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Summary

Plants employ the innate immune system to discriminate between self and invaders through two

typesof immune receptors, oneon theplasmamembraneand theother in the intracellular space.

The immune receptors on the plasma membrane are pattern recognition receptors (PRRs) that

can perceive pathogen-associated molecular patterns (PAMPs) or host-derived damage-

associated molecular patterns (DAMPs) leading to pattern-triggered immunity (PTI). Particular

pathogens are capableofovercomingPTI by secreting specific effectors intoplant cells toperturb

different components of PTI signalling through various mechanisms. Most of the immune

receptors from the intracellular space are the nucleotide-binding leucine-rich repeat receptors

(NLRs), which specifically recognize pathogen-secreted effectors to mediate effector-triggered

immunity (ETI). In this review, we will summarize recent progress in structural studies of PRRs,

NLRs, and effectors, and discuss how these studies shed light on ligand recognition and

activation mechanisms of the two types of immune receptors and the diversified mechanisms

used by effectors to manipulate plant immune signalling.

I. Introduction

Discriminating between self and non-self is paramount for the
survival and fitness of all living organisms to survive and thrive.
Animals and plants employ immune systems for self-defence
against invading microbes and parasites. Unlike vertebrates that
have an adaptive and an innate immune system that is active in the
vasculature and designated body cells, plants exclusively rely on
their innate immune system that is active in all cells of the organism.
While resistance through an adaptive immune system is attainable

during the lifespan of the organism, innate immunity is solely
heritable. Plants encode immense numbers of such heritable
hereditary immune receptor genes, whereas avirulence (AVR)
genes (encoding effector proteins) evolved in pathogens to combat
plant immunity.

Plants deploy immune receptors on the plasma membrane and
intracellular space (Jones & Dangl, 2006; Dangl et al., 2013)
(Fig. 1). The front defence line at the plasmamembrane is set up by
pattern recognition receptors (PRRs) that can recognize pathogen-
associated molecular patterns (PAMPs) or damage-associated
molecular patterns (DAMPs), leading to pattern-triggered immu-
nity (PTI) (Bohm et al., 2014; Couto & Zipfel, 2016). The*These authors contributed equally to this work.
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pathogen effector proteins manipulate the plant immune response
inside the cell in favour of pathogenic fitness. Effectors are
functionally diversified as they need to intercept the complex plant
immune system, which include branching signalling cascades,
transcriptional reprogramming, reactive oxygen species (ROS),
nitric oxide (NO) release, calcium influx, phytohormone sig-
nalling, and programmed cell death (termed hypersensitive
response, HR). In order to detect effector proteins, the intracellular
defence line is set up by the nucleotide-binding leucine-rich repeat
receptors (NLRs) mediating effector-triggered immunity (ETI)
(Jones & Dangl, 2006; Dangl et al., 2013). During the past years,
significant progress has beenmade in our understanding of PTI and
ETI signalling and their regulation by pathogen effectors. In this
review, we focus on protein structural elucidations of PRRs, NLRs
and effectors and the implications of the structures for the
mechanistic aspects of the plant innate immune system.

II. Guarding the front defence line –PRRs are the alarm
system at the plasma membrane

PRRs are the front line of the immune surveillance on the cell
surface. Receptor-like kinases (RLKs) and receptor-like proteins
(RLPs) function as PRRs to perceive PAMPs or DAMPs, thereby

activating the PTI immune response (Bohm et al., 2014; Couto &
Zipfel, 2016; W. L. Wan et al., 2019; Zhou & Zhang, 2020)
(Fig. 2). RLKs are composed of an extracellular domain (ECD) that
is generally responsible for ligand perception, a single transmem-
brane region, and an intracellular kinase domain that is important
for signal transduction (Han et al., 2014). RLPs share a similar
structural organization but lack an intracellular kinase domain.
Therefore, RLPs are thought to inherently require a co-receptor
kinase for signalling (Gust&Felix, 2014). The ECDs of RLKs vary
drastically in size and architecture, enabling them to sense diverse
ligands. Based on their ECDs, PRRs can be divided into the
leucine-rich repeat (LRR)-, lysin motif (LysM)-, lectin-, wall-
associated kinase (WAK) and other subfamilies (Couto & Zipfel,
2016).

Animal PRRs typically are Toll-like receptors (TLRs) that
possess an extracellular LRR domain, a single transmembrane
domain, and an intracellular Toll/interleukin 1 (IL-1) receptor
(TIR) domain (Botos et al., 2011). Ligand perception by
extracellular domain of TLRs induces receptor dimerization and
triggers intracellular immune signalling cascades (Kawai & Akira,
2010). Similarly, recognition of PAMPs orDAMPs by extracellular
domain of plant PRRs induces receptor dimerization and leads to
intracellular downstream immune signalling events, such as ROS
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Fig. 1 Schematicdiagramof theplant immune
system. Plants deploy two tier immune
receptors for their immunity. Plants perceive
pathogen-associated molecular patterns
(PAMPs) via cell surface-localized pattern
recognition receptors (PRRs) and initiate
pattern-triggered immunity (PTI) (left side).
Pathogens deliver effector proteins into plants
to manipulate PTI in favour of pathogenic
fitness. The intracellular NLR receptors sense
the effectors. Direct or indirect effector
binding activates NLR oligomerization. NLR
oligomerization can form resistosome
triggering ion-leakage, EDS1 signalling,
transcriptional reprogramming, resulting in
NLR-dependent effector-triggered immunity
(ETI) (right side).
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production, calcium influx, extracellular alkalization, and defence
gene expression (Boller & Felix, 2009; Zipfel, 2014; Zhou &
Zhang, 2020).

1. Recognition of PAMPs by PRRs

Thus far, many PAMPs have been identified and the best
characterized examples are flg22, EF-Tu, chitin, peptidoglycan,
and lipopolysaccharides, which are recognized by FLS2 (Gomez-
Gomez & Boller, 2000; Zipfel et al., 2004), EFR (Zipfel et al.,
2006), CERK1 and LYK3/5 (Miya et al., 2007; Wan et al., 2008),
LYM1/LYM3 (Willmann et al., 2011), and LORE (Ranf et al.,
2015; Kutschera et al., 2019), respectively (Fig. 2).

As a PAMP molecule, bacterial flagellin can be recognized by
plant and animal immune receptors (Gomez-Gomez & Boller,
2000; Hayashi et al., 2001; Zipfel et al., 2006). Flagellin is the
monomeric component of the bacterial flagellum. TheD1 domain
of flagellin is recognized by TLR5 in animals (Fig. 3a) (Donnelly&
Steiner, 2002; Yoon et al., 2012), whereas a conserved 22-amino
acid fragment flg22 released by multi-step hydrolysis (Buscaill
et al., 2019) is recognized by the LRR-RLK FLS2 in Arabidopsis
(Zipfel et al., 2004; Sun et al., 2013). In contrast to the planar
solenoids of LRR-containing proteins seen in other species (Botos
et al., 2011), the structure of the LRRdomain of FLS2 (FLS2LRR) is
superhelical (Fig. 3b) (Sun et al., 2013). Flg22 adopts an extended
conformation and binds to the inner surface of the FLS2 solenoid
(Fig. 3b). Specific recognition of flg22 by FLS2LRR is through
extensive hydrogen bonds and hydrophobic interactions. Flg22-

binding induces no conformational change in FLS2LRR but creates
a gluing site for interaction with the co-receptor BAK1, explaining
why flg22 is required for FLS2 interaction with BAK1 (Sun et al.,
2013). In addition to the flg22-mediated interaction, FLS2LRR and
BAK1LRR pack against each other through hydrophobic and Van
der Waals contacts. These structures offer direct evidence for flg22
recognition by the ECDof FLS2 and demonstrate the sufficiency of
ECDs for formation of the flg22-induced FLS2-BAK1 complex. In
contrast to animal TLRs that recognize flagellin and induce homo-
dimerization, the plant FLS2 receptor recognizes flagellin and
heterodimerizes with the co-receptor BAK1. This heterodimeric
activation mode is common in plant PRR signalling (Ma et al.,
2016; Song et al., 2017).

Chitin is a polymer of N-acetylglucosamine (NAG) (Tang
et al., 2015) (Fig. 3c). The chitin oligosaccharides from the
degraded fungal cell wall can be recognized as a PAMP by the
RLK chitin elicitor receptor kinase 1 (CERK1) and lysin-motif
receptor-like kinase 5 (LYK5) in Arabidopsis (Miya et al., 2007),
and by OsCERK1 and RLP OsCEBiP in rice (Kaku et al., 2006).
All these receptors have the LysM extracellular domain, which is a
conserved carbohydrate-binding module found in all kingdoms of
life (Buist et al., 2008). The LysM forms a conserved b-a-a-b
structure in which the two a-helices pack against the inner
antiparallel dyadic b-sheet (Fig. 3d). The LysM domain of
AtCERK1 features three LysMs (LysM1, LysM2 and LysM3),
which form a trimeric structure through tight packing and
interdomain disulphide bonds (Liu et al., 2012). Despite the
similarity of the three LysMs, only LysM2 of AtCERK1 binds the
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Fig. 2 Overview of signalling mediated by plant pattern recognition receptors (PRRs). PRRs on the cell surface perceive pathogen-associated molecular
patterns (PAMPs) anddamage-associatedmolecular patterns (DAMPs), triggering immune response. PAMPs (like flg22, elf18, chitin andLPS) are perceivedby
PRRs (such as FLAGELLIN SENSING 2 (FLS2), ELOGATION FACTOR-TU RECEPTOR (EFR), CHITIN ELICITOR RECEPTOR KINASE1 (CERK1), LYSINMOTIF
RECEPTOR KINASE 5 (LYK5), LECTIN S-DOMAIN-1 RECEPTOR-LIKE KINASE (LORE)). DAMPs (such as Peps, PIPs, ATP and OGs) are perceived by PRRs
(such as PEP RECEPTORS (PEPRs), RECEPTOR-LIKE KINASE 7 (RLK7), DOESNOTRESPONDTONUCLEOTIDES 1 (DORN1),WALL-ASSOCIATEDKINASES
(WAKs)). Ligand-induced homo- or hetero-dimerization of extracellular domains of PRRs results in dimerization of their intracellular kinase domains and trans-
phosphorylation, leading to downstream RLCKs and MPKs phosphorylation, production of reactive oxygen species (ROS), Ca2+ influx, and transcriptional
reprogramming. As receptor-like proteins (RLPs) lack an intracellular kinase domain, regulatory or co-receptor kinases such as BRASSINOSTEROID
INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) and SUPPRESSOR OF BIR1-1 (SOBIR1) are required for their activation.
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chitin oligomer (NAG)5 (Fig. 3d). This binding feature is also
found in OsCEBiP (Liu et al., 2016). The NAG units adopt an
extended conformation closely matching the surface topology of
the groove in the loop region of LysM2 and have a rotation along
the chain. Specific recognition of the N-acetyl moieties in NAGs
allows AtCERK1 to distinguish chitin from glucose. The
mechanism of chitin recognition by AtCERK1 is highly consis-
tent with OsCEBiP, revealing a conserved chitin perception by
plant LysM-PRRs (Liu et al., 2016). Biochemical data show that
(NAG)8 can induce AtCERK1 homo-dimerization, suggesting a
ligand-induced homo-dimerization model on activation of
AtCERK1 (Liu et al., 2012). Interestingly, AtLYK5, which is
required for chitin-induced AtCERK1 activation, is able to bind
chitin with a higher affinity (Cao et al., 2014). Thus, it is also
possible that chitin binding to AtLYK5 leads to its interaction
with AtCERK1 and activating AtCERK1 kinase activity (Cao
et al., 2014). Similarly, in rice chitin binding to RLP OsCEBiP
induces the association of OsCEBiP with OsCERK1 and initiates
the OsCERK1 kinase activity (Shimizu et al., 2010). In addition,
AtCERK1 engages with the LysM-type RLPs, LYM1 and LYM3,
which enables perception of peptidoglycans (PGNs), triggering
immunity to bacterial pathogens (Willmann et al., 2011).

2. Recognition of DAMPs by PRRs

DAMPs are endogenous danger signals that can be recognized by
PPRs triggering PTI (Boller & Felix, 2009; Choi&Klessig, 2016).
Unlike PAMPs, DAMPs are host-derived molecular patterns that
are released from pathogen-infected cells or wounded tissue
(Rubartelli & Lotze, 2007). In plants,many endogenousmolecules
including peptide signals, nucleotides and oligogalacturonides can
serve asDAMPs (Fig. 2).When plants are confrontedwith biotic or
abiotic stress, polypeptide precursor proteins can be proteolytically
processed and released to the extracellular space to act as DAMP
signals. Examples for this type of DAMP include systemin (Pearce
et al., 1991); plant elicitor peptides (Peps), which is recognized by
pep receptors (PEPRs) (Huffaker et al., 2006; Yamaguchi et al.,
2006; Yamaguchi et al., 2010); and PAMP-induced secreted
peptides (PIPs), which is recognized by receptor-like kinase 7
(RLK7) (Hou et al., 2014). Nucleotides can reach the extracellular
space, serving as a DAMP signal. One such type of DAMP is the
nucleotide ATP that is recognized by the RLK Does Not Respond
to Nucleotides 1 (DORN1) (Choi et al., 2014). Degradation of
plant cell wall releases oligogalacturonide (OGs) DAMPs, which
are recognized byWAKs (Kohorn et al., 2009; Brutus et al., 2010).
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Peps are a critical DAMP signal in plants. Immune response and
tissue damage induce ProPepmaturation throughCa2+-dependent
metacaspase processing (Hander et al., 2019) (Fig. 3e). Mature
Peps are 23 amino acids long and are released from the intracellular
to the extracellular space (Pearce et al., 2008). The LRR-RLKs
PEPR1/2 in Arabidopsis are receptors of Peps (Yamaguchi et al.,
2006; Yamaguchi et al., 2010). Like FLS2LRR, PEPR1LRR assumes
a superhelical solenoid structure (Tang et al., 2015) (Fig. 3f). The
receptor-bound Pep1 adopts an extended conformation, interact-
ing with the inner surface of PEPR1LRR. The C-terminal 15
residues of Pep1 are well-defined in the complex structure, whereas
the N-terminal eight residues are largely disordered, supporting an
essential role of the C-terminal fragment in immune signalling.
Consistently, modelling and biochemical data indicate that the C-
terminal region of Pep1 mediates PEPR1 interaction with its co-
receptor BAK1 (Tang et al., 2015). Although Pep1 and flg22 are
sequence-unrelated, recognition by their cognate receptors is
considerably conserved. Notably, a similar recognition mechanism
is also demonstrated in some development-related peptide signals
such as CLE41, IDA and RGF1 (Santiago et al., 2016; Song et al.,
2016, 2017; Zhang et al., 2016), suggesting a conserved peptide
recognition mechanism of LRR-RLKs (Fig 3f). Interestingly, the
C-terminal side of these peptides have a conserved conformation
and interact with the N-terminal loop region of the co-receptor
BAK1 or other SOMATIC EMBRYOGENESIS RECEPTOR
KINASES (SERKs), offering a possible explanation of how SERKs
act as co-receptors in multiple signalling pathways. Furthermore,
structural comparison revealed that two arginine residues (termed
RxR motif, x represents any amino acid) are conserved in a
subfamily of LRR-RLKs and interact with the C-terminal free
carboxyl group of Pep1,CLE41 and IDA.Bymixing small peptides
with purified RxR-containing receptors, followed by size-exclusion
chromatography and mass spectrometry identification, the RxR
motif led to identification of RGF peptide receptors (Song et al.,
2016).

PAMPs and DAMPs recognition by PRRs is crucial for plant
innate immunity. Deciphering the molecular mechanism of
specific recognition provides a better understanding of plant
immune strategies and also offers possibilities to improve the plant
immune system. Thus far, only the mechanisms of peptide and
chitin-like molecule recognition by PRRs are revealed. It is still
unclear how the other PAMPs or DAMPs, such as lipopolysac-
charides and nucleotides, are specifically recognized byPRRs.More
structural studies for specific recognition of PAMPs andDAMPs by
plant PRRs are needed in the future.

3. Activation of PRRs by co-receptor kinases

PRRs depend on their kinase domain for signal transduction (Oh
et al., 2011; Han et al., 2014). Dimerization is likely the common
activation mode of single transmembrane receptors as demon-
strated for receptor tyrosine kinases in animals and further
confirmed for receptor-like kinases in plants (Lemmon &
Schlessinger, 2010; Han et al., 2014). Ligand-induced homo- or
hetero-dimerization of extracellular domains results in dimeriza-
tion of the intracellular kinase domains of the receptors, leading to

their trans-phosphorylation. In contrast with ligand-induced
homo-dimerization of receptor tyrosine kinases and TLRs in
animals, most of the well-characterized LRR-RLKs are activated
through hetero-dimerization with the SERK family members as a
co-receptor (Ma et al., 2016) (Fig. 2). As RLP proteins lack an
intracellular kinase domain, regulatory or co-receptor kinases are
required for their activation (Fig. 2). For example, the LysM-RLP
OsCEBiP was suggested to be activated by the LysM-RLK
OsCERK1 (Shimizu et al., 2010; Hayafune et al., 2014). Multiple
LRR-RLPs have been shown to be associated with the LRR-RLK
SUPPRESSOR OF BIR1-1 (SOBIR1), forming a bimolecular
equivalent of a genuine RLK (Gust & Felix, 2014; Liebrand et al.,
2014). Ligand binding to an RLP–SOBIR1 complex further
recruits SERK co-receptors for activation, as shown for many RLPs
such as RLP23 in Arabidopsis (Albert et al., 2015) and Cf-4 in
tomato (Postma et al., 2016). Hetero-dimerization between two
RLKs or an RLK and an RLP is mainly mediated by homotypic
ECD interaction, though the reason for this remains unclear. RLPs
as membrane receptors not only sense PAMPs but also recognize
effectors to trigger immunity (Jamieson et al., 2018). Unfortu-
nately, structural information of ligand recognition by an RLP and
activation of the RLP-SOBIR1 complexes is unavailable.

4. Negative regulation of PRR signalling

Excessive activation of immune responses is damaging to hosts.
Plants therefore have evolved many strategies to maintain immune
homeostasis (Trujillo & Shirasu, 2010; Couto & Zipfel, 2016).
Here, we will discuss recent structural studies showing how PRR
signalling is negatively regulated (Ma et al., 2017; Hohmann et al.,
2018). Arabidopsis BAK1-INTERACTING RECEPTOR-LIKE
KINASE 1 (BIR1) is an LRR-RLK that was initially identified as a
negative regulator of cell death. Loss-of-function of BIR1 results in
activation of cell death and immune responses (Gao et al., 2009).
There are four BIRs (BIR1–BIR4) in Arabidopsis and they all
interact with BAK1 (Halter et al., 2014a). Both BIR2 and BIR3
were shown to have a critical role in negatively regulating flg22-
induced responses by controlling BAK1-FLS2 complex formation
in a ligand-dependent manner (Halter et al., 2014b) (Fig. 3g).
Biochemical and structural data indicated that the extracellular
LRR domains are sufficient for the interaction between BIR1 and
BAK1 (Ma et al., 2017). The crystal structure of BIR1LRR-
BAK1LRR shows that BIR1 and BAK1 form a 1 : 1 heterodimer
(Ma et al., 2017) (Fig. 3h). The BIR1LRR-BAK1LRR interaction is
mediated by both polar and hydrophobic contacts. A lateral side of
BIR1LRR packs against the C-terminal inner surface and the C-
terminal capping domain of BAK1LRR. The N-terminal loop
region of BIR1LRR makes extensive contacts with BAK1LRR. W71
in the N-terminal loop region of BIR1 forms extensive hydropho-
bic interactions with BAK1.Mutation of this residue disrupted the
BIR1LRR-BAK1LRR interaction in vitro, whereas BIR1 mutant
W71A transgenic plants displayed a seeding lethality, phenocopy-
ing the bir1-1mutant (Ma et al., 2017). These data indicate that the
BIR1LRR-BAK1LRR interaction is important for the negative
regulation of immunity, suggesting that signals relieving BIR1-
mediated inhibition of plant immunity may exist in the apoplast.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2020)

www.newphytologist.com

New
Phytologist Tansley review Review 5



Structural comparison between BIR1LRR-BAK1LRR and FLS2LRR-
flg22-BAK1LRR shows that the C-terminal portion of FLS2LRR,
which interacts with BAK1LRR, completely overlaps with BIR1LRR.
This structural observation suggests that BIR1 sequesters BAK1
from FLS2 and negatively impacts flg22-induced immune
responses (Fig. 3h). Interestingly, in vitro data showed that
formation of the BIR1LRR-BAK1LRR complex is pH-dependent
with lower pHpromoting and higher pH impairing the interaction
of the two proteins (Fig. 3g). This suggests that pH might have a
role in regulating the BIR1-sequestered BAK1 and consequently
affecting PRR-mediated immunity (Ma et al., 2017).

III. Guarding the inner defence line – NLRs detect and
defend from inside the cell

1. Domain structural organization of NLRs

The second major class of immune receptors encodes proteins
belonging to the NLR family. Unlike PRRs that expose their
ligand-recognizing domain into the apoplast, NLR proteins
typically perceive pathogen invasion in the cytoplasm (Dangl
et al., 2013). Plant NLR proteins have a three-partite domain
structure, harbouring a C-terminal LRR domain, a middle
nucleotide-binding oligomerization domain (NOD) and either
an N-terminal coiled-coil (CC) domain or a TIR homology
domain. Many animal NLRs, such as the apoptosome-forming
Apaf-1 and the inflammasome-forming NAIP2/NLRC4 share this
three-partite domain organization. However, there is a certain
degree of variability, for instance,when the LRRdomain is replaced
by a twin WD40 domain (Apaf-1) or the N-terminal domain by a
triple BIR domain (NAIP2) or a CARD domain (Apaf-1 and
NLRC4). Also in plants there exists a remarkable degree of
variation in theNLR domain-composition ofNLR proteins (Jacob
et al., 2013). For example, some NLRs harbour additional
integrated domains (ID), while others lack the LRR domain or
both the LRR and NOD domain (TN and TX, respectively). The
TIR or CC domain can also be replaced by other domains in NLRs
of bryophytes.ManyNLRs oligomerize upon activation but vary in
the subunit count. For instance, the animal NAIP2/NLRC4
inflammasome forms an undecamer (stoichiometry 1 : 10 between
NAIP2 and NLRC4) (Zhang et al., 2015); the plant ZAR1
resistosome forms a pentamer (Wang et al., 2019a); the animal
Apaf-1 apoptosome forms a heptamer (Zhou et al., 2015); and the
animal Dark/CED4 apoptosome form octamers (Qi et al., 2010;
Cheng et al., 2017).

2. The LRRdomain – effector binding and stabilization of the
NLR resting state

Since the LRR domain is the most polymorphic part of plant NLR
proteins it is very adaptable to evolving novel binding capacity
required in effector recognition. The high polymorphism likely
enables the LRR domain to acquire novel binding specificities,
making it a key feature of the animal and plant innate immune
system, and even of the adaptive immune system of jawless
vertebrates (Han et al., 2008; Boehm et al., 2012). As observed in

other LRR-containing proteins, the LRR domain of NLRs such as
Arabidopsis ZAR1 and animal NLRC4 form a curved solenoid
consisting of a variable number of parallel b-sheets (Hu et al., 2013;
Wang et al., 2019b). The LRR domain of plant NLRs has been
implicated in direct and indirect binding of pathogen-derived
effectors. Many studies showed that the LRR domain is involved in
binding to a host protein (guardee) and that modifications of the
guardee by pathogen effectors lead toNLR activation (guardmodel)
(Jones & Dangl, 2006). Structural evidence for indirect effector
recognition comes from the study of ZAR1, showing that the LRR
domain mediates ZAR1 recognition of effector AvrAC from
Xanthomonas campestris pv armoraciae through the host proteins
RKS1 and PBL2 (Wang et al., 2019b). Some studies support direct
interaction between the LRR domain of plant NLRs and an effector
(Dodds et al., 2006; J. Chen et al., 2017; Saur et al., 2019) but
biochemical demonstration of this has proven more difficult.
Therefore, direct binding of LRRs to their cognate effectors was
speculated to be highly transient and therefore hard to capture
in vitro (Saur et al., 2019). Aside from ligand perception, the LRR
domain of plant NLRs plays an important part in maintaining their
resting state by sequestering them in a monomeric state as
demonstrated in Arabidopsis ZAR1 (Wang et al., 2019b) and
mouse NLRC4 (Hu et al., 2013). This function might not be
conserved, because autoinhibition of rabbit NOD2 for example
might not rely on the LRR domain (Maekawa et al., 2016).

3. Janus-faced with prion-like character – the NOD module
switches between two striking conformations

The NOD module is the signature domain that classifies NLRs as
AAA+ATPases of the signal transduction ATPases within numerous
domains (STAND) protein family (Iyer et al., 2004; Leipe et al.,
2004).TheNODmodule canbe further divided into thenucleotide-
binding domain (NBD), helical domain 1 (HD1) andwingedhelical
domain (WHD) (Fig. 4a). TheNODmodule binds ADP/dADP in
itsmonomeric inactive state andATP/dATP in the oligomeric active
state (Maekawa et al., 2016; Wang et al., 2019a,b). Mutations in
these conserved regions are generally categorized as auto-activating or
inactivating based on whether they stabilize ATP-binding or entirely
inhibit nucleotide-binding (Tameling et al., 2006; van Ooijen et al.,
2008; Williams et al., 2011; Sukarta et al., 2016; Tran et al., 2017).
Ligand perception promotes exchange of ADP/dADP with ATP/
dATP and thereby activation of NLRs. NLRs are therefore believed
to function as a nucleotide switch. Despite being AAA+ ATPases, it
remains debatable whether NLRs have ATPase activity in their fully
activated state (Tameling et al., 2002; Reubold et al., 2009;Williams
et al., 2011). NLRs harbour the catalytic elements of an ATPase, but
they differ structurally from a canonical AAA+ ATPase, as their
catalytic components are formed by an individual monomer rather
than by two neighbouring units of the oligomer seen in canonical
AAA+ ATPases (Wendler et al., 2012; Tafoya et al., 2018).

In addition to nucleotide-binding, the NOD module is
primarily responsible for oligomerization of an NLR protein in
response to ligand perception. As indicated by a number of
structures, asymmetric packing of this module results in the
formation of a wheel-like structure with a varying number of
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protomers (Qi et al., 2010; Hu et al., 2015; Zhang et al., 2015;
Zhou et al., 2015; Cheng et al., 2017; Wang et al., 2019a). These
studies further show that all three subdomains of the NOD are
involved in NLR oligomerization.

4. Tokill or not to kill? –ahelix 1ofCCdomains canwork like
a jack knife

CC-NLRs (CNLs) are the dominant class of NLRs in monocots
but they also exist in most phyla ranging from eudicots to
bryophytes (Jacob et al., 2013). The CC domain of CNLs forms a

four a-helix bundle in its inactive state (Hao et al., 2013; Casey
et al., 2016;Wang et al., 2019b). Fold-plasticity of the CC domain
is triggered by its activation and a-helix 1 flips out in a jack-knife-
like fashion (Wang et al., 2019a,b) (Fig. 4b). This mechanistic
model is mainly based on the structural model of inactive and
activated ZAR1 and it could even be argued that the crystal
structures of Sr33 and Rx, but also of MLA10 are reminiscent of
this inactive and active conformation, respectively. ZAR1 carries a
MADA motif, which together with the related MADA-like motif
defines a CNL subclass that represents ~20% of all CNLs. The CC
domain ofMLA10, Sr33, Sr50 (MADA-like) and ZAR1 (MADA)
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Fig. 4 Structuralmechanisms of plant nucleotide-binding leucine-rich repeat receptor (NLR) activation. (a)Nucleotide-binding oligomerization domain (NOD)
module conformational change in ZAR1 (left) and NLRC4 (right) upon activation. NOD consists of NBD (cyan), WHD (yellow) and HD1 (magenta). During
activation,WHDshows adramatic flipping in relation toNBDandHD1. (b) (upper panel)CCdomainof inactive of Sr33 (green) andZAR1 (brown)have striking
structural similarity. (lower panel) Fold-plasticity of ZAR1 CC domain during activation. a-helix 1 flips out and contributes to funnel-formation in oligomer.
Duringactivation,a-helix 4 incorporates additionalC-terminal aminoacids thatwere formerlydisordered. (c) TIRdomainsof plantRPS4,RRS1,RPP1 (left), and
animal MAL (right). RPS4-RRS1 TIR forms heterodimers in the crystal (green and cyan). Homodimer of RPP1 TIR (yellow and red) and shares interaction
interfacewithRPS4-RRS1heterodimer.MALTIRfilamenthighlighting shared interfacewithRPS4-RRS1andRPP1-RPP1 (magenta-green). In thefilamentnew
interfaces are found (magenta-yellow, green-purple). (d) Molecular mechanism of indirect effector-trigged ZAR1 activation. Different domains are indicated
with different colours. RKS1 (yellow) and PBL2-UMP (green) are plant proteins that mediate ZAR1 activation. Going through a transitional complex of ZAR1,
RKS1, and PBL2-UMP, five protomers form a wheel-like resistosome. The five a-helices 1 form a funnel-shaped feature that might insert into the membrane
forming a pore. (e)Molecularmechanismof flagellin-triggedNAIP-NLRC4 activation. Flagellin (yellow) binds toNAIP5 (green) and induces oligomerization of
10NLRC4(cyan) subunits.NAIP5-flagellin functions to induceanucleatedpolymerizationofNLRC4,amechanismthatmightbemirroredbypairedplantNLRs.
(f) NLR oligomers have different subunit count. Shown are heptameric Apaf1 apoptosome (left), undecameric NLRC4-NAIP inflammasome (middle), and
pentameric ZAR1 resistosome (right). Structural model of NLRC4 ignoring NAIP and assuming perfect radial symmetry. All three oligomers also share the
continued interaction with their activation-inducing agents, CytC (apoptosome), flagellin (inflammasome), and modified host RKS1-PBL2UMP (resistosome).
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(Maekawa et al., 2011; Casey et al., 2016; Wang et al., 2019a) and
even a truncateda-helix 1 ofNRC4 (MADA) are able to induce cell
death (Adachi et al., 2019), indicating that some CC domains are
autonomous signalling modules of CNLs. This further shows that
the MADA-like motif is a functional equivalent of the MADA
motif in inducing cell death when exchanged between full-length
CNLs (Adachi et al., 2019). In the ZAR1 pentameric structure, the
exposed N-terminal a-helices 1 feature a funnel-shaped structure
that has been suggested to form a pore in the plasma membrane
(Wang et al., 2019a). Indeed, pore-forming activity has been shown
for theCCdomains ofNLRunrelated proteins including theHeLo
domain of fungal Het-S (Seuring et al., 2012) and animal MLKLs
(Su et al., 2014). However, whether the CC domain cell death
function follows the same mechanism in the remaining 80% of
non-MADA CNLs awaits further investigation.

Alongside initiating downstream signalling, the CC domains
of RPS5, Rx and LOV1 are also physically involved in indirect
effector recognition (Ade et al., 2007; Sacco et al., 2007; Lorang
et al., 2012). Whether such guardee-binding stabilizes the
inactive conformation of these CNLs, as was shown for RPS5
(Qi et al., 2012) and the exact conformational changes that occur
at the CC-guardee module during activation, needs to be
addressed in future.

5. To kill or not to kill? – the TIR domain deadly mechanism
remains elusive

Like the CC domain, expression of truncated TIR in plants leads to
cell death possibly through a different mechanism (Swiderski et al.,
2009; Bernoux et al., 2011; Nishimura et al., 2017). The TIR
domain has a flavodoxin-like fold and consists of a central five-
stranded parallel b-sheet (Nanson et al., 2019), as shown by single
plant TIR structures of TNLs (see Table 1; Fig. 4c). Two recent
studies showed that the TIR domain of TNLs possesses NADase
activity, which is required for TNL-mediated cell death and
immune responses (Horsefield et al., 2019; L. Wan et al., 2019).
NADase activity is only displayed at high protein concentration,
which argues in favour of oligomerization as an activator of catalytic
activity (Horsefield et al., 2019). The animal TIR domain protein
from MAL was found to oligomerize into filament–like structures
(Ve et al., 2017) (Fig. 4c). Interestingly, MAL TIR domains can
also form cofilaments with TIR domains of other proteins like
TLR4 and MyD88 (Ve et al., 2017). Filament formation is a
common theme in the innate immune system of animals and can be
found among non-NLR TIR-containing proteins (Nanson et al.,
2019). However, there has been no evidence for filament-forming
activity of the TIR domain of TNLs. Nonetheless, structural
studies suggest that homo-dimerization (Bernoux et al., 2011) or
even hetero-dimerization (Williams et al., 2014) mediated by TIR
domains is important for TNL activation. The dimerization
interfaces vary in the solved structures, suggesting that different
interfaces may exist in oligomeric TNLs.

Like CC domains, also TIR domains might be physically
involved in pathogen recognition (Burch-Smith&Dinesh-Kumar,
2007). It will be interesting to investigate whether and how TIR
domain oligomerization and NADase activity can be maintained

after activation despite partial occupancy of such TIR domains by
(indirect) effector binding.

6. Fused with their guard – atypical NLR proteins have
integrated additional domains

Besides the canonical three-partite domain organization, some
plant NLRs harbour additional or alternative domains. NLRs
carrying additional domains are generally called ID-NLRs, in
which the ID typically follows the LRR domain but can also occur
at the very N-terminus or before the NOD. According to the
integrated decoy model, IDs present another method of effector
recognition (Grund et al., 2019). However, indirect effector
binding is also possible, where an ID binds to a host guardee
(Mucyn et al., 2006). Direct binding of an ID to an effector is
supported by a crystal structure of the HMA domain of Pikm-1 in
complex with AVR-PikA (Maqbool et al., 2015; De la Concepcion
et al., 2018). Thus, most IDs confer sensor capacity to anNLR and
can have diverse identity including HMA, protein kinase and
WRKY (Le Roux et al., 2015; Sarris et al., 2016). Interestingly,
manyCC-type ID-NLRs lost the cell death inducingMADAmotif
in their CC domains, suggesting that they may need other partners
for cell death (Adachi et al., 2019). Indeed, these NLRs work in
pairs with an ID-less executor NLR containing a conserved
MADA/MADA-like motif (Adachi et al., 2019). Alongside
‘monogamous’ NLR pairing, ‘polygamous’ pairing also exists,
here diverged sensorNLRs converge on a single executorNLR (e.g.
NRC4) (Adachi et al., 2019). Current models on the activation of
paired NLRs hypothesize that effector-induced conformational
change in the sensor NLR is perceived by the genetically and
physically linked executor NLR, forming a signalling-competent
oligomer of the two NLRs (Cesari et al., 2013, 2014; Huh et al.,
2017)

Another class of atypical NLRs carry a CC domain homologous
to RPW8/HR family and are called CCR-NLRs (Barragan et al.,
2019). NRG1s and ADR1-Ls are the most comprehensively
researchedCCR-NLRs (Collier et al., 2011). AlthoughNRG1s and
ADR1-Ls lack aMADA/MADA-likemotif, overexpression of their
CC domains is sufficient to induce cell death in tobacco (Moffett
et al., 2002; Adachi et al., 2019).

7. Truncated NLRs – lack LRR domains or LRR-NOD
modules

There is another class of atypical TIR-NLRs that lack either the
LRR domain (TN) or both the NOD and LRR domain (TX). TN
and TX proteins are widely present in plants, accounting for more
than 25% of the NLRs in Arabidopsis (Meyers et al., 2002, 2003).
TNandTXmay have evolved independently from canonical TNLs
(Meyers et al., 2002, 2003; Nandety et al., 2013). Nonetheless, the
structure of AtTIR1 is strikingly similar to those of TIR domains of
TNLs (Chan et al., 2010). Furthermore, like the TIR domain of
TNLs, overexpression of TX proteins in plants induces cell death
and activates defence responses (Nandety et al., 2013), suggesting
that TX and TNL signalling may be convergent for induction of
plant immunity. TNs and TXs were proposed to function as
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Table 1 PDB codes.

Protein Species PDB code Method Comment

NLR full length

ZAR1, RKS1, PBL2 Thale cress 6J5T (Wang et al., 2019a) CryoEM First plant NLR resistosome
structure

ZAR1, RKS1, PBL2 Thale cress 6J5U, 6J5W (Wang et al.,
2019b)

Cryo EM Plant NLR in inhibition state

NLR single domains

NRC1 NOD domain Tomato 6S2P (Steele et al., 2019) X-ray crystallography Only plant NOD domain
structure besides ZAR1
NOD

Sr33 CC domain Wheat 2NCG (Casey et al., 2016) X-ray crystallography Helix bundles of CC domains
in inactive conformations

MLA10 CC domain Barley 5T1Y, 3QFL (Maekawa
et al., 2011)

X-ray crystallography

Rx0 CC domain Potato 4M70 (Hao et al., 2013) X-ray crystallography
L6-TIR Flax 3OZI (Bernoux et al., 2011) X-ray crystallography Suggest two interfaces for

TIR-TIR interaction
RPS4-TIR Thale cress 4C6R (Williams et al., 2014) X-ray crystallography NLR TIR structure
RRS1-TIR Thale cress 4C6S (Williams et al., 2014) X-ray crystallography
RPP1-TIR Thale cress 5TEB (Zhang et al., 2017) X-ray crystallography
TIR domain of SNC1 Thale cress 5TEC (Zhang et al., 2017) X-ray crystallography
TIR domain of RPV1 Grapevine 5KU7 (Williams et al., 2016) X-ray crystallography
AtTIR TN10 Thale cress 3JRN (Chan et al., 2010) X-ray crystallography
RUN1-TIR in complex with NADP Grapevine 6O0W (Horsefield et al.,

2019)
X-ray crystallography Structural evidence for TIRas

enzyme binding substrate
RPS4-TIR and RRS1-TIR Thale cress 4C6T (Williams et al., 2014) X-ray crystallography Functional TIR dimer
Heavy metal domain of Pikp1 Rice 5A6P (Maqbool et al., 2015) X-ray crystallography NLR ID domain
RGA5A-HMA Rice 5ZNE (Guo et al., 2018) X-ray crystallography
AVR-PikD and HMA of Pikp1 Rice 6FU9 (De la Concepcion

et al., 2018)
X-ray crystallography Direct interaction of effector

and NLR ID domain
AVR-PikE and HMA of Pikp1 Rice 6FUB (De la Concepcion

et al., 2018)
X-ray crystallography

AVR-PikA and HMA of Pikp1 Rice 6FUD (De la Concepcion
et al., 2018)

X-ray crystallography

Animal structural models for NLRs

NLRC4 Mouse 4KXF (Hu et al., 2013) X-ray crystallography Autoinhibition mechanism
of NLR proteins

NAIP5-Flagellin Mouse 5YUD (Yang et al., 2018) X-ray crystallography Ligand recognition by NLR
proteins

NLRC4-NAIP2 Mouse 3JBL (Zhang et al., 2015) Cryo EM Heteromeric oligomer of
NLR proteins

NLRC4-NAIP5 inflammasome Mouse 6B5B (Tenthorey et al.,
2017)

Cryo EM Heteromeric oligomer of
NLR proteins

NLRC4-NAIP5 Mouse 5AJ2 (Diebolder et al., 2015) Cryo EM Helical arrangement of an
NLR polymer

NOD2 Rabbit 5IRM, 5IRN (Maekawa
et al., 2016)

X-ray crystallography Autoinhibition mechanism
of NLR proteins

ASC inflammasomes Human 3J63 (Lu et al., 2014) Cryo EM Immune adaptors forming a
filament structure

ASC-CARD filament Human 6N1H (Li et al., 2018) Cryo EM
Mal filament Human 5UZB (Ve et al., 2017) Cryo EM TIR domains forming a

filament structure
PRRs

FLS2-flg22-BAK1 Thale cress 4MN8 (Sun et al., 2013) X-ray crystallography PAMP-induced heterdimeric
PRR complex

CERK1-Chitin Thale cress 4EBY, 4EBZ (Liu et al., 2012) X-ray crystallography First structural model for
PAMP recognition by plant
PRRs

OsCEBiP-Chitin Rice 5JCD (Liu et al., 2016) X-ray crystallography Conserved chitin recognition
mechanism of LysM-PRR
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adaptor proteins (Meyers et al., 2002), but evidence for this is still
lacking. Much less is known about the upstream and downstream
signalling mediated by TXs and TNs. For example, the TX protein
RBA1 likely oligomerizes and can cause cell death in response to the
effector HopBA1, but direct binding of RBA1 to HopBA1 could
not be demonstrated (Nishimura et al., 2017). Also truncated
forms of CNLs exist as exemplified by Arabidopsis RPW8 that
might be able to directly induce cell death (Li et al., 2020).

8. NLR-mediated immunity

NLRs in slumber – an intracellular minefield for effectors Plant
NLRs differ greatly in their subcellular localization. Specific
NLRs localize in the cytoplasm or the nucleus, or they attach to
guarded host proteins (which themselves have a specific
localization), to the plasma membrane or to membranes of
the endomembrane system. For example, the tomato CNL Tm-
22, the Arabidopsis CNLs RPS5, RPS2 and RPM1 all localize as
peripheral proteins to the plasma membrane (T. Chen et al.,
2017; Noman et al., 2019). While RPS2 and RPS5 carry
N-terminal palmitoylation and acylation signals, respectively (Qi
et al., 2012), RPM1 is held at the membrane by its prenylated
or palmitoylated guardee RIN4 (Kim et al., 2005; Gao et al.,
2011). Not only in CNLs, but also in TNLs membrane
localization often seems to be encoded in the most extreme N-
terminus. For example, GFP fusions of the first 30 amino acids
of L6 and M are sufficient for targeting the Golgi apparatus
membrane and the tonoplast, respectively (Takemoto et al.,

2012). Other NLRs like MLA10 or RPS4 are imported into the
nucleus as well as into the cytoplasm and their activation leads
to separable downstream effects (Heidrich et al., 2011; Bai et al.,
2012). For example, activation of nuclear RPS4 leads to
transcriptional reprogramming through EDS1, while activation
of the cytoplasmic RPS4/RRS1-paired NLR complex leads to
cell death (Heidrich et al., 2011; Huh et al., 2017). ZAR1 and
the potato CNL R3a are in the cytoplasm before activation and
change localization upon activation to the plasma membrane or
endosomes, respectively (Engelhardt et al., 2012; Wang et al.,
2019a). How activated NLRs are delivered to new locations in
the cell and the function they execute there will be exciting
topics of future structural and functional studies.

NLRs waking up – conformational changes and oligomeriza-
tion A striking similarity between NLRs is that they switch from
anADP-bound ‘off’ state to an oligomerizedATP-bound ‘on’ state.
Structural studies of ZAR1 provided insight into the switching
mechanism of NLRs (Fig. 4d). Binding of the AvrAC-uridylated
PBL2 stabilizes a loop region of RKS1, which in turn allosterically
induces a conformational change in the NBD of ZAR1, ADP
release and subsequent priming of ZAR1. Owing to much higher
concentrations ofATP thanADP in cells (Chandra et al., 2006), the
primed ZAR1 preferentially binds ATP, triggering further con-
formational changes in WHD together with the C-terminal LRR
domain. ATP in this process functions to stabilize the active
conformation of ZAR1. The sequential conformational changes
lead to pentamerization of the ZAR1-RKS1-PBL2 complex,

Table 1 (Continued)

Protein Species PDB code Method Comment

PEPR1-pep1 Thale cress 5GR8 (Tang et al., 2015) X-ray crystallography First structural model for
DAMP recognition by plant
PRRs

TLR5-flagellin Salmonella 3V47 (Yoon et al., 2012) X-ray crystallography Flagellin recognition by
animal PRR

Effectors
AvrPtoB-Bak1 Pseudomonas

syringae pv tomato
3TL8 (Cheng et al., 2011) X-ray crystallography Multi-functional effector

that inhibits kinase domains
of plant PRRs

AvrPtoB-Pto Pseudomonas
syringae pv tomato

3HGK (Dong et al., 2009) X-ray crystallography

AvrPtoB Pseudomonas

syringae pv tomato
3HGL, 2FD4 (Janjusevic
et al., 2006; Dong et al.,
2009)

X-ray crystallography

Ecp6-chitin Passalora fulva 4B8V, 4B9H (Sanchez-Vallet
et al., 2013)

X-ray crystallography Effectors bound to chitin

CfAvr4 Cladosporium
fulvum

6BN0 (Hurlburt et al., 2018) X-ray crystallography

GlcN-NLPPya Phytium

aphanidermatum

5NNW, 5NO9 (Lenarcic
et al., 2017)

X-ray crystallography Possibly pore-forming
effector bound to PM-
localized GlcN

PthXo1-dsDNA Xanthomonas oryzae

pv oryzae
3UGM (Mak et al., 2012) X-ray crystallography TALEN-effector bound to

DNA
dHax3-dsDNA Xanthomonas

campestris pv
armoraciae

3V6T, 4GJR (Deng et al.,
2012)

X-ray crystallography TALEN-effector bound to
DNA

PDB, protein data bank; PRRs, pattern recognition receptor; NLR, nucleotide-binding leucine-rich repeat receptor.
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forming theZAR1 resistosome.Assembly of the heptamericApaf-1
apoptosome likely follows a similar mechanism. Here, the binding
of cytochrome c to the WD40 domains of Apaf-1 triggers a
conformational change in the NBD domain (Zhou et al., 2015).
Similar to ZAR1 and Apaf-1, activation of NLRC4 also involves
structural re-organization of its C-terminal segment (Hu et al.,
2015; Zhang et al., 2015; Wang et al., 2019a,b). Notably, the
positioning of the three subdomains of WHD of these three NLRs
is highly conserved (Fig. 4a). However, ATP/dATP-binding
appears dispensable for the assembly of theNLRC4 inflammasome
as evident in structural and functional data (Hu et al., 2015; Zhang
et al., 2015; Jubic et al., 2019). One reason for this can be that
NLRC4 is self-activated, an activity induced by its paired NLRs
NAIP2/5 (Fig. 4d). Interestingly, mutations of the P-loop have no
effect on the functionality of sensorNLRs such as RGA5 andRRS1
(Cesari et al., 2014; Williams et al., 2014), but only on the
corresponding executor NLRs RGA4 and RPS4. Thus, the
activation mechanism of some plant sensor and helper NLRs
may be analogous to mammal NLRC4 and NAIP2/5.

Sticks and stones – an assortment of NLR oligomer shapes Most
NLR oligomers studied so far have circular shapes, for example the
ZAR1 resistosome, the Apaf-1/CED4/DARK apoptosomes (Qi
et al., 2010; Zhou et al., 2015; Cheng et al., 2017) and the NAIP2/
5-NLRC4 inflammasome (Hu et al., 2015; Zhang et al., 2015;
Yang et al., 2018) (Fig. 4f). Although varying in the number of
protomers, these oligomers have their perceptive parts (WD40,
LRR) facing outwards. Formation of the ring-like structures is
predominantly mediated by the NOD module of these NLRs.
Located at the centre of the circular structures are their N-terminal
signalling domains (CARD, CC). While the CARDs of apopto-
somes and inflammasomes act as adaptors to recruit downstream
components, the oligomerized CC domain of the ZAR1 resisto-
some functions differently as discussed earlier. Although oligomer-
ization is likely a general mechanism of NLR activation, whether
other plant NLRs can form resistosome-like structures is an
interesting question for future research. The NAIP2/5-NLRC4
inflammasomes appear to be an attractive model for plant paired
NLRs like RRS1/RPS4 and RGA4/RGA5 or even sensor NLRs
together with the helper NLRs NRCs. However, there has been no
evidence that they can form hetero-oligomers similar to the
inflammasomes.

Oligomeric NLRs can also assume other shapes than ring-like
structures. For example, the prototype NLR protein MalT from
bacteria forms curved oligomers with linear symmetry upon ligand-
binding (Larquet et al., 2004). After activation,MalT functions as a
transcription factor directly binding toDNA (Larquet et al., 2004).
It could be speculated that the curved oligomers of MalT are
structurally more suitable for this function. Given that DNA-
binding activity was reported for some plant NLRs (Fenyk et al.,
2015; Fenyk et al., 2016), it will be interesting to explore whether
these NLRs can form similar structures during transcriptional
reprogramming. In addition to the ring-like structures, helical
polymers were also shown for NLRC4 inflammasomes (Diebolder
et al., 2015; Li et al., 2018). However, the biological significance of
these structures remains unclear.

NLR signalling Compared with NLR signalling in animals,
signalling mediated by plant NLRs is much less well understood
(Fig. 5). Generally, NLR activation leads to HR cell death at the
infection site and is correlated with events like calcium influx and
the generation of ROS and NO in different cellular compartments
(Hammond-Kosack & Jones, 1996; Torres et al., 2006). Distal
parts of the plant are informed through mobile signals and react
with systemic acquired resistance (SAR), which is associated with
massive transcriptional reprogramming (Fu & Dong, 2013; Shine
et al., 2019). Although HR cell death is a hallmark output of NLR
signalling, RLP signalling can also lead to HR (Peng et al., 2018).
Generally, HR signalling trough CNLs follows a different route
than that of TNLs.

The TNL route of signalling predominantly converges on
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). The
EDS1-SAG101-NRG1 axis is a signalling module promoting
TNL-dependent local cell death, while the EDS1-PAD4-ADR1
axis promotes distal SAR (Peart et al., 2005; Qi et al., 2018; Castel
et al., 2019; Lapin et al., 2019) (Fig. 5). Although the link between
local TNL signalling, and distal activation of EDS1-PAD4-ADR1
modules is yet to be identified, it is likely that small molecules
created by TNL NADase activity are of importance.

The CNL route of signalling does not involve EDS1 and PAD4.
Instead, some CNLs might trigger cell death more directly by
forming a pore in themembrane (Wang et al., 2019a,b). It is not yet
clear whether the ion leakage of CNL oligomers of the ZAR1-type
(MADA/MADA-like CNLs) is strong enough to directly cause cell
death. It seems more plausible that ion traffic through the ZAR1
pore is somehow amplified to reach a certain signalling threshold,
for example by calcium channels. Alternatively, calcium-dependent
procaspases like AtMC4 might be activated in response (Pitsili
et al., 2020). The involvement of AtMC4 is an attractive
hypothesis. It makes a link to SAR signalling by the cleavage of
the precursor protein PROPEP1, which releases the danger peptide
Pep1 to trigger defence signalling similar to SAR (Huang et al.,
2018; Hander et al., 2019). It still remains a challenge to know
whether other CNLs can form ZAR1 resistosome-like structures
for signalling, and how they induce local HR and distal SAR.

The identification of the ZAR1 resistosome as a potential channel
or a pore also illustrates the convergence of plant and animal NLR
signalling. However, multiple adapter proteins are involved in the
recruitment of the pore-forming protein Gasdermin D by the
NLRC4 inflammasomes (Shi et al., 2017; Ruan et al., 2018). Thus,
the spatial separation between oligomerization of NLRC4 and pore-
formation allows branching of the signalling cascade, likely rendering
it possible to uncouple NLRC4-mediated cell death from immune
responses (Shi et al., 2017). Like in animals, it is possible that the non-
MADA CNLs of plants rely on the recruitment of CNLs or other
proteins with pore-forming capacity.

IV. Invaders and their armoury–negative regulationof
plant immunity by pathogen effectors

Pathogens secrete effectors to perturb the plant immune system
through various mechanisms. One common strategy is to impede
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PTI, as exemplified by AvrPto and AvrPtoB from Pseudomonas
syringae, which directly target and inhibit PRRs and their co-
receptors. AvrPtoB can also function as anE3 ligase tomediate PRR
degradation (Janjusevic et al., 2006; Gohre et al., 2008; Shan et al.,
2008; Zeng et al., 2012). As a hub of PTI signalling, MAPKs are
targeted by the P. syringae effectors HopAI1 and HopF2 (Zhang

et al., 2007; Wang et al., 2010). Similarly, AvrAC interferes with
PTI by acting as a uridylyl transferase on the activation loop of
Arabidopsis BIK1 and RIPK (Feng et al., 2012). Interestingly,
BIK1 is proteolytically cleaved by P. syringae effector AvrPphB,
demonstrating that these PTI hubs are targeted by various
mechanisms (Zhang et al., 2010). Some pathogens modify host
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components and suppress PTI. For instance, AvrRpt2 from
P. syringae proteolytically cleaves the host protein RIN4 and the
cleavage product is a hyperactive suppressor of PTI signalling (Afzal
et al., 2011). Another strategy used by pathogens to compete with
the host immune system is to sequester their PAMPs from host
PRRs as demonstrated for the chitin scavenger ECP6 from
Cladosporium fulvum (de Jonge et al., 2010).

1. Warfare in the apoplast – shielding PAMPs and piercing
membranes

The early competition between plant and pathogen occurs in the
apoplast. To neutralize chitin-induced immunity, pathogenic
fungi secrete effectors, for example ECP6 of fungal tomato
pathogen C. fulvum, to sequester the fungal cell-wall-derived
PAMP from being perceived by the PRRs. The effector ECP6 has
three LysM domains as observed in the PRRs AtCERK1 and
OsCEBIP. However, ECP6 binds chitin with higher affinity than
these two PRRs (de Jonge et al., 2010; Sanchez-Vallet et al., 2013),
allowing ECP6 to outcompete PRRs for chitin-binding. The
overall structure of ECP6 is tightly packed, with LysM1 separated

by a long and flexible linker from the compact dimer formed by
LysM2 and LysM3 (Fig. 6a) (Sanchez-Vallet et al., 2013). In
contrast with AtCERK1 and OsCEBiP (Fig. 3d), LysM1 and
LysM3 of Ecp6 cooperate to compose a single chitin-binding
groove (Fig. 6a). Unlike the largely exposed AtCERK1- and
OsCEBiP-bound chitin oligomer, the four GlcNAc units of a
chitin oligomer are nearly completely buried in the chitin-binding
groove, explaining why ECP6 has an ultra-high affinity for chitin.
The remaining singular LysM2also possesses a lower chitin binding
activity and is able to perturb the chitin-triggered immunity, but
the precise mechanism remains elusive.

Chitinase plays an important role in plant defence by cleaving
chitin and releasing chitin fragments as a PAMP to induce innate
immunity (Pusztahelyi, 2018). Accordingly, some fungal effectors
protect the cell wall component from being degraded as demon-
strated for the effector CfAvr4 from C. fulvum (van Esse et al.,
2007). The crystal structure ofCfAvr4 bound to chitin revealed that
two CfAvr4 monomers form a three-dimensional molecular
sandwich that laminates two (GlcNAc)6 molecules within the
dimeric assembly (Fig. 6b) (Hurlburt et al., 2018). Thus, the
effector may inhibit chitinase-mediated hydrolysis of chitin by
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shielding the substrate. However, whether the chitin microfibril in
the fungal cell wall is shielded by CfAvr4, as soluble chitin is,
remains unknown.

Necrosis and ethylene-inducing peptide 1-like proteins (NLPs)
function as specific cytolytic toxins for dicots plants but not
monocots. The crystal structure of NLPPya complexed with the
glucosamine group (GlcN) of plant plasma membrane glycosyli-
nositol phosphorylceramides (GIPCs), which specifically binds
NLPs to prevent NLP mediated cytolysis (Lenarcic et al., 2017),
provides an elegant explanation to the toxic specificity. The crystal
structure of NLP from the oomycete Pythium aphanidermatum
(NLPPya) revealed that it exhibits a central b-sandwich decorated
with a-helices and loops (Lenarcic et al., 2017). Remarkably, NLPs
have structural homology with the pore-forming actinoporins of
sea anemone (Ottmann et al., 2009; Rojko et al., 2016). In the
NLPPya-GlcN complex, a GlcN hexose moiety binds to the
elongated crevice between loop 2 and loop 3 of the NLP (Fig. 6c).
Interestingly, most of monocot GIPCs carry three-hexose units in
their sugar heads rather than two as in eudicot GIPCs. Binding of
NLPs to three-hexose head GIPC likely leads to a more distant
positioning of the loop3 to the plantmembrane, thus preventing an
NLP from inserting into the plasma membrane for cytolysis
(Lenarcic et al., 2017).

2. Warfare in the cytoplasm – from Swiss knives to killing the
messenger

AvrPtoB from P. syringae is a modular protein containing three
discrete domains that confer different activities.On the one hand, it
directly targets PRRs or their co-receptors, inhibiting their kinase
activity and thereby suppressing PTI (Shan et al., 2008; Zeng et al.,
2012). One of the PRRs targeted by AvrPtoB is BAK1 (Shan et al.,
2008). The central region of AvrPtoB (residues 250–359,
AvrPtoB250-359) forms a four-helix bundle primarily interacting
with the activation segment of BAK1 (Cheng et al., 2011) (Fig. 6d).
This structural observation suggests that AvrPtoB250-359 inhibits
BAK1 kinase activity, as further confirmed by in vitro biochemical
and cell-based assays. On the other hand, AvrPtoB250-359 also
interacts with the FEN kinase in tomato but functions to activate
ETI mediated by the CNL Prf (Janjusevic et al., 2006). Fen was
therefore proposed to be a molecular mimic, or decoy, of host
virulence targets for activation of ETI (Rosebrock et al., 2007).
Thus, AvrPtoB appears to be a living fossil unveiling the arms race
between plants and pathogens, an idea further strengthened by the
data discussed later.

The N-terminal region of AvrPtoB (residues 1–307) target the
kinase domains of AtCERK1 and the CERK1-like PRR Bti9 from
tomato (Zeng et al., 2012). The fragment of AvrPtoB containing
residues 121–205 (AvrPtoB121-205) was mapped to directly inhibit
these two PRRs. Unexpectedly, this fragment adopts a fold similar
to that of AvrPtoB250-359 despite their limited sequence homology
(Dong et al., 2009; Cheng et al., 2011), suggesting that these two
domains might have arisen by tandem duplication of a progenitor
kinase-interacting domain. AvrPtoB121-205 also interacts with Pto
to activate Prf-mediatedETI (Xiao et al., 2007). Like FEN,Ptomay
also function as a decoy of virulence targets of AvrPtoB to activate

ETI (Rosebrock et al., 2007; Mathieu et al., 2014). Despite their
conserved structures, AvrPtoB121-205 and AvrPtoB250-359 assume
different orientations when interacting with Pto and BAK1,
respectively (Fig. 6d). Nonetheless, both regions interact with the
conserved activation segment to inhibit the kinase activity of Pto
and BAK1 (Dong et al., 2009; Cheng et al., 2011). AtCERK1 and
Bti9may be similarly targeted by AvrPtoB121-205 despite the lack of
structural information. Interestingly, FEN does not recognize
AvrPtoB121-205, though it shares 80% sequence identity with Pto
(Jia et al., 1997;Dong et al., 2009). Structural comparison between
Pto-AvrPtoB121-205 and BAK1-AvrPtoB250-359 suggests that the
specificity determinants for interaction with the effectors are
located in the non-conserved regions flanking the activation
segment.

Structural study revealed the biochemical function of the
C-terminal region of AvrPtoB (AvrPtoB436-553). The structure of
AvrPtoB436-553 remarkably resembles those of eukaryotic U-box
and RING-finger E3 ligases (Janjusevic et al., 2006) (Fig. 6d).
Indeed, biochemical and functional data support the C-terminal
region as an E3 ligase. Later on, multiple targets of the E3 ligase
were identified. In addition to inhibiting the kinase activity of FLS2
and AtCERK1, AvrPtoB also degrades these two PRRs through its
E3 ligase domain, abolishing flagellin- and chitin-induced immu-
nity (Gohre et al., 2008; Gimenez-Ibanez et al., 2009). Similarly,
the tomato kinase Fen (Ntoukakis et al., 2009), Arabidopsis
EXO70B1 (W. Wang et al., 2019) and NPR1 (H. Chen et al.,
2017) were also shown to be degraded by AvrPtoB to suppress
immune signalling.

Salicylic acid (SA) is a master phytohormone in plant immunity.
It is not surprising that some pathogens have evolved effectors to
impede SA signalling. One such pathogen effector is
CHORISMATE MUTASE 1 (CMU1) from the fungus Ustilago
maydis, the causative agent of corn smut. Cmu1 catalyses
conversion of chorismate into prephenate instead of phenyl-
propanoid (Djamei et al., 2011), a key intermediate in SA
biosynthesis pathway. Thus, CMU1 blocks SA-induced immune
responses by depleting chorismate and consequently lowering the
concentrations of SA in plant cells. CMU1 forms a homodimer
with each monomer harbouring nine a-helices and an active site
(Bange & Altegoer, 2019; Han et al., 2019). In contrast with the
housekeeping chorismate mutases in maize (Denance et al., 2013),
Cmu1 is insensitive to regulation by the amino acid tryptophan or
tyrosine. Cmu1 has an additional a-helix and an extended loop
after the second a-helix, blocking the site where these two amino
acids bind. To counter against Cmu1 inhibition of SA signalling,
maize evolved a kiwellin protein termed ZmKWL1, which
specifically interacts with Cmu1 and thereby inhibit its metabolic
activity (Han et al., 2019). ZmKWL1 is positioned in close
proximity to the active site of Cmu1, thus blocking substrates from
accessing the active site of Cmu1 to inhibit its chorismate mutase
activity.

3. Warfare in the nucleus – I TALE you a different story

Another group of pathogen effector is imported into plant nuclei
after injection, suggesting that these effectors may modulate the
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normal cellular activities via transcriptional activation and inter-
ference with host nuclear processes. One group of such effectors are
transcription activator-like effector (TALE), which usually con-
tains an N-terminal translocation signal, a central DNA-binding
domain that specifies the TALE target sequence, a C-terminal
nuclear localization signal, and a C-terminal acidic activation
domain responsible for gene modulation (Boch & Bonas, 2010).
The DNA-binding domain is usually composed of repeats of 33 to
35 hyper-conserved amino acids, while residues at position 12 and
13 (repeat variable diresidue, RVD) are hyper-variable and
responsible for matching with specific double-stranded DNA
(dsDNA) bases. The structures of the Xanthomonas oryzae TAL
effector PthXo1 and an artificially engineered TALE protein
dHax3 bound by dsDNA are nearly identical, with two helical
bundles packing together to wrap around the bound dsDNA
(Fig. 6g,h) (Deng et al., 2012; Mak et al., 2012; Denance et al.,
2013). In the protein-dsDNA complexes, each TAL repeat is
connected by the two RVD containing loop, with the first one
stabilizing the backbone through hydrogen bonds and the second
one making base-specific contacts with the dsDNA. These
interactions allow the TALE proteins to adopt a super-helical
structure tracking along the dsDNA. The selective activation of
individual gene expression not only extend the understanding of
effector pathogenicity, but also made TALEs one of the gene
editing tools.

V. Future directions

During the past years, structural and biochemical studies
provided significant insight into the signalling mechanisms of
plant immunity. However, structural biologists are still faced
with many challenging yet important questions. One of these is
to understand how RLPs as a PRR and their shared co-receptor
BAK1 are activated in response to ligand recognition. It is still
not well understood why RLP-PRRs with varied sizes and
sequences have the same co-receptor for signalling. Structures of
full-length PRRs in signalling-competent complexes will be
instrumental in understanding how ligands induce activation of
the kinase domains of PRRs. Studies of NLPPya and the E3
domain of AvrPtoB highlight the fact that structural biology can
be used as a tool for specifying the biochemical function of a
protein. The biochemical activities of several pathogen effectors
were similarly demonstrated (Chosed et al., 2007; Zhang et al.,
2010). Structural elucidations of pathogen effectors can therefore
facilitate our understanding of how they interact with plants by
revealing their biochemical identities. Compared to PTI, less is
known about the biochemical mechanisms of NLR-mediated
ETI signalling. Oligomerization of plant NLRs is believed to be
important for their function, as supported by studies of ZAR1
and some other NLRs. However, structural and biochemical
studies are necessary to demonstrate whether this generally holds
true with plant NLRs. If so, do they form structures similar to
that of the ZAR1 resistosome? Given the high diversity of NLR
activation in plants, it would not be surprising that variations
exist in their oligomerized status. Another question concerning
oligomerization is why ATP/dATP is required for some but not

for other NLRs. Is it possible for some plant NLRs to utilize
other nucleotides rather than ATP/dATP to stabilize their active
conformation for oligomerization? Defining the biochemical
activity of the ZAR1 resistosome and other oligomerized plant
NLRs will be crucial for the dissection of ETI signalling. In this
aspect, oligomerized TNLs can function as a NADase as
demonstrated for the TIR domain proteins, but it remains
unknown whether and why oligomerization is important for this
activity. More importantly, it will be of interest to understand
how the enzymatic activity is associated with the activation of
EDS1-SAG101/EDS1-PAD4 and the downstream helper NLRs
ADR1-Ls and NRGs. Although the ligand-receptor model on
NLR recognition of effectors was proposed many years ago,
reconstitution of a direct NLR-effector interaction is still
technically challenging, partially due to the difficulty in purifi-
cation of NLR proteins, which is a critical step toward structural
determination of them. With the advances in cryo-EM (Bai
et al., 2015), it can be anticipated that more structures of NLR-
containing complexes will be resolved, which would reveal more
exciting information on the acting mechanisms of NLR proteins.
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