred to the original problem. 

In this paper we formalize this process and introduce 
the Longest Run Subsequence problem (LRS). We show 
that LRS is NP-hard. Nevertheless, we want to solve large 
instances of LRS to provable optimality in reasonable 
running time and therefore present a number of reduc-
tion rules and two algorithms based on integer linear pro-
gramming and dynamic programming, respectively. We 
evaluate both approaches on synthetic instances and find 
that they show complementary strengths regarding the 
number of runs and the alphabet size. We also test our 
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Fig. 1 Homology-based scaffolding. a Independent initial assemblies (contigs), which are joined into pseudo-chromosomes by using homologies 
between contigs for scaffolding. b Alignments between contigs from different samples. A1 determines the order of B1, B2 and B3
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approaches on realistic instances within the initial scaf-
folding phase of the SyRI package [7]. The test instances 
occurred during assembly of Arabidopsis thaliana sam-
ples and could not be solved by a brute-force method. We 
show that all those instances can be solved within short 
computation time. Our code and all data used in the 
experiments are freely available at https:// github. com/ 
AlBi- HHU/ longe st- run- subse quence. The software can 
also be installed with pip as a module from https:// pypi. 
org/ proje ct/ longe strun subse quence/ or as “longestrun-
subsequence” from bioconda and can thus easily be used 
within larger scaffolding packages.

Problem formulation
A string S = s1, . . . , sm is a sequence over characters from 
a finite alphabet � . A subsequence of S is a sequence 
si1 , . . . , sik , such that 1 ≤ i1 < i2 < . . . < ik ≤ m . We 
denote the substring si, . . . , sj of S as S[i, j] and k consecu-
tive occurrences of a character σ inside a string S as σ k 
and call it a run. Let σ(r) be the character of the run r and 
L(r) its length. By summarizing the characters of S into 
maximally long runs, S can be represented as a unique 
sequence of runs r1, . . . , rn = σ(r1)

L(r1) . . . σ (rn)
L(rn) . 

For every σ ∈ � we define Pσ (i) as the index of the last 
run before ri containing σ in S (0 if it does not occur). As 
an example, the string from Fig. 2 can be compressed to 
b1

2b4
3b1

3b3
3b1

1b3
1b2

3b3
1 with Pb1(4) = 3 , Pb1(3) = 1 

and Pb4 (1) = 0.
We propose to model the optimal partition of a sin-

gle contig as a string optimization problem. Formally, 
we use the contigs from set B as the alphabet, that is 
� = {b1, . . . , bm} and write the contig Ai as a string 
S = bi1 . . . bim over � by replacing the bins of Ai with the 
corresponding character of the best match from B. On 
the one hand, we want every single bin to be assigned to 
its preferred contig in B, but, on the other, we also want a 

simple partition, which is not skewed by wrong mappings 
of single bins. We therefore restrict valid partitions of Ai 
to contain at most one contiguous part for every contig 
in B. This prevents large parts to be interrupted by single 
mismatching bins, at the cost of not being able to capture 
short-ranged translocations as seen in Fig. 1(b). A parti-
tion can be represented as a subsequence S′ of the string 
S, which only contains at most one run for every σ ∈ � . 
The runs in S′ are the parts corresponding to one B-con-
tig each, while the dropped characters from S are bins in 
conflict with S′ . Finding the best partition can thus be 
stated as the following optimization problem:

Problem  1 (Longest Run Subsequence, LRS) Given 
an alphabet � = {σ1, . . . , σ|�|} and a string s = s1, . . . , sm 
with si ∈ � , find a longest subsequence S′ = s′1, . . . , s

′
k of 

S, such that S′ contains at most one run for every σ ∈ � . 
That is, for every pair of positions i and j with i < j , it 
holds that

We denote the length of an optimal LRS solution for S 
with LRS(S) . Since we want to maximize the length of the 
run subsequence, it is always beneficial to either completely 
add or completely remove a run of S. Once a character 
si ∈ � from a run ski  is added to s′ , there can never be any 
other occurrence of si outside this run. Thus, the entire run 
must be added to s′ to achieve maximum length. We will 
therefore mainly refer to runs instead of single characters.

Complexity
In this section we prove hardness of the Longest Run 
Subsequence problem. More precisely, we show that 
dLRS, the decision version of the problem is NP-com-
plete. An instance of dLRS is given by a tuple (S, k) and 

s′i = s′j ⇒ s′l = s′i for all i < l < j.

Contig A1 (binned)

B1

S: S′:

Contig A1 (binned)

LRS

Ordered B-contigsUnordered B-contigs

b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3 b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3

B2 B3 B4 B1 B3 B2

Fig. 2 Processing of a single contig A1 . The bins are matched against all contigs of another sample B. Solving Longest Run Subsequence (LRS) 
on the corresponding string S, yields a maximal subsequence with at most one run for every contig. This induces an optimal order for a subset of 
B-contigs

https://github.com/AlBi-HHU/longest-run-subsequence
https://github.com/AlBi-HHU/longest-run-subsequence
https://pypi.org/project/longestrunsubsequence/
https://pypi.org/project/longestrunsubsequence/
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consists in answering the question whether S has a long-
est run subsequence of length at least k.

Theorem 1 dLRS is NP-complete.

Proof It is easy to see that dLRS is in NP, because it can 
be checked in polynomial time whether a string s′ is a 
solution, that is, s′ is a run subsequence and |s′| ≥ k.

To prove NP-hardness, we reduce from the Linear Order-
ing Problem (LOP), which has been shown to be NP-hard 
[9]. LOP takes a complete directed graph with edge weights 
and no self-loops as input and looks for an ordering among 
the vertices, such that the total weights of edges following 
this order (i.e., edges leading from lower ordered vertices to 
higher ordered vertices) is maximized.

We show that dLOP, the decision problem of LOP, that 
is, the question whether a vertex ordering exists whose 
weight is at least a given threshold, can be polynomially 
reduced to dLRS. Let G = (V ,E) be a complete digraph 
with |V | = n . We denote the weight of (vi, vj) ∈ E with 
wij and the sum of all weights of G as wsum . Without loss 
of generality we can assume that all edge weights are 
positive: The number of edges following a linear order 
is fixed, so adding a sufficiently large offset to all weights 
only adds a fixed value to any solution without changing 
the core problem. This allows us to characterize LOP as 
finding an acyclic subgraph G′ with maximum weight, 
because the non-negativity of the weights always forces 
either (vi, vj) or (vj , vi) to be in G′ for every pair of vertices 
vi, vj ∈ V .

The proof consists of two parts. First, we show how to 
transform G into a string S. Second, we show that G has a 
LOP solution of weight k if and only if S has a LRS of size

with M′ := 4n2 · wsum and M := M′ · n3.

(1)

fG(k) :=(n− 1) ·M +
n(n− 1)(n− 2)

3
·

M′ + n(n− 1) · wsum + 2k

For the transformation, we define � using three different 
types of characters: 

1 Separators $i for every vertex vi ∈ V .
2 Edge signs E{i,j} for every pair vi, vj ∈ V  . Note that 

E{i,j} = E{j,i}.
3 Triangle signs �(i,j,k) for every triangle in G. 

Note that triangles between three vertices have 
an orientation and can be rotated. Therefore 
�(i,j,k) = �(j,k ,i) = �(k ,i,j) �= �(i,k ,j) = �(k ,j,i) = �(j,i,k)

.

On the highest level the string S is constructed as shown 
in Equation  2. It consists of one large block per vertex, 
each of them separated by a run of the associated separa-
tion sign of length M.

Each vertex block consists of a series of edge blocks (EB), 
which we define as follows:

In the same way as the i-th vertex block is associated with 
vertex vi , the edge substrings in it are associated with the 
outgoing edges of vi . Note that there is one EB missing in 
every vertex block, as self-loops are not allowed. Finally, 
[EB]i,j contains all triangle signs for triangles, in which 
(vi, vj) occurs, i.e., {�(i,j,k) | 1 ≤ k ≤ n, k �= i, k �= j} , 
which, for the sake of notation, is written as 
�M′

(i,j,1) . . . �
M′

(i,j,n) in Eq.  3. The triangle signs are padded 
by edge signs for (vi, vj) . Every edge sign E{i,j} occurs only 
in the two edge blocks [EB]i,j and [EB]j,i . The length of 
the edge sign runs depends on the weight of the corre-
sponding edge (in either direction), rewarding the higher 
weighted edge. We also add wsum to the length of every 
edge sign run E{i,j}.

As for the numbers M and M′ , the latter is chosen to be 
larger than the combined length of all edge sign runs. 
This makes a single triangle sign run more profitable than 
any selection of edge sign runs. In the same manner, M is 
chosen to be larger than all triangle sign runs combined.

(2)
S =

edge block
for (v1, v2)
︷ ︸︸ ︷

[EB]1,2 [EB]1,3 . . . [EB]1,n
︸ ︷︷ ︸

vertex block for v1

$M1 [EB]2,1 . . . [EB]2,n$
M
2 . . . $Mn−1[EB]n,1 . . . [EB]n,n−1

(3)[EB]i,j = E
wij+wsum

{i,j} �M′

(i,j,1) . . . �
M′

(i,j,n) E
wij+wsum

{i,j}
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Using this construction, a valid solution G′ = (V ,E′) for a 
dLOP instance (G, k), i.e., an acyclic subgraph of G with 
total weight of at least k, can be transformed into a valid 
solution for a dLRS instance (S, fG(k)) . First, all separa-
tion runs are selected, yielding a total length of 
(n− 1) ·M . Second, for every edge in E′ , all edge signs in 
the corresponding edge blocks are selected. Since 
|E′| = n(n−1)

2  , this adds at least 2 ·
(
n(n−1)

2 · wsum + k
)

 
characters to the solution. Finally, G′ is acyclic, so for 
every triangle in G, there is at least one edge missing in 
G′ . Thus, by construction of S, one run can be selected for 
every triangle sign without interfering with the edge sign 
runs, adding the missing n(n−1)(n−2)

3 ·M′ characters.

Given a solution S′ for the dLRS instance (S, fG(k)) , 
we show how to obtain a subgraph G′ of total weight at 
least k for the original dLOP instance. The subsequence 
S′ must contain all separation runs and a run for every 
triangle sign, because without all separation and trian-
gle signs selected at some place, it is (by choice of M and 
M′ ) impossible to reach length fG(k) for any k. There-
fore every selected edge sign run belongs to a single edge 
block of a solution of dLRS. The idea is that the choice 
of selecting E{i,j} either in [EB]i,j or [EB]j,i corresponds to 
the choice of having either (i,  j) or (j,  i) in the DAG G′ 
for the original LOP. Since we added wsum to the length 
of every edge sign run and there are only n(n−1)

2  edge 
signs in total (with n being the number of vertices in G), 
S′ must contain both runs inside an edge block, in order 
to reach length n(n− 1) · wsum (the third summand in 
fG(k) ). Thus, either edge signs or triangle signs may be 
selected inside an edge block, but not both. G′ is finally 
obtained by selecting an edge e if and only if the edge 
sign runs in the corresponding edge block are selected. 
This yields n(n−1)

2  edges with a total weight of at least k. 
For every vertex pair vi, vj , exactly one of the edges (vi, vj) 
and (vj , vi) is selected, because their corresponding edge 
blocks share the same edge sign.

It remains to be shown that the obtained subgraph G′ 
is acyclic. We can directly conclude that G′ contains 
no triangles, since every triangle sign �(i,j,k) has to be 
taken, prohibiting either (i,  j), (j,  k) or (k,  i) (or two of 
them) to be part of G′ . Assume that G′ contains a cycle 
vi1 , vi2 , vi3 , . . . , vil , vi1 of length l ≥ 4 . Then, either (vi1 , vi3) 
or (vi3 , vi1) must be in G′ . The latter would lead to a tri-
angle, which we could already exclude from G′ . But 
(vi1 , vi3) ∈ G′ implies that a circle of length l − 1 also 
exists in G′ . Repeated use of this argument implies that G′ 
also has a cycle with length 3, which is a contradiction to 
triangles being excluded. Thus, G′ cannot contain a cycle 
of length 4 or greater and must be acyclic.

In summary, the decision problem whether there is a 
solution for a dLOP instance (G,  k) can be reduced to 
the decision problem whether a solution for the dLRS 
instance (S, fG(k)) obtained from G exists. �

Solution strategies
To solve instances of LRS in practice we propose three 
reduction rules and two algorithmic approaches. As of The-
orem 1 we cannot guarantee a polynomial running time.

Reduction rules
In Sec. "Problem formulation" we already pointed out that 
an optimal solution for LRS always selects complete runs of 
characters and we reduced the notation of the input to runs 
of characters with a certain length each. This can also be 
seen as a reduction rule to the original problem formulation 
as the remaining size of the solution space now depends on 
the number of runs n instead of the actual string length m. 
Two more reduction rules rely on the following lemma:

Lemma 1 Let S, T be two strings over the disjoint alpha-
bets �S and �T . Then the optimal LRS solutions for S and 
T can be concatenated to form an optimal solution for the 
concatenated string ST.

Proof Since the two alphabets are disjoint, an LRS 
solution for S does not contain any characters from �T . 
Therefore the choice of the subsequence for S does not 
influence the valid subsequences for T and vice versa. This 
means that optimal solutions for S and T can be computed 
independently and concatenated to form a valid solution 
for ST. Obviously, an optimal solution for ST cannot be 
longer than the combined length of optimal solutions for 
S and T, otherwise the latter would not be optimal. �

According to Lemma 1 we can divide an LRS instance 
S into smaller independent instances, if we find a prefix 
r1, . . . , rp of S, which uses an exclusive sub-alphabet �′ , 
i.e., r1, . . . , rp ∈ �′∗ and rp+1, . . . , rn ∈

(
� \�′

)∗ . This 
prefix rule can be applied in linear time by starting with 
the prefix r1 and extending it until we either reach the 
end of S, in which case no independent suffix exists, or 
until the prefix is closed regarding the used characters. 
Let p be the index of the last occurrence of σ(r1) . Since 
σ(r1) is used in the prefix, all runs r2, . . . , rp must belong 
to the prefix as well. Now start with l = 2 and update p 
to the index of the last occurrence of σ(rl) (if this index 
is higher than p), increase l by 1 and repeat until l > p . If 
p < n , an independent prefix is found, otherwise such a 
prefix does not exist.
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This idea can be extended to the infix rule, which finds 
independent infixes via the following lemma.

Lemma 2 Let S, T be two strings over the disjoint alpha-
bets �S and �T and let l be an arbitrary position in S. 
Then it holds that

with $  ∈ �S ∪�T .

Proof For the same reason as in Lemma 1 the instance 
T can be solved independently from S. For the combined 
string s1 . . . slTsl+1 . . . sm the infix T is either entirely 
dropped in the optimal subsequence or the optimal solu-
tion of T itself is entirely taken as a part of the combined 
solution. Thus, T contributes either 0 or LRS(T ) charac-
ters to the optimal combined solution. Therefore, if the 
solution for T is already known, s1 . . . slTsl+1 . . . sm can 
be solved by replacing T with a run of length LRS(T ) of a 
new character $ . �

Following Lemma  2 we can search for an independ-
ent infix in S to obtain two smaller instances. Instead 
of starting with r1 , we start with an arbitrary character 
σ ∈ � as anchor and use the infix rp, . . . , rq as a start with 
rp and rq being the first and last occurrence of σ , respec-
tively. Similarly to the prefix search, we iterate over all 
runs in the infix and move the markers p,  q to the left 
and right, whenever we encounter a new character with 
occurrences outside rp, . . . , rq , until the infix is closed 
(with respect to used characters) or the entire string is 
contained. This is repeated with every character in � as 
anchor, possibly yielding multiple infixes. Adjacent inde-
pendent infixes are merged into larger ones, since we 
want as many runs as possible to be replaced with a single 
run. Infixes, which consist of only one run, are discarded, 
because they do not pose an actual reduction. Finding 
and merging all infixes can be done in time O(n · |�|).

For a maximum reduction, the rules are applied as fol-
lows: First, the prefix rule is iteratively applied on S until 
no further independent prefix can be found. Second, the 
infix rule is applied on every sub-instance found so far. 
For every infix found the procedure is repeated by start-
ing with the prefix rule again.

Solving with integer linear programming
We present two algorithms to solve LRS to optimality, 
which have complementary strengths and weaknesses. 
The first is based on an Integer Linear Program (ILP). This 
approach scales well with large alphabets, but struggles 
with a large number of runs. We also propose a dynamic 

LRS
(
s1 . . . slTsl+1 . . . sm

)
= LRS

(

s1 . . . sl$
LRS(T )sl+1 . . . sm

)

programming (DP) approach, which remains fast for long 
strings, but suffers from large alphabets. Both algorithms 
work exclusively on the runs of an input string S.

ILPs are a commonly used technique to model and 
solve combinatorial optimization problems. We model 
the LRS formulation from before as an ILP in the fol-
lowing way: Let n be the number of runs in S and let 
x1, . . . , xn be binary variables with xi = 1 if ri is in the 
optimal subsequence and xi = 0 otherwise. Any pos-
sible subsequence of runs can therefore be represented 
by a variable assignment. Since we want to maximize the 
length of the subsequence, we define our objective func-
tion as the weighted sum over all taken runs, using their 
lengths as weights. Let ri, rj be two runs with i < j and 
σ(ri) = σ(rj) . If both runs are selected, all intermediate 
runs xl with a different character must be excluded. This 
yields the following ILP:

During the implementation it turned out that a single, 
more complex constraint for each pair ri, rj with equal 
characters was solved slightly faster by the used ILP 
solver. Thus, we actually use the following equivalent set 
of constraints instead of (5):

If either ri or rj are not taken, the respective constraint 
does not prevent any other combination of runs between 
them. The total number of constraints is bounded by ⌈n2 ⌉

2 
and the number of non-zero entries in the constraint 
matrix is bounded by n · ⌈n2 ⌉

2.

Solving with dynamic programming
As an alternative to the ILP formulation the problem can 
also be solved bottom-up by a dynamic program (DP). 
Let D[i,  F] be the length of an optimal LRS solution for 
r1 . . . ri , which includes ri itself and only contains charac-
ters from F ⊆ � . The DP can be initialized with D[0, ∅] = 0 
and D[0, F ] = −∞ for F  = ∅ . Known solutions can be 
extended run by run, always selecting an optimal pre-
decessor for each run and keeping track of already used 
characters with the second parameter F. For $  ∈ � , let 
RS(i) =

{
Pσ (i) | σ ∈ � ∪ {$},Pσ (i) ≥ Pσ(ri)(i)

}
 contain 

(4)max

n∑

i=1

xiL(ri)

(5)
subject to xl ≤ 2− xi − xj ∀ i < l < j, σ(ri) = σ(rj) �= σ(rl)

(6)xi ∈ {0, 1} ∀ 1 ≤ i ≤ n

(7)

∑

i < l < j

σ(rl)  = σ(ri)

xl ≤ (j − i) · (2− xi − xj) ∀ i < j, σ(ri) = σ(rj)
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the positions of the last occurences for every σ ∈ � , between 
position i and the last occurence of σ(ri) before i (or 0 if i 
is the first occurence of its kind). If ri, rj are two consecu-
tive runs of an optimal solution, there can be no other runs 
between i and j using the same character, as this would make 
the solution sub-optimal. Thus, if an optimal solution con-
tains a run ri , it either is the first selected run or the prede-
cessing run must be from a position j ∈ RS(i) . This restricts 
the number of possible predecessors for each run in the DP 
by O(|σ |) . The full DP is then as follows:

The recursion can be visualized by a directed acyclic 
graph as shown in Fig.  3. It contains a start vertex cor-
responding to the empty prefix of S and one vertex for 
every run in S. Every path in the graph corresponds to a 
(possibly invalid for LRS) subsequence of S. Each vertex i 
has an incoming edge from each position j ∈ RS(i). 

D[i,  F] is computed by taking all possible predeces-
sor positions j and extending the solutions by ri . If 
σ(ri) = σ(rj) , the solution is extended by ri without 
introducing a new character. The length for the new 
solution would be the optimal length for positon j, 
using the same sub-alphabet F and adding the length of 
ri . For σ(ri)  = σ(rj) the used sub-alphabet must also be 
extended by σ(ri) , requiring to look up the previous solu-
tion from D[i, F \ {σ(ri)}] instead of D[i, F].

An optimal solution for LRS can be found by tak-
ing the entry of D with the highest length and using the 

(8)D[0, ∅] = 0

(9)

D[0, F ] = −∞ ∀F �= ∅

D[i, F ] = max
j∈RS(i)

{
D[j, F ] + L(ri) if σ(rj) = σ(ri)
D[j, F \ {σ(ri)}] + L(ri), if σ(rj) �= σ(ri)

}

backtracking information from the DP to obtain the cor-
responding subsequence. The DP table has a total of n+ 1 
columns and 2|�| rows with each entry taking O(|�|) 
time to compute. This leads to a worst-case runtime of 
O
(
|�| · n · 2|�|

)
 for the DP, making this a fixed parameter 

tractable (FPT) approach for LRS with the alphabet size 
as parameter.

Experiments
We performed computational experiments on two dif-
ferent types of instances. First, we generated random 
instances to see how the two algorithms scale on string 
length and alphabet size. Second, we integrated the algo-
rithms into the software SyRI [7], which finds structural 
rearrangements between two assemblies of related spe-
cies and has an additional stage for homology-based scaf-
folding, where the algorithms are used.

The ILP has been implemented using the Python inter-
face of PuLP, which solves the ILP with the free solver 
CoinOR.1 All tests were run on an AMD Epyc 7742 pro-
cessor with 1TB of memory running on Debian. The 
algorithms are implemented in Python and executed via 
Snakemake [10] using Python 3.9.1 and PuLP version 
2.3.1.

Synthetic data
The synthetic data was created by randomly generat-
ing strings with different lengths and alphabet sizes. For 
any combination a total of 20 strings was generated, such 
that every string is guaranteed to use the entire alphabet 
assigned to it. These instances pose worst-case instances 
for our algorithms, as the proposed reduction rules can 

b21 b14 b31 b33 b13 b32

b21 b14 b31 b33 b11 b13 b32 b13

b11 b13

$

1 2 3 4 5 6 7 80

D[3, {b1}]

D[4, {b1, b3}]

D[6, {b1, b3}]

D[7, {b1, b2, b3}] =

D[3, {b1}]D[0, {}]

Fig. 3 Graph visualizing the recursion for the running example. Arcs represent the possible predecessors for every run. Colors mark an optimal path 
and the DP entries taken by the recursion

1 https:// github. com/ coin- or/ pulp.

https://github.com/coin-or/pulp
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hardly be applied. The runs are quite short in general 
and since there is no structurally induced locality among 
the characters, instances could be split very rarely. All 
instances were solved with all reductions rules applied.

Figure  4 shows how the runtime scales with both 
increasing string lengths and increasing alphabet size. 
For a fixed alphabet size the runtime scales about expo-
nentially with the string length for the ILP as shown in 
the top plot. In fact, the alphabet size only has very minor 
effect on the ILP compared to the string length, which 
becomes visible in the bottom plot, with a slight favor of 
larger alphabets. The DP behaves complementary to the 
ILP, scaling exponentially in the alphabet size and sub-
exponentially with string length. 

The scaling can be explained by the properties of the 
algorithms. The ILP has a binary decision variable for 
every run, increasing the number of possible (but not 
necessarily feasible) variable assignments exponentially 
with the number of runs. Once the ILP solver has to fall 
back to branch-and-bound, the scaling becomes expo-
nential. Larger alphabets might lead to a lower number 
of constraints (and thus a lower runtime), as the ILP 
contains one constraint for every pair of runs with the 
same character. As already pointed out in Sect.  "Solv-
ing with dynamic programming" the DP table grows 

linearly with the number of runs and exponentially with 
alphabet size. This is reflected both in running time and 
memory consumption shown in Fig.  5. Especially the 
latter is problematic, as alphabet sizes of 24 or higher 
might require more memory than a usual desktop com-
puter offers. The ILP consumes more memory than the 
DP on small alphabets, but shows no increased mem-
ory footprint as the alphabet size grows. The decreas-
ing running time for very large alphabets is caused by 
the reduction rules, as it leads to a higher number of 
characters occurring only in a single run and thus to a 
higher chance of the string being splittable into inde-
pendent parts. 

Based on this empirical data, the final version of our 
tool uses both algorithms depending on string length 
and alphabet size. If |s| < 10(|�| − 13) the ILP is pre-
ferred, otherwise it is the DP.

Biological data
The LRS model is being used to generate homology-
based pseudo-chromosome level assemblies in the 
chroder method of SyRI [7], i.e., the process of creating 
homology-based chromosome-level assemblies in case 
only scaffold-level assemblies are available. We consider 
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Fig. 4 Running time plotted against string length (top) and alphabet size (bottom). Each curve represents an algorithm and an additional 
parameter (number in parentheses), which is alphabet size in the top plot and the string length in the bottom plot
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a dataset which was generated in [7] to test the perfor-
mance of an approach to find structural rearrangements. 
It consists of 100 fragmented assemblies of varying con-
tiguity that have been generated by introducing 10 to 400 
random breaks in chromosome-level assemblies of the 
Col-0 and Ler accessions of Arabidopsis thaliana [7, 11]. 
We used the LRS-based chroder method to scaffold these 
assemblies in order to estimate the usefulness of the 
model in generating homology-based pseudo-chromo-
somes. The LRS instances were created by mapping both 
sets of contigs against each other using nucmer [12] and 
dividing the contigs into equally long bins afterwards. For 
each bin the best matching contig of the other contig set 
is determined based on the previously computed local 
mappings of each contig. Considering that each bin can 
only be assigned to one contig and represents one char-
acter in the constructed LRS instance, shorter bins pre-
serve more information, but also increase the complexity 
of the LRS instance. The bin size was empirically chosen 
as 10kb producing reasonable results while maintaining 
solvable instances. The scripts and used assemblies are 
made publicly available.

For more than 85% of the simulated genomes (both 
Col-0 and Ler) the pseudo-chromosome N50 values 
resulting from solving the LRS problem within chroder 
were five times higher than those of the corresponding 
fragmented assemblies, with the N50 being even more 
than ten times higher for more than 30% of the sam-
ples (see Figure 6a). For many of the highly fragmented 
assemblies it is difficult to order fragments because of 
the presence of repetitive regions in both genomes. 
Note that, even if the LRS-based method is not able 
to generate the original full length genomes in these 
cases, it significantly decreases the number of disjoint 
fragments, increasing assembly contiguity as shown in 
Figure 6b. 

Originally the ordering problem in chroder was 
solved using a brute-force method, which was unable 
to solve 16 out of 100 instances within a reasonable 
amount of time and memory. We tested these 16 LRS 
instances separately and ran them using the DP and ILP 
algorithms presented in this paper.

Using all three reduction rules, both algorithms were 
able to solve all instances in very short computation 
time, thus demonstrating the practical efficiency of our 
algorithms, see Table  1. For this reason, the previous 
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scaffolding of chroder. a Increase of N50 values between raw 
(scaffold-level) assemblies and the output of chroder using LRS. 
Each line represents one of 100 generated fragmented assemblies. b 
Decrease in contig count between both assemblies
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brute-force method has been replaced by the implemen-
tation of our algorithms within the chroder script of the 
SyRI package. In fact, the instances were almost com-
pletely solved by the prefix rule alone, resulting in many 
trivial sub-instances (singleton runs). Note that for these 
singleton runs we did not call the ILP solver as the over-
head of setting up the ILP would have dominated the 
running time. However, not using the prefix or infix rule 
reveals differences between both algorithms. The alpha-
bet sizes between 31 and 38 caused the DP to run out of 
memory, while the ILP remained fast with the longest 
instance consisting of only 50 runs. 

Discussion
Note that the purpose of this paper is not to present a 
full novel scaffolding method but rather to introduce an 
algorithm that may prove useful in existing methods for 
scaffolding. We demonstrated its usefulness within the 
first phase of the SyRI tool that needs chromosome-level 
assemblies as input.

The experiments showed that optimal LRS solutions 
can be found in short time for instance sizes that occur 
on assemblies of real samples. We presented two dif-
ferent algorithms whose running times depend on two 
important instance properties, namely string length and 
alphabet size. Random strings, however, do not seem to 
resemble actual assembly instances, which are already 
pre-sorted except for some noise or rearrangements. 
The reduction rules have little to no impact on random 
strings, while they reduce the assembly instances to 
almost trivial sub-instances. This implies that reduction 
rules might be more important in practice than the algo-
rithm to process the remaining preprocessed instance.

One potential problem of the model itself was men-
tioned in Sect.  "Problem formulation". LRS only allows 
for one run per character, which automatically induces 
an ordering on the underlying contigs. This can be prob-
lematic if the binned contig contains a translocation that 
splits a long run into two, e.g., b1b1b1b2b2b2b1b1b1 . The 
LRS model will drop one of the b1 runs, even though it 
would be better to leave the order of B1 and B2 open due 
to lack of evidence.

Another limitation arises while mapping the bins. Since 
only the best match for every bin is taken, any mapping 

ambiguity is ignored, which might drop valuable infor-
mation. There is also no support for inversions inside 
the model. While inverted alignments can be taken into 
account for the mapping step of a single bin, the model 
stays unaware of inversions and the fact that an interval 
of bins is actually in the reverse order compared to the 
second assembly. However, this might not be as prob-
lematic as it sounds, because the bins are not mapped to 
other bins but to entire contigs. As long as inversions are 
contained in a single contig, they should have no impact 
on the ordering that the model produces.

Conclusion
Ordering contigs by means of an incomplete assembly of 
a related species occurs as a variant of homology-assisted 
assembly, which does not require chromosome-level 
assemblies already. We introduced the Longest Run Sub-
sequence (LRS) problem, formalizing the contig ordering 
problem as a string problem. We proved that LRS is NP-
hard and presented reduction rules and two algorithms, 
which work well for long instances and large alphabets, 
respectively, which we showed on a synthetic data set. 
Regarding real data, we managed to solve all instances 
that could not be solved by a brute force approach in 
short computation time. In fact, the original brute-force-
based method in the popular SyRI tool has been replaced 
by the open-source implementation of our algorithms.

From the theoretical side, we find it interesting to fur-
ther investigate approximability and fixed-parameter 
tractability of LRS. Some of these suggestions have been 
picked up in a recent preprint [13]. From a practical per-
spective, we plan to further test the approach on real 
assembly data, also taking more than two related assem-
blies into account.
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