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Summary

The endodermis surrounds and protects the vasculature partly by depositing hydrophobic

suberin in the cell walls. Yet, some cells remain unsuberised. These historically termed ‘passage

cells’ are assumed to provide a low-resistance pathway to the xylem. Only recently have we

started to gain molecular insights into these cells, which allow us to probe how roots coordinate

communication with the environment across barriers with single-cell precision. Increased

understandingof root physiology at ahigh-resolution is intriguing, as it is likely toprovide uswith

new tools to improve overall plant health.With this in mind, we here provide a brief overview of

passage cells, their presence across plant species, as well as a molecular update and future

directions for passage cell-related research.

I. Introduction

The aboveground parts of plants constitute food and feed through
energy harvested from photosynthesis. It is therefore not surprising
that most historical and currently used agricultural traits are
associatedwith these tissues (seed yield, biomass, plant height, etc.).
Yet, plants live in two opposite environments and, despite an
increased focus on root–microbiome interactions, the root system
is still somewhat overlookedwhen it comes to agricultural qualities.
While we do have simplistic models for specific individual traits of
the root system, we are only beginning to understand how they are
integrated into root developmental plasticity at a cellular level.

In roots, the vasculature is surrounded by a barrier-containing
cell layer termed the endodermis. Only within the recent years have
we gainedmolecular insight into the formation and function of the

barriers established in the endodermis (Barberon et al., 2016; Li
et al., 2017) coordinating root association and communication
with the environment (Durr et al., 2019; Holbein et al., 2019; Liu
et al., 2019). Dependent on the stage of root development, the
endodermis deploys different barrier systems to protect and isolate
the vasculature and its long-distance transport capacity. Between
endodermal cells close to the root tip, lignin depositions known as
the Casparian strip (CS) constitute an apoplastic barrier that serves
to block diffusion between cell walls and forces solutes across the
plasma membrane. This is analogous to tight junctions in the
mammalian gut system (Barberon & Geldner, 2014). As the
endodermal cells get older, they deposit hydrophobic suberin
lamellae across the entire cell surface, which completely inhibit
their ability to facilitate cross-membrane transport (reviewed in
Doblas et al., 2017). Intriguingly, certain xylem pole (XP)-

� 2021 The Authors
New Phytologist � 2021 New Phytologist Foundation

New Phytologist (2021) 230: 1321–1328 1321
www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Review

https://orcid.org/0000-0001-5146-9907
https://orcid.org/0000-0001-5146-9907
https://orcid.org/0000-0002-6530-8837
https://orcid.org/0000-0002-6530-8837
https://orcid.org/0000-0002-8905-0850
https://orcid.org/0000-0002-8905-0850
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.17182&domain=pdf&date_stamp=2021-03-14


associated endodermal cells do not undergo suberisation. These
cells are termed ‘passage cells’ (PCs) as they are historically believed
to provide a low resistance radial path for flow of solutes directly
into the xylem (Kroemer, 1903).

PCs occur across a wide range of species, yet their function and
formation are still enigmatic (Peterson & Enstone, 1996).
Although first observed more than a century ago (Kroemer, 1903),
PCs have until recently lacked any framework to study their
molecular development and function. It was recently found that
these cells are determined very early in the meristem, but do not
manifest until much later in development (Andersen et al., 2018).
Thus, they provide an intriguing model to study the interplay
between root developmental and physiological processes at single-
cell level.With basis on this, we here present an overview of current
knowledge on PCs, speculations on their function(s) and directions
of future research.

II. Exo- and endodermal passage cells – us and them

In certain plant species, the second outermost cell layer of the root
functions as a protective layer (termed the exodermis), which in
many ways is similar to the endodermis (reviewed in Geldner,
2013). The exodermis is a specialised hypodermis, which is also
equipped with CSs and often with suberin depositions (Peterson&
Perumalla, 1990;Damus et al., 1997). PCs occur in both layers and
were, interestingly, discovered almost simultaneously with the
anatomical description of the endodermis and exodermis as barrier-
containing cell layers. According to records, exodermal passage cells
were first identified and described as stoma-like openings in aerial
roots of epiphytic orchids in the 19th century (Kroemer, 1903; von
Guttenberg, 1940). By then they were referred to as transfer cells,
thin-walled endodermis cells or simply short cells (Schwendener,
1882; Kroemer, 1903; Wilson & Robards, 1980). ‘Passage cell’
(from the original German term: ‘Durchlaßzelle’) did not become
widely accepted until publishing of the comprehensive work
Handbook of Plant Anatomy (Handbuch der Pflanzenanatomie) by
Hermann von Guttenberg in 1940.

In both the endodermis and exodermis, PCs carry the same
name, but display distinct features. The minority of plant species
develop an exodermis and PCs were only reported in certain
exodermis-containing species (Peterson & Perumalla, 1990;
Damus et al., 1997; Enstone et al., 2002). Moreover, the
endodermal PCs appear to co-localise significantly with XPs and
this strong correlation was not shown for exodermal PCs except for
a study on clones of Salix spp. (Fig. 1a) (Peterson&Enstone, 1996;
Hose et al., 2001; Enstone et al., 2002; Lux et al., 2004).

With few exceptions, vascular plants form an endodermis layer
equipped with CSs and suberin barriers. Despite the fact that relatively
few species have been investigated for PC occurrence, they have been
observed in a number of angiosperm orders (18 out of the total 64
angiosperm orders), including the basal angiosperm Amborella
trichopoda as well as in certain gymnosperms, such as Picea and Pinus
(Table 1). In themodel plantArabidopsis thaliana (Arabidopsis) suberin
patterning is dynamic anddependent on abiotic stress factors (Barberon
et al., 2016;Andersen et al., 2021).ThedefinitionofPCsasunsuberised
XP-associated endodermal cells emphasises the situation that we

technically do not know what defines these cells. Based on this loose
definition they arehard todistinguish in thematuring endodermis.This
is especially true close to emergence sites for lateral roots in which
unsuberised emergence points can be hard to distinguish from PCs
(Andersen et al., 2018). Thus, while this still needs to be empirically
determined, it suggests that exodermal and endodermal PCs might
serve distinct, yet possibly overlapping, roles. Moreover, endodermal
PCs occur in a noteworthy wide evolutionary span of plants, which
suggests a common, and most likely important, function.

III. Endodermis differentiation – poles apart

Only recently did we start to gain insights into how endodermal
PCs are formed. Although solely based on analysis in Arabidopsis,
recent evidence suggests that they represent a distinct endodermal
cell type with a developmental programme overlapping with xylem
formation (Andersen et al., 2018). The currently earliest insight on
definition of this cell type is that it depends on noncell autonomous
functions of the cytokinin signal-repressive Arabidopsis Histidine
Phosphotransfer Protein 6 (AHP6) in the early endodermis.While
the underlyingmechanism remains to be investigated in detail, one
outcome of AHP6 diffusion to the early XP-associated endodermis
is that cell division/elongation rates in the XP- and phloem pole
(PP)-associated endodermis are measurably different (cells are
shorter in the XP) (Lavrekha et al., 2017; Andersen et al., 2018).
Therefore, this might represent a prepatterning event in which PC
formation is an end-point developmental feature of the XP-
associated endodermis. Such bifurcation of endodermal develop-
ment is supported by recent single-cell RNA experiments on the
root meristem, which reveal distinct populations of early endoder-
mal cells (Ryu et al., 2019; Zhang et al., 2019; Shahan et al., 2020;
Wendrich et al., 2020). Further endodermis-focussed single cell
characterisation might therefore reveal the distinct identities and
regulators of the XP- and PP-associated endodermal cell linages.

IV. Passage cell function – just another brick in the
wall?

From the perspective of the whole root, solutes absorbed from the
soil are transported radially into the vasculature to be allocated
elsewhere via the xylem.Despite this rather simplistic function, this
is an incredibly complex task when considering the required
underlying coordination. Three distinct mechanisms can theoret-
ically facilitate thismulticellular journey: (1) apoplastic diffusion in
which solutes diffuse freely in the apoplastic space within cells; (2)
plasmodesmata-dependent symplastic flow between cells; and (3)
consecutive influx and efflux steps through transcellular-expressed
polar plasmamembrane localised transporter proteins (Peterson &
Enstone, 1996; reviewed in Ramakrishna & Barberon, 2019). In
older suberised root parts, the hydrophobic impregnation of the cell
walls is most likely to represses transcellular transport, suggesting
that, in this area, this mechanism can only occur in PCs. Therefore,
it is not unreasonable to assume that certain transporter proteins
would show expression in PCs.

In most examples of nutrient transporter characterisation, their
localisation and expression patterns have been determined using
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classical methods such as GUS (b-glucuronidase) staining,
immunolocalisation and/or in situ transcript analysis. However,
obtaining high-resolution insights into distinct cells such as PCs is
notoriously difficult due to the necessity of sectioning, as well as the
diffusive nature of GUS crystals (Jefferson et al., 1987). Despite
this, genes coding for IRON REGULATED TRANSPORTER 3
(AtIRT3),YELLOWSTRIPE-LIKE2 (AtYSL2),HIGHAFFINITY
POTASSIUM TRANSPORTER 1 (OsHAK21), STELAR
K +OUTWARDS RECTIFIER (SKOR) and the phosphate
exporter PHOSPHATE 1 (AtPHO1) have indeed been observed
in PCs (Gaymard et al., 1998;Hamburger et al., 2002; Schaaf et al.,
2005; Lin et al., 2009; Shen et al., 2015). While these patterns
remain to be investigated in detail, this situation suggests that PCs
are involved inmetal-ion and potassium/phosphate homeostasis or
signalling. Fascinatingly, through the use of sensitive fluorescent
transciptional reporters in combination with histochemical stain-
ing (Ursache et al., 2018), genes of the PHO1 family (11 members
in total) were shown to not only have PC-associated expression, but
severalmembers were expressed in individual cortex cells associated
with the PCs, which in 3D would occur as a ‘funnel-like’ pattern

(Andersen et al., 2018) (Fig. 1b). This observation not only
suggests that individual (anatomically identical) cells in root tissues
can obtain distinct genetic profiles, but it further emphasises that
PCs might work as ‘hubs’, coordinating radial expression patterns
that might relay information from the root surroundings to the
vasculature. Future analysis employing tissue-specific promoters
for untargeted mRNA analysis such as Translating Ribosome
Affinity Purification (TRAP) (Mustroph et al., 2013) or fluores-
cence-associated cell sorting (FACS) coupledwith single-cell RNA-
seq analysis will provide insights into the role of these intriguing
and overlooked aspects of root organisation.

V. Cross-barrier communication – is there anybody
out there?

Roots do not work alone. Most root systems establish mutualistic
associations with microbes to improve nutrient acquisition and
stress tolerances. Arguably, themost widespread examples of such a
connection are phosphate acquisition through arbuscular mycor-
rhiza (AM) symbiosis and nitrogen fixation via nodule formation

Fig. 1 Schematic cross-sections illustrating theoccurrence andputative functionsof endodermal passagecells (PCs). (a) PCsoccur as ‘open’ cells adjacent to the
xylem pole in the fully differentiated root parts where the endodermis has bothCasparian strips and hydrophobic suberin depositions that block apoplastic and
transcellular transport. (b) Certain transporter genes show expression in PC-associated cortex and epidermal cells (Andersen et al., 2018), which suggest that
thePCsmight coordinate a ‘funnel-like’ patternof influxandefflux carriers in cortical andepidermal cells associated topassage cells. This patterning in theouter
tissues might form a basis for import and export of nutrients and/or signals from the surrounding rhizosphere. (c) Interactions as well as xylem pole-localised
infection with fungi and bacteria (d). Schematic view of typical dicot root cross-sections with arbuscular mycorrhizal fungi entering root tissue through
exodermalPCs and remaining in the cortex. It is unknown if this occurs in xylempole-adjacent cells or distinct passagecell-associated cells. (e) Schematic viewof
a cortex-initiated nodule organ (at the xylem pole) that accommodates nitrogen-fixing Rhizobium bacteria and the nodule vasculatures are connected to the
root vasculature for long-distance transport of solutes through the xylempole. It remains to be investigated if the xylempole localisation is correlated topassage
cell occurrence. Created with BioRender.com.
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Table 1 A summary of passage cell occurrence in plants.

Classification Order Family Species
PCs in
endodermis

PCs in
exodermis/
hypodermis References*

Gymnosperms Pinales Pinaceae Picea sitchensis U MacKenzie (1983)
Pinus banksiana U McKenzie & Peterson (1995)

Cupressaceae Chamaecyparis obtusa U U Hishi et al. (2006)
Chamaecyparis obtusa U Hishi & Takeda (2005)

Basal Angiosperm Amborellales Amborellaceae Amborella trichopoda U Seago & Fernando (2013)
Magnoliids Magnoliales Magnoliaceae Magnolia soulangeana U Seago & Fernando (2013)

Liriodendron tulipifera U Zadworny & Eissenstat (2011)
Monocots Alismatales Araceae Calla palustris U Kroemer (1903)

Caladium hybridum U Kroemer (1903)
Hydrosme rivieri U Kroemer (1903)

Tofieldiaceae Tofieldia calyculata U Schwendener (1882)
Arecales Arecaceae Serenoa repens U Fisher & Jayachandran (1999)
Asparagales Asparagaceae Agave deserti U North & Nobel (1991)

Orchidaceae Habenaria rhodocheila U Stern (1997)
Laelia anceps U Napp-Zinn (1953)
Stanhopea tigrina U Esnault et al. (1994)
Vanda suavis U Napp-Zinn (1953)

Amaryllidaceae Agapanthus praecox U Kroemer (1903)
Allium ascalonicum U Haberlandt (1884)
Allium cepa U U Wilson & Robards (1980),

Shishkoff (1989), Stasovski &
Peterson (1993), Peterson &
Enstone (1996), Sharda &
Koide (2008, 2010)

Leucojum aestivum U Seago & Fernando (2013)
Asparagaceae Asparagus officinalis U Kamula et al. (1994), Peterson &

Enstone (1996), Sharda & Koide (2008)
Asparagus sprengeri U Kroemer (1903)
Aspidistra elatior U Kroemer (1903)
Yucca schidigera U North & Baker (2007)
Aloe vera U Shishkoff (1987)

Iridaceae Iris germanica U Schwendener (1882), Kroemer (1903)
Orchidaceae Dendrobium kingianum U Esnault et al. (1994)

Dendrobium nobile U Hou & Guo (2009)
Dendrobium spp. U Seago & Fernando (2013)
Dendrophylax lindenii U U Chomicki et al. (2014)
Epidendrum radicans U Esnault et al. (1994)
Phalaenopsis spp. U U Peterson & Enstone (1996)
Renanthera coccinea U Schwendener (1882)
Vanilla planifolia U Koyyappurath et al. (2015)

Laurales Lauraceae Persea gratissima U Schwendener (1882)
Liliales Smilacaceae Smilax spp. U Peterson & Enstone (1996)
Poales Poaceae Echinochloa crus-galli

var. praticola
U Ejiri & Shiono (2020)

Hordeum vulgare U Clarkson et al. (1971),
Kreszies et al. (2018)

Oryza sativa U Momayezi et al. (2012),
Shen et al. (2015)

Poa nemoralis U Napp-Zinn (1953)
Triticum aestivum U Wu et al. (2011)
Zea mays U Kroemer (1903), Ma & Peterson (2003),

Niu et al. (2011), Tylov�a et al. (2017)
Zingiberales Musaceae Ensete ventricosum U Kroemer (1903)

Zingiberaceae Hedychium gardnerianum U Kroemer (1903)
Eudicots Asterales Asteraceae Coreopsis grandiflora U Sharda & Koide (2008, 2010)

Rudbeckia fulgida U Sharda & Koide (2008, 2010)
Bellis perennis U Shishkoff (1987)

Brassicales Brassicaceae Arabidopsis thaliana U Andersen et al. (2018)
Fabales Fabaceae Glycine max U Thomas et al. (2007)
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and association with Rhizobium bacteria. Based on the anatomical
and genetic knowledge of PCs, it is intriguing to speculate about
their function in relation to communication with the biotic
environment surrounding the roots.

For AM symbiosis a tight plant–fungal association improves
transport and acquisition of, for example, phosphate in exchange
for sugars and fatty acids (Keymer et al., 2017). In several plant
species AM fungi enter root tissue through exodermal PCs (Esnault
et al., 1994; Matsubara et al., 1999; Sharda & Koide, 2010).
However, it is not fully understood why AM fungi remain in the
cortex as well as how they obtain nutrients from the vasculature
across the endodermis (Peterson & Enstone, 1996). As detailed
high-resolution analyses of the initial plant–fungi association are
scarce, it is possible that the fungi select XP-adjacent cells or distinct
PC-associated cortex cells (Fig. 1d).

Colletotrichum tofieldiae (Ct) is an endemic root endophyte in
natural Arabidopsis populations (Hiruma et al., 2016). Ct is
allowed to enter the root, where it promotes plant growth,
specifically under low phosphate conditions. This mutualistic
behaviour is dependent on tryptophan-derived specialisedmetabo-
lites and in a manner controlled by the phosphate starvation
response (Hiruma et al., 2016). Intriguingly, penetration of root
tissue appears to be interrupted by suberin lamellae in the
endodermis. In fact, fungal hyphae were detected only in
unsuberised endodermal cells, hinting that entrance to the
vasculature might occur through coordination of chemical defence
employment and physical barriers such as suberin (Hiruma et al.,
2016). Intriguingly, this suggests that PCs might, despite lacking
the protective suberin, provide a high concentration of defence
compounds situated in the putative entry points, which could allow

Table 1 (Continued)

Classification Order Family Species
PCs in
endodermis

PCs in
exodermis/
hypodermis References*

Juglandaceae Juglans nigra U Zadworny & Eissenstat (2011)
Gentianales Apocynaceae Asclepias syriaca U Francke (1927)

Asclepias tuberosa U Sharda & Koide (2008, 2010)
Ceropegia bulbosa U Francke (1927)
Dischidia collyris U Francke (1927)
Dischidia rafflesiana U Francke (1927)
Hoya carnosa U Francke (1927), Shishkoff (1987)
Huernia macrocarpa U Francke (1927)
Marsdenia condurango U Francke (1927)
Stapelia trifida U Francke (1927)
Vinca minor U Sharda & Koide (2008, 2010)
Vincetoxicum officinale U Kroemer (1903)

Lamiales Lamiaceae Ocimum basilicum U Sharda & Koide (2008, 2010)
Linderniaceae Chamaegigas intrepidus U Hose et al. (2001)
Scrophulariaceae Verbascum thapsus U Shishkoff (1987)

Malpighiales Euphorbiaceae Ricinus communis U Kroemer (1903)
Salicaceae Populus tremuloides U Zadworny & Eissenstat (2011)

Salix spp. U Lux et al. (2004)
Malvales Malvaceae Gossypium hirsutum U Reinhardt & Rost (1995)
Myrtales Myrtaceae Eucalyptus pilularis U McKenzie & Peterson (1995)
Proteales Nelumbonaceae Nelumbo lutea U Seago & Fernando (2013)
Ranunculales Ranunculaceae Ranunculus acris U Scott & Peterson (1979)

Ranunculus repens U Seago & Fernando (2013)
Sapindales Rutaceae Citrus aurantium U Eissenstat & Achor (1999)

Citrus jambhiri U Eissenstat & Achor (1999)
Citrus medica U Storey & Walker (1987)
Citrus reticulata

var. austera hybrid
U U Walker et al. (1984); Storey &

Walker (1987)
Citrus volkameriana

Tan. & Pasq.
U Eissenstat & Achor (1999)

Poncirus trifoliata U Eissenstat & Achor (1999)
Sapindaceae Acer negundo U Zadworny & Eissenstat (2011)

Acer saccharum U Zadworny & Eissenstat (2011)
Solanales Convolvulaceae Ipomoea purpurea U Sharda & Koide (2010)

Solanaceae Nicotiana tabacum U Banasiak et al. (2020)
Petunia axillaris U Kretzschmar et al. (2012),

Sasse et al. (2015)

U, Present.
*See full reference list in Supporting Information Notes S1.

© 2021 The Authors

New Phytologist © 2021 New Phytologist Foundation

New Phytologist (2021) 230: 1321–1328
www.newphytologist.com

New
Phytologist Tansley insight Review 1325



for selective, specialised microbial associations or host-preference
in microbiome composition under certain conditions (Fig. 1c).
This hypothesis is particularly intriguing to investigate with regards
to opportunistic pathogens such as the bacterium Ralstonia
solanacearum, of which progress is highly directed towards the
XP (Digonnet et al., 2012).

While phosphate exchange via AM symbiosis is a widespread
phenomenon across the plant kingdom, only certain plant
families form the tight and highly specific nodule organs that
accommodate nitrogen (N)-fixing Rhizobium bacteria (reviewed
in Oldroyd et al., 2011). Nodules require a connection to the
root vasculature for long-distance transport of solutes to and
from the N-fixing bacteria and, fascinatingly, these lateral root-
like structures can be derived from cortex cells facing the XP
(Heidstra et al., 1997; Xiao et al., 2014). In depth analysis using
live cell markers or clearing histochemical procedures (Ursache
et al., 2018) will reveal if cortex-initiated nodules correlate with
PC occurrence or their associated cortex cells and might reveal
new insights into nodule cross-barrier communication with the
vasculature (Fig. 1e).

Communication fromplants to the rhizosphere occurs, at least in
part, through transporter-dependent exudation of bioactive spe-
cialised compounds (reviewed in Sasse et al., 2018).While spatially
restricted phytohormone production such as cytokinin is involved
in nodule formation (Reid et al., 2017), it is evident that secretion
of signals helps to attract beneficial microbes (Sasse et al., 2018;
Harbort et al., 2020). Interestingly, exodermal PCs were identified
to exudate strigolactones through the ABC (ATP Binding
Cassette)-type transporters termed PLEIOTRPOIC DRUG
RESISTANCE (PDR (Kretzschmar et al., 2012; Sasse et al., 2015;
Xie et al., 2015; Liu et al., 2019). It remains to be investigated if this
is also the case for endodermal PCs and if any distinct funnel-like
expression PC-associated cortex and epidermis might serve a
similar function (Fig. 1c).

VI. Passage cells as an agricultural tool – high hopes

At present, we have only a few examples of how nutrient uptake
is facilitated into the vasculature of roots at the single-cell level.
PCs and their associated development represent a very intriguing
model to study the communication between the vasculature and
the surrounding tissues/rhizosphere. Endodermal PCs might be
developmentally controlled nutrient responsive windows into the
vasculature, possibly in combination with their brothers in the
exodermis. They could provide a combination of entry points for
beneficial microbes and floodgates for nutrient acquisition,
which is in tight coordination with the xylem underlying
endodermal PCs, thus an intriguing model for plant–environ-
mental regulation with huge implications for agriculture
(Fig. 1b,c). Nonrenewable resources and their extraction are
becoming increasingly costly (Cordell et al., 2009). Moreover,
inefficient usage due to leaching and other environmental factors
(reviewed in Sharma et al., 2013) increases the urgency of new
tools for agricultural development. Genetic tools that allow
manipulation of PC occurrence have been established in
Arabidopsis and further characterisation of these as well as

translational efforts might provide a much-needed toolbox for
further agricultural optimisation and investigation of under-
ground traits for crop quality. Moreover, identification and
application of microbial strains that induce PC patterning might
additionally provide an ecological strategy towards the growth of
healthier and more nutritious crops.
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