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Abstract

In order to successfully reproduce, plants must sense changes in their environment and

flower at the correct time. Many plants utilize day length and vernalization, a mechanism for

verifying that winter has occurred, to determine when to flower. Our study used available

temperature and day length data from different climates to provide a general understanding

how this information processing of environmental signals could have evolved in plants. For

climates where temperature fluctuation correlations decayed exponentially, a simple sto-

chastic model characterizing vernalization was able to reconstruct the switch-like behavior

of the core flowering regulatory genes. For these and other climates, artificial neural net-

works were used to predict flowering gene expression patterns. For temperate plants, long-

term cold temperature and short-term day length measurements were sufficient to produce

robust flowering time decisions from the neural networks. Additionally, evolutionary simula-

tions on neural networks confirmed that the combined signal of temperature and day length

achieved the highest fitness relative to neural networks with access to only one of those

inputs. We suggest that winter temperature memory is a well-adapted strategy for plants’

detection of seasonal changes, and absolute day length is useful for the subsequent trigger-

ing of flowering.

Introduction

Plants must make correct flowering time decisions in a noisy environment in order to success-

fully reproduce. As key environmental signals, day length and temperature are processed by

plants’ genetic networks for detecting seasonal changes. The core genes and their interplays

have been well understood in the model plant, Arabidopsis thaliana [1, 2], as shown in Fig 1.

The gene FLOWERING LOCUS T (FT) merges signals from both day length and temperature,

and its encoded protein eventually induces the flowering [3]. The expression of FT genes is

promoted by the expression of the gene CONSTANS (CO), whose gene products are produced

about 12 hours after dawn and quickly degrade in the dark [1, 3]. Thus, the condition that day

length is long enough to produce stable CO proteins is necessary for initiating the flowering of

the so-called long-day plants [1, 3, 4]. In particular, for winter annuals of Arabidopsis thaliana
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[5, 6], vernalization is required to cease expression of FlOWERING LOCUS C (FLC), the inhib-

itor of FT. Vernalization involves the exposure of plants to a prolonged period of cold temper-

ature, which induces histone modifications on the epigenetic level for silencing FLC [7–9]. The

repressed FLC allows FT to be expressed under long days. Similarly, in perennial Arabis alpina,

the orthologs of FLC, PERPETUAL FLOWERING 1 (PEP1), downregulates the orthologs of

FT, AaFT1 and AaFT3, and needs to be silenced by vernalization in order for the perennials

to flower in the right time [6]. Moreover, for perennial Arabidopsis halleri, Nagano et.al [10]

demonstrated the role of cooperation between the oscillations of temperature and day length

in adaptation to seasonal changes. Thus, the integration of signals from temperature and day

length is crucial for both annual and perennial plants to make flowering decisions. Despite the

qualitative understanding of the genetic regulation of flowering time, it is unclear from an

information point of view why plants have evolved vernalization from fluctuating winter tem-

peratures and how it relates to day length in flowering decisions.

Many theoretical studies have contributed to the understanding of the vernalization mecha-

nism. It was shown to be an inheritable and stable epigenetic switch for the expression of FLC
[11–15]. Dodd et.al [15] developed a stochastic model for Schizosaccharomyces pombe showing

that gene expressions bistability can be established by accumulating histone modifications,

which acted as an epigenetic memory. The work of Angel et al. [9] extended their approach by

incorporating histone modifications of FLC in Arabidopsis thaliana and investigating how the

different epigenetic states could be controlled. Several studies have reported that FLC repres-

sion was cell-autonomous and that cold temperature memory was encoded by the fraction of

cells with repressed FLC [8, 9, 16, 17]. Due to the positive feedbacks that lead to adding more

of the same type of histone modifications, a particular cell would mostly have one type of mod-

ifications at FLC. To understand how plants utilize fluctuating temperature in vernalization,

Fig 1. Flowering time regulation in Arabidopsis thaliana. In Arabidopsis Thaliana, long days promote the

expression of FLOWERING LOCUS T (FT). The vernalization process also promotes its expression by turning-off its

repressor FLOWERING LOCUS C (FLC).

https://doi.org/10.1371/journal.pone.0239417.g001
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Antoniou-Kourounioti et al. developed a model by incorporating thermosensing on multiple

timescales and suggested that the sensing was broadly distributed in plants [18].

Investigations of flowering time regulation in Arabidopsis exploited mathematical modeling

and experiments. Wilczeck et al. developed a model to incorporate the impacts of temperature,

day length, and vernalization on flowering initialization in different accessions of Arabidopsis
thaliana [5, 19]. Their analyses yielded a photothermal measure of plant states which was able

to accurately predict flowering time of Arabidopsis Thaliana field plants. Another dynamic

model described interplays between FT and FLC in Arabidopsis halleri to study impacts of tem-

perature on flowering decisions [20]. It was able to reproduce the observed seasonal expression

changes and estimate the climate change-induced reduction of flowering season. Hepworth

et al. reported that the spikes of temperatures above 15˚C may have deleterious consequences

for vernalization [21]. These studies have significantly refined our understanding of the effects

of temperature and day length on Arabidopsis flowering, but the mechanisms employed by a

variety of plants in various environments cannot be described by the same processes [23]. A

method leading to a more general understanding of climate information processing would

promote understanding of flowering-time decision making for a greater variety of plants.

Our study focuses on the extraction of available information from climate data (tempera-

ture and day length) and its usefulness in making precise flowering decisions. We first estab-

lished a simple stochastic model for vernalization in perennials, which showed that the

idealized expression patterns of FT or FLC can be reconstructed for temperate climates due to

exponentially decaying correlation in temperature fluctuations. The stochastic model does not

apply to other climates where temperature fluctuations correlate differently. To relax this

restriction on climate properties, we employed artificial neural networks to learn idealized

gene expression patterns from several climate datasets. We showed that, in temperate city

Cologne, the neural network models trained solely on temperature memory roughly recon-

structed the idealized expression patterns of FLC. However day length data was required to

resolve the danger of incorrect flowering time decisions based on a local optimum in Septem-

ber rather than April. Further, to simulate the evolutionary adaptation to environmental con-

ditions, individual neural networks were used in a simulation of evolution for plants with

access to temperature, day length, or both. Simulations with different mutation rates and pop-

ulation sizes showed a persistent selective advantage for the neural networks with access to the

combined temperature and day length data.

Materials and methods

Datasets

The temperature and day length data of several climate regions (Table 1) were retrieved from

NOAA [24] and PTAFF [25]. Temperatures were recorded as the daily maximum and mini-

mum, and data from different stations are considered distinct. The mean of daily maximum

and minimum is regarded as the daily average temperature. To account for the effect of noise

in daily light quantity [26–28] on the day length, Gaussian noise was used to corrupt the day

length data and simulate real variations due to weather conditions.

Table 1. Selected regions and cities for collecting climate data.

Cold Regions Obvious Seasonal Changes Less Seasonal Changes

Oslo Cologne Kahului

Auckland San Francisco

https://doi.org/10.1371/journal.pone.0239417.t001
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Master equation and Hermite polynomial

Chemical master equations are used to model the probabilistic states of chemical reactions

over time [29–31]. Following the previous work of modeling birth-death process [32], for the

reaction �Ð
b

l
B, the probability p of having n molecules of B can be described as Eq (1) for

time t.

@tpðn; tÞ ¼ bðpðn � 1; tÞ � pðn; tÞÞ � lnpðn; tÞ þ lðnþ 1Þpðnþ 1; tÞ ð1Þ

In equilibrium, p(n) is Poisson distributed (see Supplement Section 3.1 in S1 File). In our

study, a modified form of this model was used with B representing the cellular state of having

active modifications at the FLC locus. Different from the basic model, the production rate is

adapted to be temperature dependent. Since the temperature recordings are time series, the

temperature dependence of the model make it able to integrate temperature properties. This

modification necessitates the use of Hermite polynomials [33, 34] to solve the master equation

(see Supplement Section 3.1 in S1 File).

The original daily average temperature from different regions have been used for the analyt-

ical deductions based on the master equation.

Neural network models and data features

Artificial neural networks was used as a complementary method to extract information from

temperature and day length. A feedforward neural network is comprised of a number of neu-

rons to transmit information in only one direction, from the input data through hidden neu-

rons to output neurons. Each neuron can be regarded as either a computing node or a

decision maker which outputs a decision by weighing and transforming the information it

receives from upstream neurons. A detailed formal description of neural networks is in Sup-

plementary section 4 in S1 File.

Fully connected feed-forward neural networks with one hidden layer were used to classify

different time windows in each year and regress the idealized expression patterns of FT and

FLC in Arabidopsis perennials.

For the classification, each year was shrank to 360 days for simplicity. For example, it will

be divided into 12 windows corresponding to 12 months if the window size is set to 30 days.

The neural networks then need to determine which month the input window belongs to, given

30 days of temperatures within the window. The daily temperatures were summarized by daily

maximum and minimum.

For the regression of gene expressions, the target can be idealized patterns of FT or FLC.

Specifically, the expression pattern of FT is characterized by a normal distribution p(t), peak-

ing in April every year as shown in Fig 2, where t denotes certain day of a year. And the FLC is

featured as an upside-down normal distribution centered at middle of March [35], which is 15

days earlier than the peak of FT [20]. To learn the expression patterns from the climate data,

the input features consist of daily temperature maxima and minima and day lengths of the past

days. That is, the expression level on a specific day is determined by the plant’s memory of

temperature and day length of the past days.

The Neural Networks Toolbox in Matlab [36] was used to build the classification and

regression models.

Evolution of individual neural networks

Plant selection pressure and evolution were simulated using neural networks to represent indi-

vidual plants, with weights of individual networks analogous to plant genotypes (see details in
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Supplement Section 5 in S1 File). A group (population) of networks trained on distinct subsets

of the same climate data were used to evaluate the flowering decision-making strategies of

plants based on climate information. There were three populations in each simulation, each

with access to only temperature, only day length, or both. Each generation of individuals was

trained on randomly selected subsets of climate data from Cologne. At the end of each repro-

ductive cycle, fitness was measured by the Kullbach-Leibler distance between target and neural

network-predicted gene expression level, and mutations (in the form of neural network weight

perturbations) were introduced at specific rates which varied across simulations for the next

generation. The simulation procedure is summarized in S8 Fig in S1 File. It was implemented

in Python 2.7, and the Theano package [37] was used to optimize individual networks. The

results of each simulation were reported as the proportion of individuals from each of the

three populations throughout the entire simulation, which would be greater for neural net-

works with higher fitness leading to better reproductive odds.

Results

Expression patterns reproduced from modeling key reactions

Plants need to avoid the disastrous effect of flowering at the wrong time as a reaction to sudden

and sustained temperature fluctuations. We hypothesize that long-cold based vernalization is

not only for capturing the winter cold temperature but also for canceling this effect and sens-

ing the winter robustly. The vernalization machinery can be interpreted that plants have

evolved biochemical processes to capture and accumulate the information in cold temperature

that is a reliable signal in temperate regions. Inspired by the machinery, we modeled the pro-

cess of having n cells with active histone modifications, which is driven by real temperature to

reconstruct the idealized expression patterns of FLC/FT of Arabidopsis perennials.

In the following, we denoted daily average temperature as T(t) for day t 2 [1, � � �, 365]. To

investigate the seasonal changes and fluctuations in real temperature, it is decomposed into

three parts as TðtÞ ¼ �T þ hTðtÞi þ dTðtÞ with �T denoting the average yearly temperature,

hT(t)i the seasonal temperature changes, and δT(t) the remaining temperature fluctuations.

The temperature dynamics comprising of hT(t)i and δT(t) are shown in Fig 3 for Cologne. The

Fourier fitting of hT(t) was detailed Supplementary section 2 in S1 File. The temperature fluc-

tuation on a specific day typically correlates with its neighboring days. And the longer periods

of unseasonally cold or warm temperatures may confuse the plants more than the shorter peri-

ods. Therefore, we analyzed the autocorrelation times, which quantify the correlation length in

a time series, in the fluctuations of temperature from five different regions (Table 1). The

Fig 2. Idealized gene expressions. The idealized expression levels of FLC and FT for Arabidopsis perennials in the

northern hemisphere.

https://doi.org/10.1371/journal.pone.0239417.g002
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autocorrelation times in Cologne, Auckland and Oslo decay exponentially, and decay faster in

Auckland than in Cologne and Oslo (Supplementary Section 2 in S1 File, S3a, S3b Fig in S1

File). This is consistent with experimental observations that some plants in Auckland required

only two weeks of vernalization [38], while vernalization requires typically around 6 weeks in

Cologne [5] and even three months in North Sweden [39]. Having verified the exponential

decay of temperature fluctuations, without loss of generality, we used the climate data of

Cologne for the successive modeling, where the autocorrelation in averaged yearly-cycle tem-

perature fluctuations decays exponentially with an approximate half life of 4 days (Fig 4b). To

further evaluate the exponential fitting of the fluctuation decay, the bootstraping of tempera-

ture data with block length of 50 showed that the fitted coefficients of the exponential function

Fig 3. Temperature dynamics in Cologne. The temperature dynamics consist of the seasonal changes and the daily temperature

fluctuations, which were fitted by a second order Fourier series. The dynamical data were obtained by averaging 93 years of temperatures

in temperate city Cologne. The first day in the plot was January 1st.

https://doi.org/10.1371/journal.pone.0239417.g003
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indeed located in the bootstrapped confidence interval(further details in Supplementary Sec-

tion 2 in S1 File).

To investigate the effect of temperature dynamics on vernalization, we modeled the number

of cells which have their histones all with active modifications as a death-birth process. The

assumption of having all active modifications in a cell relied on the fact that the fraction of his-

tones in one state affects modifications in their own vicinity, which makes histone modifica-

tion a relative fast process. As shown in Fig 4A, the probability of having n active cells at time t
is denoted as p(n, t):

@tpðn; tÞ ¼ bTðtÞðpðn � 1; tÞ � pðn; tÞÞ � lnpðn; tÞ þ lðnþ 1Þpðnþ 1; tÞ; ð2Þ

with βT(t) the temperature dependent production rate and λ the temperature-independent

degradation rate. Due to the fact that the autocorrelation time of temperature fluctuations

decays exponentially, the stochastic differential equation has a concise form of solution given

by

pðn; tÞ ¼ ea� b a
n

n!
Hn

bþ 2a2

2a

� �

: ð3Þ

with a≔ b2s2

2lðlþt� 1Þ
and b ¼ �Tb

l
þ bDðl; tÞ. Here, we denoted by Dðl; tÞ ¼

R t
� 1
hTðtÞie� lðt� t0Þdt0

the expected memorized temperature. The parameters σ2 and τ denote the averaged variance

and autocorrelation time of temperature fluctuations respectively. Hm(�) denotes the mth Her-

mite polynomial. The parameterization for a, b, and α is detailed in the S1 File.

Fig 4. Reconstruct the switch behavior of FLC. (a): The vernalization was simplified as birth-death process for actively

modified cells. n stands for the number of active cells, the production rate βT(t) depends on the temperature T(t) and λ is

the degradation rate. Solving the model led to the distribution p(n, t) which is parameterized by β and λ; (b): For the data

from Cologne, the autocorrelation in daily temperature decays exponentially, the bootstrapping was performed by using

block length of 50 days; (c): The probability p(n, t) distribution over number of active cells (in total 60 cells in the

simulation) on 1st January and 15th April; (d): The switching FLC expression behavior was constructed from the

probabilities of having less than 30 active cells over two years, with green areas for potential flowering seasons.

https://doi.org/10.1371/journal.pone.0239417.g004
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To reconstruct the expression patterns, we need to define an objective for getting the opti-

mal reaction rates based on the probability p(n, t). We reduced the number of cells for compu-

tational feasibility and assumed that Nmax = 60 cells were available and Nc = 30 cells were

sufficient to turn off the expression of FLC on the plant level. The objective function of flower-

ing probability in time window between March and June and non-flowering probability

between July and next February can be defined as

Fðb; lÞ ¼
Z Jun

Mar

XNmax

n¼Nc

pðn; tÞdt þ
Z Feb

Jul

XNc � 1

n¼0

pðn; tÞdt ð4Þ

Maximizing this objective is equivalent to maximizing the probability of flowering (i.e. having

at least Nc active cells) in flowering season and non-flowering (i.e. having at most Nc active

cells) during non-flowering season. The optimal reaction rates which maximized the objective

led to time dependent optimal probability sequences which were capable of reproducing the

idealized expression pattern of FLC that is switched off during flowering season. In Fig 4C,

two different time points are chosen to show the typical probability distributions in flowering

and non-flowering seasons. On 1st January, the most density (99.2%) of the probability located

below the critical value of 30 cells, whereas on 15th April most density (92.2%) was distributed

above the critical value. As shown in Fig 4D that the probability of having at least Nc active

cells at different time of a yearly cycle preserved the idealized expression pattern of FLC,

which was active during the non-flowering season and then gradually switched off in flowering

season.

Under the condition that the autocorrelation length of temperature fluctuations in time

decays exponentially, it was shown that the idealized expression patterns of FLC could be

rebuilt from the stochastic model. By relaxing the autocorrelation condition, we would also

like to investigate the effect of climate information on flowering time decision using machine

learning, which is typically not requiring great details of the system thus can be more broadly

applied to different climates.

Long-term cold temperature and short-term day lengths together as a

robust signal

To make flowering time decisions upon environmental cues such as temperatures and day

lengths, plants are essentially information processing units for extracting critical environmen-

tal signals in order to survive by making the correct transit to the reproductive state. We

employed artificial neural networks to approximate the information processing in plants by

predicting the flowering season. The networks were trained to learn the idealized expression

pattern of FLC from temperatures and day length from different climates, and the results relied

on climate data in Cologne. The approach was broken into two tasks: to determine the effective

memory length of determining season and to reconstruct the idealized expression pattern of

FLC of Arabidopsis perennials.

The first step was to determine the number of days in the past that the plants need to

remember in order to recognize the current season. It was cast into a classification problem as

for given consecutive L days of temperature, the neural networks learned to classify which

time window the temperature belonged to. The results showed that for Cologne, the prediction

achieved MCC score of 0.964 for temperature memory of over 40 days. And increasing the

memory length did not increase the score accordingly. The result was consistent with experi-

mental result [5]. This reflected an expected tradeoff between sufficiently long memory to

reduce the fluctuations of temperature signal (variance) and the loss of season specific
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averaged temperature if the memory stretches beyond the length of the season (bias). The

detailed classification result can be found in S1 File.

Having determined the effective memory length, we were able to construct the input fea-

tures of the neural networks for fitting the idealized expression pattern of FLC of Arabidopsis
perennials. With only the temperature memory fed into the neural networks, the trained

neural network was tested on three years of temperature as shown in Fig 5. Local minima

arose in autumn as shown in Fig 6A, which resulted from the temperature similarity between

spring and autumn. Especially for the second test year, a clear local minimum was observed

Fig 5. Three years of test temperatures. Three years of temperatures were used to test the regression models. In the second year, one

can observe a long temperature spike starts from late October to early November. This is in correspondence with a predicted local

minimum in Fig 6.

https://doi.org/10.1371/journal.pone.0239417.g005

Fig 6. Predicted expression patterns by neural networks. (a): Cologne, fitting result of the idealized FLC expressions using 42 days of

temperature as the input features gave a local minimum in September due to similarity between spring and autumn; (b): Cologne, fitting

result from 42 days of temperature and 2 days of day lengths with eliminated local minima; (c): Kahului, fitting result from 42 days of

temperatures; (d): Kahului, fitting result from 42 days of temperature and 2 days of day lengths.

https://doi.org/10.1371/journal.pone.0239417.g006
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in October, which has a correspondence to the high temperature spike in October as indi-

cated in Fig 5. The local minima could potentially give a high chance of making wrong deci-

sion to flower in autumn. In order to remove the local minima and have a robust detection

of spring, two days of day-length signal were added to the input features. It can be seen from

Fig 6B that the local minima are eliminated, leading to more precise regression of the FLC
expression pattern. The precise and robust reconstruction of the FLC signal was critical for

precise flowering decisions in the right season. As a comparison, the climate data from Kahu-

lui, Hawaii was used as well to learn the FLC pattern. Fig 6C showed that the temperature

memory only features led to a high-error fitting, which probably due to both the flat seasonal

changes and the long autocorrelation in temperature fluctuations as shown in S4e Fig in S1

File. The integration of two days of day lengths increased the regression but still being noisy.

The result may provide an explanation that vernalization in natural tropical climates was not

established.

The neural networks based method was broadly applicable to different climates (the results

for other climates are shown in the S1 File), unlike the stochastic model which required more

system details and climate properties. Its fitting results from the climates data reflected that for

temperate regions, long-term temperature and short-term day length together were deployed

as a robust signal for determining the flowering transition, while for other regions, merely

temperature and day length signals were not sufficient to have a mechanism such as the inter-

play between FLC and FT.

Evolutionary simulation favors integration of temperature and day length

To investigate the possible effects of evolution on the role of temperature and day length in

achieving the idealized expression pattern of FT, we conducted simulations using neural net-

works as plants’ agents. In each simulation, three groups of virtual plants were given access to

either temperature, day length, or both. The Kullbach-Leibler Divergence (KLD) between the

fitted and idealized expression patterns was used as the fitness measure. Fitnesses were calcu-

lated for individuals from each group and normalized to the population of each generation to

have a fitness probability for each individual. Individuals then reproduced according to their

fitness probability, that is, individuals with higher fitnesses had more offspring accordingly.

Multiple offspring were possible for each individual, and offspring had access to the same

input type as their parents (temperature, day length, or both). For each reproduced generation,

a fixed number of mutations, represented by randomly selected neural network weights, were

applied to each individual. Reproduction continued until 500 cycles were simulated or until all

surviving individuals were the offspring of only one of the three groups. Each simulation was

repeated 50 times, and the proportion of offspring per group throughout the entire simulation

were tallied to estimate fixation probability.

To simulate the effects of strongly or weakly deleterious mutations, simulations were run

with various numbers of mutations per generation. To investigate the effects of population

size and genetic drift, the number of individuals per group was varied. The results of the simu-

lations are shown in Fig 7, as violin plots of group offspring proportions under different muta-

tion rates and population sizes.

The group with access to both temperature and day length generally had the most offspring,

and the group with access to day length alone had the least. The temperature-only group per-

formed somewhere between the two others. Consistent with the basic principles of genetic

drift, larger population sizes resulted in less variance in the fixation probability. Possibly due

to the small number of input variables in the neural network, the group with access to day

length alone performed notably worse as the mutation rate increased.
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Conclusion

Our study verified that the temperature and day length in temperate regions like Cologne have

the information premise for plants such as Arabidopsis to establish the epigenetic switch ver-

nalization. For different climates, the vernalization requires different memory spans due to dif-

ferent temperature seasonal properties. The memory spans depended on the autocorrelations

in temperature fluctuations, which decayed differently from climate to climate. For regions

with flat temperature dynamics like San Fransisco and Hawaii, the autocorrelations decay

slower than regions like Cologne, and have autocorrelation length above 100 days, which

might be the reason to fail the establishment of vernalization. Our stochastic model, describing

the dynamics of the number of cell with repressed FLC, was able to integrate the temperature

dynamics as well as the temperature fluctuations. For regions with exponential decays in tem-

perature fluctuation autocorrelations, the switch behavior of FLC in Arabidopsis perennials

can be reconstructed. Further, without requirements on climate properties and system details,

our machine learning approach showed that the idealized expression patterns of FLC can be

robustly reconstructed by the combination of prolonged cold and short-term day lengths (e.g.

the absolute day lengths from two consecutive days). The strategy of combining long-term

cold and short-term day length is proven to be also favored by an evolution simulation where

neural networks were regarded as the agents of plants for processing climate information.

Although in natural environments, temperate plants need to cope with other signals such as

ambient temperature using additional genes like FLM [40], it might indicate the backbone of

Fig 7. Evolution simulation. Distributions of group offspring proportions for mutation rates of 0, 0.05, and 0.2, for

group sizes of 10, 50, and 200 individuals. “B” stands for group with access to both temperature and day length, “T” for

temperature and “D” for day length.

https://doi.org/10.1371/journal.pone.0239417.g007
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flowering mechanism is that the plants utilized long-term temperature to detect seasonal

changes and used absolute day lengths to decide the eventual flowering days. The reason is

that, for temperate climates, a cold winter is guaranteed and it is easier to track the absolute

day length than the variations in day lengths which is 4min in maximum from day to day. It

could also be a good strategy for cold regions like Norway since the autocorrelation decays

similarly to Cologne, but due to lower temperature and shorter summer, the fast life cycles

such as summer annuals of Arabidopsis was adapted [5]. In this case, ambient temperature and

light intensity might play a more important role in plants’ vegetative or reproductive timing.

In tropical regions where locate the most diverse and abundant plant species on earth, more

factors have to be taken into consideration and merely temperature and day length are not suf-

ficient for flowering decision making. For instance, flowering is mostly rain-season dependent,

which might play a more critical role than the temperature and day length as they contain less

seasonal information than that of temperate regions.

By investigating flowering decision making from an information point of view, our study

suggested that, for temperate regions, cold winter memory and short term of day length can

serve as a robust strategy for plants to determine flowering season.
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