
Schrinner et al. Algorithms Mol Biol (2021) 16:11
https://doi.org/10.1186/s13015-021-00191-8

RESEARCH

Using the longest run subsequence problem
within homology-based scaffolding
Sven Schrinner1, Manish Goel4,5, Michael Wulfert2, Philipp Spohr1, Korbinian Schneeberger3,4,5 and
Gunnar W. Klau1,3*

Abstract

Genome assembly is one of the most important problems in computational genomics. Here, we suggest address-
ing an issue that arises in homology-based scaffolding, that is, when linking and ordering contigs to obtain larger
pseudo-chromosomes by means of a second incomplete assembly of a related species. The idea is to use alignments
of binned regions in one contig to find the most homologous contig in the other assembly. We show that ordering
the contigs of the other assembly can be expressed by a new string problem, the longest run subsequence problem
(LRS). We show that LRS is NP-hard and present reduction rules and two algorithmic approaches that, together, are
able to solve large instances of LRS to provable optimality. All data used in the experiments as well as our source code
are freely available. We demonstrate its usefulness within an existing larger scaffolding approach by solving realistic
instances resulting from partial Arabidopsis thaliana assemblies in short computation time.

Keywords: Alignment, Assembly, String algorithm, Longest subsequence

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Genome assembly from sequencing reads enables the
analysis of an organism at its genome level and is one
of the most important problems in computational
genomics. The first step is usually to assemble the
reads based on overlap- or k-mer-based approaches to
create contigs, which then need to be put into correct
order and orientation in a scaffolding phase to gener-
ate the final assembly. The presence of a high-quality
chromosome-level reference genome of the same spe-
cies can significantly simplify assembly generation as it
can be used as a template to order these contigs [1, 2].
However, for many species, such a reference genome is
not available.

There are two commonly used approaches for scaffold-
ing. First, different types of maps provide anchors for
the contigs in the genome. These could be, for example,

genetic maps, physical maps or cytological maps pro-
viding markers with known positions in the genome
and known distances between each other [3]. The other
approach is to use long-range genomic information to
link multiple contigs and put them into correct order and
orientation. Prominent examples are linked barcoded
reads like 10X sequencing [4], Hi-C data based on chro-
matin conformation capture [5] and optical mapping [6].

Yet another way for contig scaffolding is to use two or
more incomplete assemblies from closely related samples
[7]. Regions of unconnected contigs for one sample might
be connected with the help of another, related sample,
e.g., a genome assembly of an individual of the same spe-
cies, providing an overall gain in information for both
samples. Local similarities between contigs from different
samples can be used to align and order them. Ideally, this
leads to long chromosome-like sequences called pseudo-
chromosomes, where the contigs of different samples are
aligned like shingles next to each other, as illustrated in
Fig. 1(a). Note that this setting differs from the problem
of assembly reconciliation [8], where the task is to build

Open Access

Algorithms for
Molecular Biology

*Correspondence: gunnar.klau@hhu.de
1 Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf,
Düsseldorf, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-6340-0090
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00191-8&domain=pdf

Page 2 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

a consensus assembly from two or multiple input assem-
blies from the same species but which does not make use
of homology information from different species.

Note that structural rearrangements such as transloca-
tions or inversions and repeat regions between genomes
can result in non-sequential and non-unique mappings
within contigs and can thus lead to misleading connec-
tions between contigs. These events need to be con-
sidered when finding homologous contigs as shown in
Fig. 1(b).

In the simplest setting of two incomplete assemblies
we are given two sets of contigs A = {A1, . . . ,Al} and
B = {B1, . . . ,Bm} computed from two different sam-
ples. As already stated, the contigs are not ordered with
respect to genome positions, and it is this order we rather
want to compute. More precisely, we aim at inferring the
most likely order from between-sample overlaps among
the contigs.

Assuming we want to order the contigs in B, we first
map the contigs A1, . . . ,Al against the contigs of B, divide
every contig Ai of A into smaller, equally sized chunks,
called bins and determine the best matching contig in
B for every bin after. If Ai actually overlaps with multi-
ple contigs in B, we should be able to partition Ai into
smaller parts based on mapping the bins to different
contigs in B. However, sequencing or mapping errors as

well as mutations between the samples can cause some
bins to map onto a “wrong” contig, i.e., a contig belong-
ing to a different area than the bin. Therefore a method to
find the best partition of Ai needs to distinguish between
actual transitions from one B-contig to another and noise
introduced by errors or mutations.

Figure 2 illustrates the different steps in solving this
problem. Starting from a binned contig from A, here A1
for illustration, and its mapping preferences to the unor-
dered contigs in B, we reformulate this ordering problem
as a string problem. In essence, we want to find the long-
est subsequence of the input string of mapping prefer-
ences that consists only of consecutive runs of contigs
from B where each such run may occur at most once. This
subsequence corresponds to an ordering of the contigs in
B, which can be transferred to the original problem.

In this paper we formalize this process and introduce
the Longest Run Subsequence problem (LRS). We show
that LRS is NP-hard. Nevertheless, we want to solve large
instances of LRS to provable optimality in reasonable
running time and therefore present a number of reduc-
tion rules and two algorithms based on integer linear pro-
gramming and dynamic programming, respectively. We
evaluate both approaches on synthetic instances and find
that they show complementary strengths regarding the
number of runs and the alphabet size. We also test our

(a)

Assembly 2

Assembly 1

Assembly 2

Assembly 1

homology-based contig joining

Contigs

Pseudo-
chromosomes

(b)

Contig_A1

Contig_B1 Contig_B2 Contig_B3

Fig. 1 Homology-based scaffolding. a Independent initial assemblies (contigs), which are joined into pseudo-chromosomes by using homologies
between contigs for scaffolding. b Alignments between contigs from different samples. A1 determines the order of B1, B2 and B3

Page 3 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

approaches on realistic instances within the initial scaf-
folding phase of the SyRI package [7]. The test instances
occurred during assembly of Arabidopsis thaliana sam-
ples and could not be solved by a brute-force method. We
show that all those instances can be solved within short
computation time. Our code and all data used in the
experiments are freely available at https:// github. com/
AlBi- HHU/ longe st- run- subse quence. The software can
also be installed with pip as a module from https:// pypi.
org/ proje ct/ longe strun subse quence/ or as “longestrun-
subsequence” from bioconda and can thus easily be used
within larger scaffolding packages.

Problem formulation
A string S = s1, . . . , sm is a sequence over characters from
a finite alphabet � . A subsequence of S is a sequence
si1 , . . . , sik , such that 1 ≤ i1 < i2 < . . . < ik ≤ m . We
denote the substring si, . . . , sj of S as S[i, j] and k consecu-
tive occurrences of a character σ inside a string S as σ k
and call it a run. Let σ(r) be the character of the run r and
L(r) its length. By summarizing the characters of S into
maximally long runs, S can be represented as a unique
sequence of runs r1, . . . , rn = σ(r1)

L(r1) . . . σ (rn)
L(rn) .

For every σ ∈ � we define Pσ (i) as the index of the last
run before ri containing σ in S (0 if it does not occur). As
an example, the string from Fig. 2 can be compressed to
b1

2b4
3b1

3b3
3b1

1b3
1b2

3b3
1 with Pb1(4) = 3 , Pb1(3) = 1

and Pb4 (1) = 0.
We propose to model the optimal partition of a sin-

gle contig as a string optimization problem. Formally,
we use the contigs from set B as the alphabet, that is
� = {b1, . . . , bm} and write the contig Ai as a string
S = bi1 . . . bim over � by replacing the bins of Ai with the
corresponding character of the best match from B. On
the one hand, we want every single bin to be assigned to
its preferred contig in B, but, on the other, we also want a

simple partition, which is not skewed by wrong mappings
of single bins. We therefore restrict valid partitions of Ai
to contain at most one contiguous part for every contig
in B. This prevents large parts to be interrupted by single
mismatching bins, at the cost of not being able to capture
short-ranged translocations as seen in Fig. 1(b). A parti-
tion can be represented as a subsequence S′ of the string
S, which only contains at most one run for every σ ∈ � .
The runs in S′ are the parts corresponding to one B-con-
tig each, while the dropped characters from S are bins in
conflict with S′ . Finding the best partition can thus be
stated as the following optimization problem:

Problem 1 (Longest Run Subsequence, LRS) Given
an alphabet � = {σ1, . . . , σ|�|} and a string s = s1, . . . , sm
with si ∈ � , find a longest subsequence S′ = s′1, . . . , s

′
k of

S, such that S′ contains at most one run for every σ ∈ � .
That is, for every pair of positions i and j with i < j , it
holds that

We denote the length of an optimal LRS solution for S
with LRS(S) . Since we want to maximize the length of the
run subsequence, it is always beneficial to either completely
add or completely remove a run of S. Once a character
si ∈ � from a run ski is added to s′ , there can never be any
other occurrence of si outside this run. Thus, the entire run
must be added to s′ to achieve maximum length. We will
therefore mainly refer to runs instead of single characters.

Complexity
In this section we prove hardness of the Longest Run
Subsequence problem. More precisely, we show that
dLRS, the decision version of the problem is NP-com-
plete. An instance of dLRS is given by a tuple (S, k) and

s′i = s′j ⇒ s′l = s′i for all i < l < j.

Contig A1 (binned)

B1

S: S′:

Contig A1 (binned)

LRS

Ordered B-contigsUnordered B-contigs

b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3 b1b1 b1b1b1b3b3b3b4 b3b1 b2b2 b2b3

B2 B3 B4 B1 B3 B2

Fig. 2 Processing of a single contig A1 . The bins are matched against all contigs of another sample B. Solving Longest Run Subsequence (LRS)
on the corresponding string S, yields a maximal subsequence with at most one run for every contig. This induces an optimal order for a subset of
B-contigs

https://github.com/AlBi-HHU/longest-run-subsequence
https://github.com/AlBi-HHU/longest-run-subsequence
https://pypi.org/project/longestrunsubsequence/
https://pypi.org/project/longestrunsubsequence/

Page 4 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

consists in answering the question whether S has a long-
est run subsequence of length at least k.

Theorem 1 dLRS is NP-complete.

Proof It is easy to see that dLRS is in NP, because it can
be checked in polynomial time whether a string s′ is a
solution, that is, s′ is a run subsequence and |s′| ≥ k.

To prove NP-hardness, we reduce from the Linear Order-
ing Problem (LOP), which has been shown to be NP-hard
[9]. LOP takes a complete directed graph with edge weights
and no self-loops as input and looks for an ordering among
the vertices, such that the total weights of edges following
this order (i.e., edges leading from lower ordered vertices to
higher ordered vertices) is maximized.

We show that dLOP, the decision problem of LOP, that
is, the question whether a vertex ordering exists whose
weight is at least a given threshold, can be polynomially
reduced to dLRS. Let G = (V ,E) be a complete digraph
with |V | = n . We denote the weight of (vi, vj) ∈ E with
wij and the sum of all weights of G as wsum . Without loss
of generality we can assume that all edge weights are
positive: The number of edges following a linear order
is fixed, so adding a sufficiently large offset to all weights
only adds a fixed value to any solution without changing
the core problem. This allows us to characterize LOP as
finding an acyclic subgraph G′ with maximum weight,
because the non-negativity of the weights always forces
either (vi, vj) or (vj , vi) to be in G′ for every pair of vertices
vi, vj ∈ V .

The proof consists of two parts. First, we show how to
transform G into a string S. Second, we show that G has a
LOP solution of weight k if and only if S has a LRS of size

with M′ := 4n2 · wsum and M := M′ · n3.

(1)

fG(k) :=(n− 1) ·M +
n(n− 1)(n− 2)

3
·

M′ + n(n− 1) · wsum + 2k

For the transformation, we define � using three different
types of characters:

1 Separators $i for every vertex vi ∈ V .
2 Edge signs E{i,j} for every pair vi, vj ∈ V . Note that

E{i,j} = E{j,i}.
3 Triangle signs �(i,j,k) for every triangle in G.

Note that triangles between three vertices have
an orientation and can be rotated. Therefore
�(i,j,k) = �(j,k ,i) = �(k ,i,j) �= �(i,k ,j) = �(k ,j,i) = �(j,i,k)

.

On the highest level the string S is constructed as shown
in Equation 2. It consists of one large block per vertex,
each of them separated by a run of the associated separa-
tion sign of length M.

Each vertex block consists of a series of edge blocks (EB),
which we define as follows:

In the same way as the i-th vertex block is associated with
vertex vi , the edge substrings in it are associated with the
outgoing edges of vi . Note that there is one EB missing in
every vertex block, as self-loops are not allowed. Finally,
[EB]i,j contains all triangle signs for triangles, in which
(vi, vj) occurs, i.e., {�(i,j,k) | 1 ≤ k ≤ n, k �= i, k �= j} ,
which, for the sake of notation, is written as
�M′

(i,j,1) . . . �
M′

(i,j,n) in Eq. 3. The triangle signs are padded
by edge signs for (vi, vj) . Every edge sign E{i,j} occurs only
in the two edge blocks [EB]i,j and [EB]j,i . The length of
the edge sign runs depends on the weight of the corre-
sponding edge (in either direction), rewarding the higher
weighted edge. We also add wsum to the length of every
edge sign run E{i,j}.

As for the numbers M and M′ , the latter is chosen to be
larger than the combined length of all edge sign runs.
This makes a single triangle sign run more profitable than
any selection of edge sign runs. In the same manner, M is
chosen to be larger than all triangle sign runs combined.

(2)
S =

edge block
for (v1, v2)
︷ ︸︸ ︷

[EB]1,2 [EB]1,3 . . . [EB]1,n
︸ ︷︷ ︸

vertex block for v1

$M1 [EB]2,1 . . . [EB]2,n$
M
2 . . . $Mn−1[EB]n,1 . . . [EB]n,n−1

(3)[EB]i,j = E
wij+wsum

{i,j} �M′

(i,j,1) . . . �
M′

(i,j,n) E
wij+wsum

{i,j}

Page 5 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

Using this construction, a valid solution G′ = (V ,E′) for a
dLOP instance (G, k), i.e., an acyclic subgraph of G with
total weight of at least k, can be transformed into a valid
solution for a dLRS instance (S, fG(k)) . First, all separa-
tion runs are selected, yielding a total length of
(n− 1) ·M . Second, for every edge in E′ , all edge signs in
the corresponding edge blocks are selected. Since
|E′| = n(n−1)

2 , this adds at least 2 ·
(
n(n−1)

2 · wsum + k
)

characters to the solution. Finally, G′ is acyclic, so for
every triangle in G, there is at least one edge missing in
G′ . Thus, by construction of S, one run can be selected for
every triangle sign without interfering with the edge sign
runs, adding the missing n(n−1)(n−2)

3 ·M′ characters.

Given a solution S′ for the dLRS instance (S, fG(k)) ,
we show how to obtain a subgraph G′ of total weight at
least k for the original dLOP instance. The subsequence
S′ must contain all separation runs and a run for every
triangle sign, because without all separation and trian-
gle signs selected at some place, it is (by choice of M and
M′) impossible to reach length fG(k) for any k. There-
fore every selected edge sign run belongs to a single edge
block of a solution of dLRS. The idea is that the choice
of selecting E{i,j} either in [EB]i,j or [EB]j,i corresponds to
the choice of having either (i, j) or (j, i) in the DAG G′
for the original LOP. Since we added wsum to the length
of every edge sign run and there are only n(n−1)

2 edge
signs in total (with n being the number of vertices in G),
S′ must contain both runs inside an edge block, in order
to reach length n(n− 1) · wsum (the third summand in
fG(k)). Thus, either edge signs or triangle signs may be
selected inside an edge block, but not both. G′ is finally
obtained by selecting an edge e if and only if the edge
sign runs in the corresponding edge block are selected.
This yields n(n−1)

2 edges with a total weight of at least k.
For every vertex pair vi, vj , exactly one of the edges (vi, vj)
and (vj , vi) is selected, because their corresponding edge
blocks share the same edge sign.

It remains to be shown that the obtained subgraph G′
is acyclic. We can directly conclude that G′ contains
no triangles, since every triangle sign �(i,j,k) has to be
taken, prohibiting either (i, j), (j, k) or (k, i) (or two of
them) to be part of G′ . Assume that G′ contains a cycle
vi1 , vi2 , vi3 , . . . , vil , vi1 of length l ≥ 4 . Then, either (vi1 , vi3)
or (vi3 , vi1) must be in G′ . The latter would lead to a tri-
angle, which we could already exclude from G′ . But
(vi1 , vi3) ∈ G′ implies that a circle of length l − 1 also
exists in G′ . Repeated use of this argument implies that G′
also has a cycle with length 3, which is a contradiction to
triangles being excluded. Thus, G′ cannot contain a cycle
of length 4 or greater and must be acyclic.

In summary, the decision problem whether there is a
solution for a dLOP instance (G, k) can be reduced to
the decision problem whether a solution for the dLRS
instance (S, fG(k)) obtained from G exists. �

Solution strategies
To solve instances of LRS in practice we propose three
reduction rules and two algorithmic approaches. As of The-
orem 1 we cannot guarantee a polynomial running time.

Reduction rules
In Sec. "Problem formulation" we already pointed out that
an optimal solution for LRS always selects complete runs of
characters and we reduced the notation of the input to runs
of characters with a certain length each. This can also be
seen as a reduction rule to the original problem formulation
as the remaining size of the solution space now depends on
the number of runs n instead of the actual string length m.
Two more reduction rules rely on the following lemma:

Lemma 1 Let S, T be two strings over the disjoint alpha-
bets �S and �T . Then the optimal LRS solutions for S and
T can be concatenated to form an optimal solution for the
concatenated string ST.

Proof Since the two alphabets are disjoint, an LRS
solution for S does not contain any characters from �T .
Therefore the choice of the subsequence for S does not
influence the valid subsequences for T and vice versa. This
means that optimal solutions for S and T can be computed
independently and concatenated to form a valid solution
for ST. Obviously, an optimal solution for ST cannot be
longer than the combined length of optimal solutions for
S and T, otherwise the latter would not be optimal. �

According to Lemma 1 we can divide an LRS instance
S into smaller independent instances, if we find a prefix
r1, . . . , rp of S, which uses an exclusive sub-alphabet �′ ,
i.e., r1, . . . , rp ∈ �′∗ and rp+1, . . . , rn ∈

(
� \�′

)∗ . This
prefix rule can be applied in linear time by starting with
the prefix r1 and extending it until we either reach the
end of S, in which case no independent suffix exists, or
until the prefix is closed regarding the used characters.
Let p be the index of the last occurrence of σ(r1) . Since
σ(r1) is used in the prefix, all runs r2, . . . , rp must belong
to the prefix as well. Now start with l = 2 and update p
to the index of the last occurrence of σ(rl) (if this index
is higher than p), increase l by 1 and repeat until l > p . If
p < n , an independent prefix is found, otherwise such a
prefix does not exist.

Page 6 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

This idea can be extended to the infix rule, which finds
independent infixes via the following lemma.

Lemma 2 Let S, T be two strings over the disjoint alpha-
bets �S and �T and let l be an arbitrary position in S.
Then it holds that

with $ ∈ �S ∪�T .

Proof For the same reason as in Lemma 1 the instance
T can be solved independently from S. For the combined
string s1 . . . slTsl+1 . . . sm the infix T is either entirely
dropped in the optimal subsequence or the optimal solu-
tion of T itself is entirely taken as a part of the combined
solution. Thus, T contributes either 0 or LRS(T) charac-
ters to the optimal combined solution. Therefore, if the
solution for T is already known, s1 . . . slTsl+1 . . . sm can
be solved by replacing T with a run of length LRS(T) of a
new character $. �

Following Lemma 2 we can search for an independ-
ent infix in S to obtain two smaller instances. Instead
of starting with r1 , we start with an arbitrary character
σ ∈ � as anchor and use the infix rp, . . . , rq as a start with
rp and rq being the first and last occurrence of σ , respec-
tively. Similarly to the prefix search, we iterate over all
runs in the infix and move the markers p, q to the left
and right, whenever we encounter a new character with
occurrences outside rp, . . . , rq , until the infix is closed
(with respect to used characters) or the entire string is
contained. This is repeated with every character in � as
anchor, possibly yielding multiple infixes. Adjacent inde-
pendent infixes are merged into larger ones, since we
want as many runs as possible to be replaced with a single
run. Infixes, which consist of only one run, are discarded,
because they do not pose an actual reduction. Finding
and merging all infixes can be done in time O(n · |�|).

For a maximum reduction, the rules are applied as fol-
lows: First, the prefix rule is iteratively applied on S until
no further independent prefix can be found. Second, the
infix rule is applied on every sub-instance found so far.
For every infix found the procedure is repeated by start-
ing with the prefix rule again.

Solving with integer linear programming
We present two algorithms to solve LRS to optimality,
which have complementary strengths and weaknesses.
The first is based on an Integer Linear Program (ILP). This
approach scales well with large alphabets, but struggles
with a large number of runs. We also propose a dynamic

LRS
(
s1 . . . slTsl+1 . . . sm

)
= LRS

(

s1 . . . sl$
LRS(T)sl+1 . . . sm

)

programming (DP) approach, which remains fast for long
strings, but suffers from large alphabets. Both algorithms
work exclusively on the runs of an input string S.

ILPs are a commonly used technique to model and
solve combinatorial optimization problems. We model
the LRS formulation from before as an ILP in the fol-
lowing way: Let n be the number of runs in S and let
x1, . . . , xn be binary variables with xi = 1 if ri is in the
optimal subsequence and xi = 0 otherwise. Any pos-
sible subsequence of runs can therefore be represented
by a variable assignment. Since we want to maximize the
length of the subsequence, we define our objective func-
tion as the weighted sum over all taken runs, using their
lengths as weights. Let ri, rj be two runs with i < j and
σ(ri) = σ(rj) . If both runs are selected, all intermediate
runs xl with a different character must be excluded. This
yields the following ILP:

During the implementation it turned out that a single,
more complex constraint for each pair ri, rj with equal
characters was solved slightly faster by the used ILP
solver. Thus, we actually use the following equivalent set
of constraints instead of (5):

If either ri or rj are not taken, the respective constraint
does not prevent any other combination of runs between
them. The total number of constraints is bounded by ⌈n2 ⌉

2
and the number of non-zero entries in the constraint
matrix is bounded by n · ⌈n2 ⌉

2.

Solving with dynamic programming
As an alternative to the ILP formulation the problem can
also be solved bottom-up by a dynamic program (DP).
Let D[i, F] be the length of an optimal LRS solution for
r1 . . . ri , which includes ri itself and only contains charac-
ters from F ⊆ � . The DP can be initialized with D[0, ∅] = 0
and D[0, F] = −∞ for F = ∅ . Known solutions can be
extended run by run, always selecting an optimal pre-
decessor for each run and keeping track of already used
characters with the second parameter F. For $ ∈ � , let
RS(i) =

{
Pσ (i) | σ ∈ � ∪ {$},Pσ (i) ≥ Pσ(ri)(i)

}
 contain

(4)max

n∑

i=1

xiL(ri)

(5)
subject to xl ≤ 2− xi − xj ∀ i < l < j, σ(ri) = σ(rj) �= σ(rl)

(6)xi ∈ {0, 1} ∀ 1 ≤ i ≤ n

(7)

∑

i < l < j

σ(rl) = σ(ri)

xl ≤ (j − i) · (2− xi − xj) ∀ i < j, σ(ri) = σ(rj)

Page 7 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

the positions of the last occurences for every σ ∈ � , between
position i and the last occurence of σ(ri) before i (or 0 if i
is the first occurence of its kind). If ri, rj are two consecu-
tive runs of an optimal solution, there can be no other runs
between i and j using the same character, as this would make
the solution sub-optimal. Thus, if an optimal solution con-
tains a run ri , it either is the first selected run or the prede-
cessing run must be from a position j ∈ RS(i) . This restricts
the number of possible predecessors for each run in the DP
by O(|σ |) . The full DP is then as follows:

The recursion can be visualized by a directed acyclic
graph as shown in Fig. 3. It contains a start vertex cor-
responding to the empty prefix of S and one vertex for
every run in S. Every path in the graph corresponds to a
(possibly invalid for LRS) subsequence of S. Each vertex i
has an incoming edge from each position j ∈ RS(i).

D[i, F] is computed by taking all possible predeces-
sor positions j and extending the solutions by ri . If
σ(ri) = σ(rj) , the solution is extended by ri without
introducing a new character. The length for the new
solution would be the optimal length for positon j,
using the same sub-alphabet F and adding the length of
ri . For σ(ri) = σ(rj) the used sub-alphabet must also be
extended by σ(ri) , requiring to look up the previous solu-
tion from D[i, F \ {σ(ri)}] instead of D[i, F].

An optimal solution for LRS can be found by tak-
ing the entry of D with the highest length and using the

(8)D[0, ∅] = 0

(9)

D[0, F] = −∞ ∀F �= ∅

D[i, F] = max
j∈RS(i)

{
D[j, F] + L(ri) if σ(rj) = σ(ri)
D[j, F \ {σ(ri)}] + L(ri), if σ(rj) �= σ(ri)

}

backtracking information from the DP to obtain the cor-
responding subsequence. The DP table has a total of n+ 1
columns and 2|�| rows with each entry taking O(|�|)
time to compute. This leads to a worst-case runtime of
O
(
|�| · n · 2|�|

)
 for the DP, making this a fixed parameter

tractable (FPT) approach for LRS with the alphabet size
as parameter.

Experiments
We performed computational experiments on two dif-
ferent types of instances. First, we generated random
instances to see how the two algorithms scale on string
length and alphabet size. Second, we integrated the algo-
rithms into the software SyRI [7], which finds structural
rearrangements between two assemblies of related spe-
cies and has an additional stage for homology-based scaf-
folding, where the algorithms are used.

The ILP has been implemented using the Python inter-
face of PuLP, which solves the ILP with the free solver
CoinOR.1 All tests were run on an AMD Epyc 7742 pro-
cessor with 1TB of memory running on Debian. The
algorithms are implemented in Python and executed via
Snakemake [10] using Python 3.9.1 and PuLP version
2.3.1.

Synthetic data
The synthetic data was created by randomly generat-
ing strings with different lengths and alphabet sizes. For
any combination a total of 20 strings was generated, such
that every string is guaranteed to use the entire alphabet
assigned to it. These instances pose worst-case instances
for our algorithms, as the proposed reduction rules can

b21 b14 b31 b33 b13 b32

b21 b14 b31 b33 b11 b13 b32 b13

b11 b13

$

1 2 3 4 5 6 7 80

D[3, {b1}]

D[4, {b1, b3}]

D[6, {b1, b3}]

D[7, {b1, b2, b3}] =

D[3, {b1}]D[0, {}]

Fig. 3 Graph visualizing the recursion for the running example. Arcs represent the possible predecessors for every run. Colors mark an optimal path
and the DP entries taken by the recursion

1 https:// github. com/ coin- or/ pulp.

https://github.com/coin-or/pulp

Page 8 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

hardly be applied. The runs are quite short in general
and since there is no structurally induced locality among
the characters, instances could be split very rarely. All
instances were solved with all reductions rules applied.

Figure 4 shows how the runtime scales with both
increasing string lengths and increasing alphabet size.
For a fixed alphabet size the runtime scales about expo-
nentially with the string length for the ILP as shown in
the top plot. In fact, the alphabet size only has very minor
effect on the ILP compared to the string length, which
becomes visible in the bottom plot, with a slight favor of
larger alphabets. The DP behaves complementary to the
ILP, scaling exponentially in the alphabet size and sub-
exponentially with string length.

The scaling can be explained by the properties of the
algorithms. The ILP has a binary decision variable for
every run, increasing the number of possible (but not
necessarily feasible) variable assignments exponentially
with the number of runs. Once the ILP solver has to fall
back to branch-and-bound, the scaling becomes expo-
nential. Larger alphabets might lead to a lower number
of constraints (and thus a lower runtime), as the ILP
contains one constraint for every pair of runs with the
same character. As already pointed out in Sect. "Solv-
ing with dynamic programming" the DP table grows

linearly with the number of runs and exponentially with
alphabet size. This is reflected both in running time and
memory consumption shown in Fig. 5. Especially the
latter is problematic, as alphabet sizes of 24 or higher
might require more memory than a usual desktop com-
puter offers. The ILP consumes more memory than the
DP on small alphabets, but shows no increased mem-
ory footprint as the alphabet size grows. The decreas-
ing running time for very large alphabets is caused by
the reduction rules, as it leads to a higher number of
characters occurring only in a single run and thus to a
higher chance of the string being splittable into inde-
pendent parts.

Based on this empirical data, the final version of our
tool uses both algorithms depending on string length
and alphabet size. If |s| < 10(|�| − 13) the ILP is pre-
ferred, otherwise it is the DP.

Biological data
The LRS model is being used to generate homology-
based pseudo-chromosome level assemblies in the
chroder method of SyRI [7], i.e., the process of creating
homology-based chromosome-level assemblies in case
only scaffold-level assemblies are available. We consider

20 30 40 50 60 70 80 90 100
10−4

10−3

10−2

10−1

100
101
102
103

String length

av
g.

ru
nt
im

e
/
in
st
an

ce
(s
)

String length scaling (running time)

DP(6) DP(10)
DP(16) DP(20)
ILP(6) ILP(10)
ILP(16) ILP(20)

6 8 10 12 14 16 18 20 22 24
10−4

10−3

10−2

10−1

10 0

10 1

10 2

10 3

Alphabet size

av
g.

ru
nt
im

e
/
in
st
an

ce
(s
)

Alphabet size scaling (running time)

DP(20) DP(40)
DP(60) DP(80)
ILP(20) ILP(40)
ILP(60) ILP(80)

Fig. 4 Running time plotted against string length (top) and alphabet size (bottom). Each curve represents an algorithm and an additional
parameter (number in parentheses), which is alphabet size in the top plot and the string length in the bottom plot

Page 9 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

a dataset which was generated in [7] to test the perfor-
mance of an approach to find structural rearrangements.
It consists of 100 fragmented assemblies of varying con-
tiguity that have been generated by introducing 10 to 400
random breaks in chromosome-level assemblies of the
Col-0 and Ler accessions of Arabidopsis thaliana [7, 11].
We used the LRS-based chroder method to scaffold these
assemblies in order to estimate the usefulness of the
model in generating homology-based pseudo-chromo-
somes. The LRS instances were created by mapping both
sets of contigs against each other using nucmer [12] and
dividing the contigs into equally long bins afterwards. For
each bin the best matching contig of the other contig set
is determined based on the previously computed local
mappings of each contig. Considering that each bin can
only be assigned to one contig and represents one char-
acter in the constructed LRS instance, shorter bins pre-
serve more information, but also increase the complexity
of the LRS instance. The bin size was empirically chosen
as 10kb producing reasonable results while maintaining
solvable instances. The scripts and used assemblies are
made publicly available.

For more than 85% of the simulated genomes (both
Col-0 and Ler) the pseudo-chromosome N50 values
resulting from solving the LRS problem within chroder
were five times higher than those of the corresponding
fragmented assemblies, with the N50 being even more
than ten times higher for more than 30% of the sam-
ples (see Figure 6a). For many of the highly fragmented
assemblies it is difficult to order fragments because of
the presence of repetitive regions in both genomes.
Note that, even if the LRS-based method is not able
to generate the original full length genomes in these
cases, it significantly decreases the number of disjoint
fragments, increasing assembly contiguity as shown in
Figure 6b.

Originally the ordering problem in chroder was
solved using a brute-force method, which was unable
to solve 16 out of 100 instances within a reasonable
amount of time and memory. We tested these 16 LRS
instances separately and ran them using the DP and ILP
algorithms presented in this paper.

Using all three reduction rules, both algorithms were
able to solve all instances in very short computation
time, thus demonstrating the practical efficiency of our
algorithms, see Table 1. For this reason, the previous

6 8 10 12 14 16 18 20 22 24
100

101

102

103

104

Alphabet size

m
ax
.
m
em

or
y
co

ns
um

pt
io
n
(M

B
) Alphabet size scaling (memory consumption)

DP(20) DP(40)
DP(60) DP(80)
ILP(20) ILP(40)
ILP(60) ILP(80)

Fig. 5 Memory consumption plotted against alphabet size. Each curve represents a combination of an algorithm a string length, printed in
parentheses

(a) (b)

Fig. 6 Performance improvement of using the homology-based
scaffolding of chroder. a Increase of N50 values between raw
(scaffold-level) assemblies and the output of chroder using LRS.
Each line represents one of 100 generated fragmented assemblies. b
Decrease in contig count between both assemblies

Page 10 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

brute-force method has been replaced by the implemen-
tation of our algorithms within the chroder script of the
SyRI package. In fact, the instances were almost com-
pletely solved by the prefix rule alone, resulting in many
trivial sub-instances (singleton runs). Note that for these
singleton runs we did not call the ILP solver as the over-
head of setting up the ILP would have dominated the
running time. However, not using the prefix or infix rule
reveals differences between both algorithms. The alpha-
bet sizes between 31 and 38 caused the DP to run out of
memory, while the ILP remained fast with the longest
instance consisting of only 50 runs.

Discussion
Note that the purpose of this paper is not to present a
full novel scaffolding method but rather to introduce an
algorithm that may prove useful in existing methods for
scaffolding. We demonstrated its usefulness within the
first phase of the SyRI tool that needs chromosome-level
assemblies as input.

The experiments showed that optimal LRS solutions
can be found in short time for instance sizes that occur
on assemblies of real samples. We presented two dif-
ferent algorithms whose running times depend on two
important instance properties, namely string length and
alphabet size. Random strings, however, do not seem to
resemble actual assembly instances, which are already
pre-sorted except for some noise or rearrangements.
The reduction rules have little to no impact on random
strings, while they reduce the assembly instances to
almost trivial sub-instances. This implies that reduction
rules might be more important in practice than the algo-
rithm to process the remaining preprocessed instance.

One potential problem of the model itself was men-
tioned in Sect. "Problem formulation". LRS only allows
for one run per character, which automatically induces
an ordering on the underlying contigs. This can be prob-
lematic if the binned contig contains a translocation that
splits a long run into two, e.g., b1b1b1b2b2b2b1b1b1 . The
LRS model will drop one of the b1 runs, even though it
would be better to leave the order of B1 and B2 open due
to lack of evidence.

Another limitation arises while mapping the bins. Since
only the best match for every bin is taken, any mapping

ambiguity is ignored, which might drop valuable infor-
mation. There is also no support for inversions inside
the model. While inverted alignments can be taken into
account for the mapping step of a single bin, the model
stays unaware of inversions and the fact that an interval
of bins is actually in the reverse order compared to the
second assembly. However, this might not be as prob-
lematic as it sounds, because the bins are not mapped to
other bins but to entire contigs. As long as inversions are
contained in a single contig, they should have no impact
on the ordering that the model produces.

Conclusion
Ordering contigs by means of an incomplete assembly of
a related species occurs as a variant of homology-assisted
assembly, which does not require chromosome-level
assemblies already. We introduced the Longest Run Sub-
sequence (LRS) problem, formalizing the contig ordering
problem as a string problem. We proved that LRS is NP-
hard and presented reduction rules and two algorithms,
which work well for long instances and large alphabets,
respectively, which we showed on a synthetic data set.
Regarding real data, we managed to solve all instances
that could not be solved by a brute force approach in
short computation time. In fact, the original brute-force-
based method in the popular SyRI tool has been replaced
by the open-source implementation of our algorithms.

From the theoretical side, we find it interesting to fur-
ther investigate approximability and fixed-parameter
tractability of LRS. Some of these suggestions have been
picked up in a recent preprint [13]. From a practical per-
spective, we plan to further test the approach on real
assembly data, also taking more than two related assem-
blies into account.

Acknowledgements
We thank Max Jakub Ried for setting up the software package on PyPI.

Authors’ contributions
All authors contributed to the algorithms and to the design of the study. SSch
developed the idea to prove NP-hardness. MW developed the idea for the
DP-based approach. SSch and MW implemented the algorithms. SSch ran the
tests for simulated data. SSch, MG and GWK wrote the paper. All authors read
and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. Funded by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy – EXC 2048/1 – projectID 390686111 as
well as under projectID 395192176.

 Availability of data and materials
The source code and snakemake pipeline to create and run the simulated
data is available at https:// github. com/ AlBi- HHU/ longe st- run- subse quence.
The software itself can be installed from https:// pypi. org/ proje ct/ longe strun
subse quence/. A collection of all used code and data, including the experi-
ments which two assemblies from Arabidopsis thaliana have been uploaded
to Zenodo at https:// doi. org/ 10. 5281/ zenodo. 45522 11.

Table 1 Comparison of runtime (in seconds) between DP and
ILP on instances from real data. The times are for all 16 instances
that proved difficult for the previous brute-force method. The
columns correspond to different reduction rules used

Algorithm All rules No infix rule No prefix and infix rule

DP 0.006 0.003 Out of memory

ILP 0.006 0.006 0.56

https://github.com/AlBi-HHU/longest-run-subsequence
https://pypi.org/project/longestrunsubsequence/
https://pypi.org/project/longestrunsubsequence/
https://doi.org/10.5281/zenodo.4552211

Page 11 of 11Schrinner et al. Algorithms Mol Biol (2021) 16:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf,
Germany. 2 Heinrich Heine University Düsseldorf, Düsseldorf, Germany. 3 Cluster
of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düssel-
dorf, Düsseldorf, Germany. 4 Max Planck Institute for Plant Breeding Research,
Cologne, Germany. 5 Faculty of Biology, LMU Munich, Großhaderner Str. 2,
82152 Planegg-Martinsried, Germany.

Received: 23 February 2021 Accepted: 5 June 2021

References
 1. Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ,

Lippman ZB, Schatz MC. RaGOO: fast and accurate reference-guided scaf-
folding of draft genomes. Genome Biol. 2019;20(1):224. https:// doi. org/
10. 1186/ s13059- 019- 1829-6.

 2. Coombe L, Nikolić V, Chu J, Birol I, Warren RL. ntJoin: Fast and lightweight
assembly-guided scaffolding using minimizer graphs. Bioinformatics.
2020. https:// doi. org/ 10. 1093/ bioin forma tics/ btaa2 53.

 3. Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, Schnable PS,
Lyons E, Lu J. ALLMAPS: robust scaffold ordering based on multiple maps.
Genome Biol. 2015; 16(1), 3. https:// doi. org/ 10. 1186/ s13059- 014- 0573-1.

 4. Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determina-
tion of diploid genome sequences. Genome Res. 2017; 27(5), 757–767.
https:// doi. org/ 10. 1101/ gr. 214874. 116.

 5. Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J.
Chromosome-scale scaffolding of de novo genome assemblies based on

chromatin interactions. Nat Biotechnol. 2013; 31(12), 1119–1125. https://
doi. org/ 10. 1038/ nbt. 2727.

 6. Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing E-M,
Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard
R, Koch MA, Swan D, Clavijo B, Coupland G, Schneeberger K. Improving
and correcting the contiguity of long-read genome assemblies of three
plant species using optical mapping and chromosome conformation
capture data. Genome Res. 2017; 27(5), 778–786. https:// doi. org/ 10. 1101/
gr. 213652. 116.

 7. Goel M, Sun H, Jiao W-B, Schneeberger K. SyRI: finding genomic rear-
rangements and local sequence differences from whole-genome
assemblies. Genome Biol. 2019; 20(1), 277. https:// doi. org/ 10. 1186/
s13059- 019- 1911-0.

 8. Alhakami H, Mirebrahim H, Lonardi S. A comparative evaluation of
genome assembly reconciliation tools. Genome Biol. 2017; 18(1), 93.
https:// doi. org/ 10. 1186/ s13059- 017- 1213-3.

 9. Grötschel M, Jünger M, Reinelt G. A cutting plane algorithm for the linear
ordering problem. Operations Res. 1984; 32, 1195–1220. https:// doi. org/
10. 1287/ opre. 32.6. 1195.

 10. Köster J, Rahmann S. Snakemake–a scalable bioinformatics workflow
engine. Bioinformatics. 2012; 28(19), 2520–2522. https:// doi. org/ 10. 1093/
bioin forma tics/ bts480.

 11. The Arabidopsis Genome Initiative. Analysis of the genome sequence of
the flowering plant Arabidopsis thaliana. Nature. 2000;408(6814):796–815.

 12. Marcais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. Mum-
mer4: a fast and versatile genome alignment system. PLOS Comput Biol.
2018; 14(1), 1–14. https:// doi. org/ 10. 1371/ journ al. pcbi. 10059 44.

 13. Dondi R, Sikora F. The longest run subsequence problem: Further com-
plexity results. arXiV 2020. arXiv: 2011. 08119.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13059-019-1829-6
https://doi.org/10.1186/s13059-019-1829-6
https://doi.org/10.1093/bioinformatics/btaa253
https://doi.org/10.1186/s13059-014-0573-1.
https://doi.org/10.1101/gr.214874.116.
https://doi.org/10.1038/nbt.2727.
https://doi.org/10.1038/nbt.2727.
https://doi.org/10.1101/gr.213652.116.
https://doi.org/10.1101/gr.213652.116.
https://doi.org/10.1186/s13059-019-1911-0.
https://doi.org/10.1186/s13059-019-1911-0.
https://doi.org/10.1186/s13059-017-1213-3.
https://doi.org/10.1287/opre.32.6.1195.
https://doi.org/10.1287/opre.32.6.1195.
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1371/journal.pcbi.1005944.
http://arxiv.org/abs/2011.08119

	Using the longest run subsequence problem within homology-based scaffolding
	Abstract
	Introduction
	Problem formulation
	Complexity
	Solution strategies
	Reduction rules
	Solving with integer linear programming
	Solving with dynamic programming

	Experiments
	Synthetic data
	Biological data

	Discussion
	Conclusion
	Acknowledgements
	References

