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Abstract

An improved understanding of how to manipulate the accumulation and enrichment

of mineral elements in aboveground plant tissues holds promise for future resource

efficient and sustainable crop production. The objectives of this study were to

(a) evaluate the influence of Fe regimes on mineral element concentrations and con-

tents in the maize shoot as well as their correlations, (b) examine the predictive ability

of physiological and morphological traits of individual genotypes of the IBM popula-

tion from the concentration of mineral elements, and (c) identify genetic factors

influencing the mineral element composition within and across Fe regimes. We evalu-

ated the concentration and content of 12 mineral elements in shoots of the IBM pop-

ulation grown in sufficient and deficient Fe regimes and found for almost all mineral

elements a significant (α = 0.05) genotypic variance. Across all mineral elements, the

variance of genotype*Fe regime interactions was on average even more pronounced.

High prediction abilities indicated that mineral elements are powerful predictors of

morphological and physiological traits. Furthermore, our results suggest that

ZmHMA2/3 and ZmMOT1 are major players in the natural genetic variation of Cd and

Mo concentrations and contents of maize shoots, respectively.
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1 | INTRODUCTION

A better understanding of processes and genes regulating mineral ele-

ment uptake and how to manipulate the concentrations of mineral

elements in aboveground plant tissues holds promise for future

resource-efficient and sustainable crop production (Stein et al., 2017)

as well as for bio-fortification towards alleviating global malnutrition

(http://www.harvestzinc.org/harvestplus). Studies on the composition

of plant mineral elements are referred to as ionomics (Lahner

et al., 2003). Their aim is to reveal knowledge about the networks

controlling uptake, transport, and accumulation of mineral elements.

Ionomic profiling is amenable to high-throughput phenotyping, which

when coupled with quantitative genetic approaches such as quantita-

tive trait locus (QTL) mapping or genome wide association studies

becomes a powerful tool for gene discovery (Baxter, Gustin, Settles, &

Hoekenga, 2013).

The majority of such studies has been performed in model plants

(e.g. Bentsink, Yuan, Koornneef, & Vreugdenhil, 2003; Ghandilyan

et al., 2009; Klein & Grusak, 2009; Salt, Baxter, & Lahner, 2008;

Vreugdenhil, Aarts, Koornneef, Nelissen, & Ernst, 2004; Waters &
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Grusak, 2008). Only a few studies have performed genetic analyses

of the ionome of crop plants such as bean (Blair, Astudillo, Grusak,

Graham, & Beebe, 2009), rice (Stangoulis, Huynh, Welch, Choi, &

Graham, 2007), Sorghum (Shakoor et al., 2016), or rapeseed (Bus

et al., 2014). Two studies used a quantitative genetic approach to dis-

sect the ionome of maize grains using the intermated B73 x Mo17

(IBM) population (Asaro et al., 2016; Baxter et al., 2013). Baxter

et al. (2013) described 25 QTL for grain concentrations of nine mineral

elements that were detected as significant in two or more locations

and, thus, were suggested as targets for biofortification programs. In

the study of Asaro et al. (2016), which comprised additional environ-

ments to those sampled by Baxter et al. (2013), a total of 79 QTL con-

trolling seed elemental accumulation were detected when each

environment was analysed separately. While a set of these QTL was

found in multiple environments, the majority were specific to a single

environment, illustrating the importance of genotype*environment

interactions. Similar results were obtained with segregating

populations different from IBM (Gu et al., 2015; Simi�c et al., 2012).

However, despite the important role of the mineral elements during

the vegetative development of plants, no earlier study examined the

inheritance of the shoot ionome of a C4 species.

Most previous studies examined the concentration of mineral ele-

ments. Mineral element concentrations reflect primarily the nutritional

status of a plant or tissue and provide valuable information on differ-

ences in uptake, metabolism, or allocation among genotypes as long

as biomass differences between genotypes are low. In our study, we

considered additionally mineral element contents, that is, the product

of concentration and biomass. These shoot contents reflect the cumu-

lative nutrient uptake and translocation under consideration of the

growth response.

The plant's ionomic state results from an interaction between the

genotype and the environment, where the latter is strongly influenced

by the soil (Baxter et al., 2012). However, our present knowledge of

these complex genotype*environment interactions remains sketchy

and limited in particular by the vast and discontinuous variation in

soil composition at multiple scales in nature (Stein et al., 2017). Joint

collections of both plant accessions and adjacent soil were

suggested to overcome this bottleneck (Baxter et al., 2012). Apart

from being laborious, disadvantages of such approaches are that in

most cases the experimental design does not allow to separate

genotype*environment interaction variance from error variance. Fur-

thermore, it is impossible to dissect genotype*environment interac-

tions into genotype*individual mineral element interactions.

Therefore, such studies need to be complemented by experiments

with artificial growth media, in which nutrient supplies can be con-

trolled. However, such studies are lacking so far.

Iron is one essential mineral element, required for many important

biochemical processes, including photosynthesis and respiration,

where it participates in electron transport (Marschner, 2012). There-

fore, we have chosen Fe exemplarily as the factor to be altered in a

hydroponic culture to study a specific form of genotype*environment

interaction, the genotype*Fe regime interaction, and to identify the

underlying genetic factors.

In agricultural research (Bej & Basak, 2014) and especially plant

breeding (Wallace, Rodgers-Melnick, & Buckler, 2018), a high interest

exists in exploiting biomolecular signatures to predict complex pheno-

types. Baxter et al. (2008) have demonstrated that shoot ionomic sig-

natures in one Arabidopsis thaliana genotype can be used to identify

plants that experience an environmental cue. However, to the best of

our knowledge, the accuracy of such approaches has not been

reported for segregating populations, that is, for entries that differ in

their genetic make-up. Furthermore, only few studies have evaluated

up to now the predictive ability of mineral elements to estimate geno-

typic differences in other physiological or molecular traits.

The objectives of this study were to (a) evaluate the influence of

Fe regimes on mineral element concentrations and contents in the

maize shoot as well as their correlations, (b) examine the ability of

predicting an environmental perturbation from the ionomic response

across a segregating population, (c) examine the predictive ability of

physiological and morphological traits of individual genotypes of the

IBM population from 110 the concentration of mineral elements, and

(d) identify genetic factors influencing 111 the mineral element con-

centrations or contents within and across Fe regimes.

2 | MATERIALS AND METHODS

2.1 | Plant material

The recombinant inbred lines (RIL) of the intermated B73 x Mo17

(IBM) syn4 population (Lee et al., 2002) were examined in the current

study. Due to the unavailability of seeds for the RIL MO040, MO043,

MO048, MO057, MO062, MO063, MO076, MO079, and MO344, a

total of 85 RIL were evaluated.

2.2 | Culture conditions and measured mineral
elements

Maize seeds were sterilized in a 3% NaClO solution for 3 min and

then treated with 60�C hot water for 5 min (Benke et al., 2014). After-

wards, seeds were placed between two filter paper sheets moistened

with saturated CaSO4 solution for germination in the dark at room

temperature. After 6 days, the germinated seeds were transplanted to

a continuously aerated nutrient solution with element concentrations

as described by von Wiren, Marschner, and Römheld (1996). The

plants were supplied with 100 μM Fe(III)-EDTA for 7 days. From day

14–28, plants were supplied with 300 (Fe sufficient) (Urbany

et al., 2013) or 10 (Fe deficient) (Shi et al., 2018) μM Fe(III)-EDTA. The

nutrient solution was renewed every third day. Plants were cultivated

from day 7 to day 28 in a growth chamber at a relative humidity of

60%, a light intensity of 170 μmol m−2 s−1 in the leaf canopy, and a

day-night temperature regime of 16 hr/24�C and 8 hr/22�C, respec-

tively. Four plants of each RIL were grown in one shaded 5 L pot. Two

separate pots were used for the two examined Fe concentrations

(T = 2). All pots were arranged in a growth chamber following a
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split-plot design, where the two parental inbreds were included as

controls. The entire experiment was replicated R = 3 times. For each

RIL, the shoot of the four plants from one pot were pooled so that

each RIL was represented by one sample for each of the three repli-

cates in each of the two Fe regimes. Afterwards, the entire sample was

ground and the concentrations of 12 mineral elements (Figure 1) were

measured using inductively coupled plasma optical emission spectrom-

etry (ICP-OES, iCAP 6,400, Thermo Fisher) according to Shi et al. (2012).

In a previous study, the variation of morphological and physiological

traits of the same experiment has been reported (Benke et al., 2014).

2.3 | Statistical analyses

Upon the removal of outliers with residuals larger than 2.5 times the

standard deviation of the residuals, the concentrations of each mineral

element were analysed across both Fe regimes using the following

mixed model:

yijk = μ+ gi + tj + gi � tj + rk + eijk ,

where yijk was the observed elemental concentration of the ith geno-

type in the pot of the jth Fe regime and kth replication, μ the general

mean, gi the effect of the ith genotype, tj the effect of the jth Fe

regime, gi*tj the interaction effect of the ith genotype and the jth Fe

regime, rk the effect of the kth replication, and eijk the residual error.

To estimate adjusted entry means (AEM) for all genotypes, gi and tj

were considered as fixed and all other effects as random. Further-

more, all effects, except tj, were considered as random to estimate the

genotypic variance (σ2g), the interaction variance between genotypes

and Fe regime (σ2g*t), and the error variance (σ2e). Statistical signifi-

cance of σ2g and σ2g*t has been assessed according to Scheipl, Greven,

and Küchenhoff (2008). The broad sense heritability H2 across both

Fe regimes was calculated as:

H2 =
σ2g

σ2g +
σ2g �t
T + σ2e

T�R
:

In addition, the concentrations of mineral elements collected from

each Fe regime were analysed separately using the following mixed

model:

yik = μ+ gi + rk + eik ,

where yik was the observed elemental concentration of the ith geno-

type in the pot of the kth replication and eik the residual error. To esti-

mate AEM for all genotypes, gi was considered as fixed and rk as

random. Furthermore, gi and rk were considered as random to esti-

mate σ2g and σ2e. The broad sense heritability H2 for each Fe regime

was calculated in analogy to the method described above:

H2 =
σ2g

σ2g +
σ2g
R

:

Student's t test was used to examine the statistical significance of

the mean difference between deficient and sufficient Fe regimes.

Pairwise Pearson's correlation coefficients were assessed between

the 12 mineral elements examined in the current study, 11 morpholog-

ical and physiological traits evaluated by Benke et al. (2014), and nine

mineral elements measured in maize grains by Baxter et al. (2013).

The difference between pairs of correlations was tested using a t-test

of the Z-transformed correlations. A principal component (PC) analysis

of the normalized and scaled concentrations of 12 mineral elements in

the shoot of the maize IBM population as well as the two parental

inbred lines measured in sufficient and deficient iron regimes was

performed.

All above described statistical analyses were not only performed

for the concentration of mineral elements but also for the total con-

tent accumulated in the shoots, that is, average content per plant. The

average content per plant, which was in the following designated as

content was calculated from the product of concentration and the

shoot dry weight per plant described by Benke et al. (2014).

2.4 | Ionomic and genomic prediction

The prediction of the presence of an environmental perturbation from

the physiological response was performed by applying a logistic

regression model with the Fe regime as dependent variable. Two sets

of mineral elements were used as independent variables: (a) all mineral

elements except Fe and (b) all mineral elements except Fe and Zn. We

applied fivefold cross-validation (CV) for validation of these predic-

tions (Hjorth, 1994). For this purpose, the 85 RIL were randomly sub-

divided into five disjoint subsets. The AEM of one subset for each of

the two Fe regimes were left out and used as validation set whereas

the other four subsets were used as training set. This procedure was

replicated 20 times, yielding in total 100 CV runs. For each of the CV

runs, the proportion of genotype*environment combinations from the

validation set for which the Fe regime was correctly predicted, was

estimated. The median of this proportion across all CV runs was desig-

nated as predictive ability.

The physiological and morphological traits assessed by Benke

et al. (2014) for the same plants in each of the two Fe regimes were

predicted by two predictors: (a) the mineral element concentrations

and (b) the molecular marker information described in the next para-

graph. W is a matrix of feature measurements for the respective pre-

dictor. The dimension of W is determined by the number of RIL and

m, the number of features in the corresponding predictor (mionome = 12,

mmolecularmarkers = 1,212). The columns in W were centred and stan-

dardized to unit variance. For each predictor, an additive relationship

matrix was calculated as.

G=1=m+WWT,

where WT denotes the transpose of W (VanRaden et al., 2009). The

additive relationship matrices were used for genomic best linear
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unbiased prediction (GBLUP, Meuwissen, Hayes, & Goddard, 2001).

GBLUP method was used as implemented in the R package sommer

(Covarrubias-Pazaran, 2016). Fivefold CV was applied, as described

above. We calculated the predictive ability [r(ypred, yobs)] as the Pear-

son correlation between the observed AEM and the predicted geno-

typic values.

2.5 | QTL analyses

The publicly available genotypic data for the RIL as well as the genetic

map positions of these markers on the IBM2 map were the basis of

our analyses. Markers that showed a highly significant (p < .001) dis-

torted segregation were excluded. The remaining 1,212 markers were

used for the QTL analyses. QTL analyses to detect genome regions

linked to the difference in the concentration and content of mineral

elements across the two examined Fe regimes were conducted with

Rqtl (Broman, Wu, Sen, & Churchill, 2003). Standard interval mapping

using the Haley-Knott regression algorithm (Haley & Knott, 1992) and

a model that included the Fe regime as additive covariate were used

in a first step.

Forward selection was used in the following to determine the

maximum number of QTL to include in the model selection procedure.

An automated forward and backward search algorithm was then

applied to perform multiple QTL mapping using a model that included

again the Fe regime as additive covariate. Model selection was based

on the highest penalized LOD score with penalties determined

through 1,000 permutations. In the next step, the presence of epi-

static interaction among all pairs of QTL with main effects were exam-

ined. Afterwards, a forward and backward search algorithm was

applied to add significant QTL*Fe regime interactions to the model,

where significance of all models tested was empirically determined

using 1,000 permutations.

Confidence intervals for QTL were calculated using a 1.5 LOD

drop technique (Manichaikul, Dupuis, Sen, & Broman, 2006). In order

to obtain unbiased estimates of the proportion of the explained phe-

notypic variance, fivefold CV accounting for genotypic sampling as

applied as described earlier for QTL mapping (Utz, Melchinger, &

Schön, 2000) and the mean proportion of the phenotypic variance

explained by one or multiple QTL (RCV) was calculated.

2.6 | Characterization of genes in QTL confidence
intervals

The molecular markers flanking the QTL confidence interval were

identified and their physical position on the B73 AGPv4 sequence was

derived. For those flanking markers for which a physical map position

could not be derived, it was estimated based on the nearest locus on

the IBM2 2008 Neighbours map for which a physical positioning was

available. The genes in the physical QTL confidence interval were

extracted from the B73 AGPv4 sequence. The polymorphisms within

the physical confidence interval were extracted from the maize

haplotype version 3 (Bukowski et al., 2018) after converting the

assembly to AGPv4 using CrossMap (Zhao et al., 2014). The annota-

tion of these polymorphisms was performed using the Ensembl Vari-

ant Effect Predictor (McLaren et al., 2016). Furthermore, selected

polymorphisms that are predicted to have a high variant consequence

were validated by Sanger sequencing.

After converting the AGPv4 based positions of candidate genes

to AGPv2 based, the v2.7 data from genotyping by sequencing experi-

ments of maize inbreds of the USA national seed bank (Romay

et al., 2013) was used to extract existing haplotypes based on poly-

morphism information from the candidate genes. These 1,749 inbreds

were considered in our study for which the information of the US

state of origin was available in the Germplasm Resources Information

Network database. For haplotypes occurring in the entire sample with

a frequency >2.5%, a haplotype network was built using an infinite

site model (Hamming, 1950).

If not stated differently, all statistical analyses were performed

using statistical software R (R Development Core Team, 2016).

3 | RESULTS

We characterized the variability of the shoot concentrations of min-

eral elements across two Fe regimes using mixed model analyses to

quantify the influence of the various sources of variance. For the con-

centrations of all mineral elements examined in our study, a significant

(α = 0.05) genotypic variance (σ2g) was observed except for K and Zn

(Figure 1). Similarly, σ2g was significant (α = 0.05) for the content of all

mineral elements except for Cu and Mn. The variance of genotype*Fe

regime interactions (σ2g*t) was on average across the concentrations

of all mineral elements even more important than σ2g and was signifi-

cantly different from 0 (α = 0.05) for all mineral elements. In addition,

σ2g*t of the concentrations of mineral elements was considerably more

pronounced compared to that of the contents of mineral elements. As

a consequence, the broad sense heritabilities (H2) of the concentra-

tions of mineral elements for the sufficient and deficient Fe regime

were with a range from 0.39 to 0.95 slightly higher than H2 across

both Fe regimes, whereas the opposite trend was observed for the

mineral element contents.

The AEM for all mineral element concentrations except Fe was

on average across all RIL significantly higher (α = 0.05) under the defi-

cient Fe regime compared to the sufficient regime, while the opposite

was true for Fe (Figure 2). In contrast, the AEM for the content of all

mineral elements except Cd, Cu, Mn, and Zn was on average across

all RIL significantly higher (α = 0.05) under the sufficient Fe regime

compared to the deficient regime, while the opposite was true for

Zn. A strong transgressive segregation was observed in the RIL for

the concentrations of all mineral elements which suggests that both

parental inbreds contribute alleles to the progenies that increase

the concentrations of the studied mineral elements. For the mineral

element contents, transgressive segregation was less pronounced

compared to that observed for the concentrations of mineral

elements.
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F IGURE 1 Analysis of variance for shoot concentrations and contents of 12 mineral elements. Linear mixed models were used to describe
(a) the variance contributed from genotype (σ2g), genotype*iron (Fe) regime interaction (σ2g*t), and error (σ2e). σ

2
g and σ2g*t estimates marked by *,

**, and *** are significantly (α = 0.05, 0.01, and 0.001) different from 0. (b) Estimates for heritability (H2) across as well as for the individual Fe
regimes were calculated

THE MAIZE SHOOT IONOME 2099



In the PC analysis of the concentrations of mineral elements, the

first two principal components explained 19.2 and 13.9% of the vari-

ance (Figure S1), where no obvious clustering of the RIL was observed

with respect to these two principal components. The same trend was

observed in the PC analysis of the mineral element contents (data not

shown). The heat map of Pearson's pairwise correlation coefficients

between all pairs of mineral elements (Figure 3) revealed that with the

exception of Mo and Cd all mineral elements showed higher correla-

tion coefficients within the same Fe regime than the same mineral ele-

ments measured in samples from different Fe regimes (Figure S2)
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regardless of whether the concentration or the content of mineral ele-

ments was considered.

The pair of mineral element concentrations with the highest

correlation coefficient that was consistent across both Fe regimes

was P/Mn, while that with the lowest was Mo/Fe. In total, we

observed for 10 pairwise correlations of mineral element concentra-

tions that did not involve Fe significant (α = 0.05) differences

between the Fe sufficient and the Fe deficient regime (Figure 4a).

Interestingly, correlations typically found in shoots, such as between

Ca and Mg, were strong in the Fe sufficient regime but got lost

under Fe deficiency. Other correlations, especially between Zn and

Mn became more pronounced under Fe deficiency. The mineral ele-

ments that were most frequently involved in the correlations that

differed significantly between the Fe sufficient and deficient regime

were Ca (four times), Cu, and K (three times), and S, Mg, Mn, P (two

times).
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The same general trends that were observed for the concentra-

tions of mineral elements were also observed for the contents of min-

eral elements (Figure 3b). However, the relationship between the

correlation coefficients calculated between the contents of two min-

eral elements under the Fe sufficient and the Fe deficient regime was

more tight than that observed for the concentrations of mineral

(b)

(a)

F IGURE 3 Heat map of Pearson's correlation coefficients calculated for all pairs of mineral element (a) concentrations and (b) contents

measured in the shoots of the maize IBM population grown under sufficient (above diagonal) and deficient (below diagonal) iron regimes. The
cells marked with an asterisk * indicate that the corresponding correlation coefficient was significantly (α = 0.05) different from 0 [Colour figure
can be viewed at wileyonlinelibrary.com]
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elements. Nevertheless, also for the contents of mineral elements

10 pairwise correlations not involving Fe differed significantly

between the Fe sufficient and deficient regime (Figure 4b). The min-

eral elements that were most frequently involved in these correlations

were P, Cd, K, and Mg (three times), as well as Mo and Mn (two

times).

We examined the correlations between the mineral element con-

centrations in maize shoots and morphological and physiological traits

of the same plants (Benke et al., 2014). In the sufficient Fe regime, we

observed tight correlations between the shoot concentration of P and

root weight (RW), shoot dry weight (SDW), and lateral root formation

(LAT), whereas under deficient Fe conditions, the tightest correlations

were observed between P, Mn, and Zn concentrations and the shoot

dry weight and different leaf greenness parameters (SP) (Figure S3).

These correlations were in close agreement with earlier studies and

confirmed here across a RIL population.

From the ionomic profile of maize shoots, we evaluated the possi-

bility to predict an environmental perturbation. This was done by

predicting the Fe regime in which the RIL of the IBM population was

cultivated based on the measured concentrations of mineral elements.

When using all mineral elements except Fe and Zn as independent

variables, the cross-validated predictive ability was very high with a

value of 0.90. This ability increased to 1.0, when Zn was included as

independent variable. In a second approach, we examined here the

prediction of physiological and morphological traits assessed previ-

ously by Benke et al. (2014) in the IBM population from molecular

marker data. The cross-validated predictive ability ranged from 0.13

to 0.53 for the sufficient Fe regime (Table 1). For the deficient Fe

regime, the observed predictive abilities were higher and ranged from

0.23 to 0.57. The same trend was observed when using the mineral

elements as predictors. However, the such observed predictive abili-

ties were for the sufficient Fe regime for five physiological and mor-

phological traits significantly (α = 0.05) higher than for predictions

made from molecular marker data. For the deficient Fe regime, this

trend was observed for nine of the 11 examined traits.

To unravel the genetic determinants of the shoot ionome of

maize, a linkage mapping approach was used. For the concentration of

all mineral elements except K, genome regions with significant effects

were identified (Table S1). The cross validated proportion of pheno-

typic variance explained by the genome regions with significant main

effect ranged from 0.9 to 66.6%. Seven of the detected 27 genome

regions showed a significant interaction with the Fe regime, while for

two of the seven genome regions no significant main effect was

observed. For none of the QTL with a significant main effect, signifi-

cant epistatic interactions were observed. The LOD score (up to 5.9)

as well as the proportion of the phenotypic variance (up to 2.6%)

explained by the QTL*Fe regime interactions were considerably lower

than that of the main effect QTL. For the contents of all mineral ele-

ments except P, the same trends were observed for the 33 genome

regions (Table S2). A total of four genome regions that contributed

significantly to the phenotypic variance of the concentration of min-

eral elements (C-Cd1, C-Cu2, C-Mo1, C-Mo5) contributed also to the

content of the same mineral element (A-Cd1, A-Cu3, A-Mo1, A-Mo4).

In general, we observed a clustering of genome regions that

F IGURE 4 Scatterplot of Pearson's correlation coefficient between 12 mineral element (a) concentrations and (b) contents determined in
maize shoots harvested from an iron sufficient versus deficient regime. The pairs of correlations that are significantly (α = 0.05) different from
each other are markerd by an asterisk *. The linear trendline corresponds to the bisectrix
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contribute significantly to the phenotypic variance on chromosomes

1, 5 and 7 (Figure 5). Nevertheless, the high mapping resolution of the

IBM population allowed for all except four pairs of QTL for the con-

centration of mineral elements a separation of the effects. For the

mineral element contents, the number of overlapping pairs of QTL

was with 10 considerably higher. The two most prominent QTL

explaining in CV at least 39% of the phenotypic variance and that

were detected for the concentration as well as the content of mineral

elements were C-Cd1/A-Cd1 as well as C-Mo1/A-Mo1 (Figure 6). At all

of these four QTL, the Mo17 allele increased the concentration or

content of the corresponding mineral element.

Two genes (Zm00001d005189 and Zm00001d005190) were

located within the confidence interval of C-Cd1/A-Cd1 that both have

an annotation as cadmium/zinc-transporting ATPase. The gene

Zm00001d033053 that was located within the confidence interval of

C-Mo1/A-Mo1 has an annotation as molybdate transporter 1. Because

polymorphisms in these genes contribute to phenotypic variation of

Cd and Mo in other plant species, we evaluated the polymorphisms in

these three genes in detail (Figure 7). Zm00001d005189 has an early

stop codon in B73 that is absent in Mo17. For Zm00001d005190 (C-

Cd1/A-Cd1), Mo17 gained a stop codon compared to B73 at position

163,039,505 where it lost one at position 163,039,743. The SNP

observed in the sequence of the genes Zm00001d033053 (C-Mo1/A-

Mo1) caused a change in a single amino acid. These polymorphisms,

which were detected in the maize haplotype version 3, have been vali-

dated using Sanger sequencing (data not shown).

We mined the data from genotyping by sequencing experiments

of 1,749 maize inbreds of the USA national seed bank and explored

the existing haplotypes at the three genes as well as their frequency.

For Zm00001d033053 only a reduced set of polymorphisms that did

not allow any differentiation between B73 and Mo17 haplotypes was

found. For Zm00001d005189 and Zm00001d005190, B73 haplo-

types occurred with high frequency in the studied set of maize

inbreds (Supplementary Figure 4), whereas the Mo17 allele was

underrepresented compared to genome-wide data. In addition, no

obvious clustering of the haplotypes with respect to the state of origin

of the respective inbred was observed (data not shown).

4 | DISCUSSION

4.1 | Natural variation in the mineral element
profile of maize shoots and the interaction with the Fe
regime

Across the RIL of the IBM population, we observed a high phenotypic

variability in the concentration but also the content of all mineral ele-

ments (Figure 2). The performed mixed-model analyses revealed that

for most mineral elements concentrations as well as contents this vari-

ation was due to significant (α = 0.05) genotypic (σ2g) variance

(Figure 1). These findings indicate that the examined population is

appropriate to be used to identify the genetic factors that contribute

to the variation of mineral element concentrations in maize shoots.

This holds especially true as we have studied an intermated RIL popu-

lation, in which additional rounds of intermating cause a rapid decay

of linkage disequilibrium. Thus, correlations between mineral elements

observed in our study are less likely caused by linkage but are rather

due to pleiotropy. Therefore, the examined population is also particu-

larly suitable to validate correlations among mineral elements.

The correlations between pairs of concentrations of mineral ele-

ments that were observed in our study under the Fe sufficient regime

(Figure 3) were generally in good agreement with those observed in

TABLE 1 Median and standard deviation of predictive ability [r(ypred, yobs)] of ionomic/genomic prediction in the IBM population for
physiological and morphological traits (Benke et al., 2014) obtained across 100 fivefold cross-validation runs with the prediction method genomic
best linear unbiased prediction

Trait

Sufficient Deficient

Mineral element
concentrations

Molecular
markers Difference

Mineral element
concentrations

Molecular
markers Difference

SP3 0.31 ± 0.18 0.36 ± 0.18 Ns 0.61 ± 0.13 0.40 ± 0.18 *

SP4 0.57 ± 0.14 0.25 ± 0.20 * 0.69 ± 0.12 0.50 ± 0.17 *

SP5 0.39 ± 0.19 0.48 ± 0.17 * 0.74 ± 0.10 0.38 ± 0.16 *

SP6 0.35 ± 0.19 0.50 ± 0.18 * 0.76 ± 0.09 0.37 ± 0.18 *

RL 0.05 ± 0.21 0.13 ± 0.24 * 0.45 ± 0.16 0.24 ± 0.25 *

RW 0.56 ± 0.19 0.28 ± 0.21 * 0.68 ± 0.18 0.37 ± 0.20 *

SL 0.41 ± 0.19 0.26 ± 0.16 * 0.59 ± 0.15 0.36 ± 0.18 *

SDW 0.62 ± 0.16 0.31 ± 0.20 * 0.77 ± 0.10 0.31 ± 0.21 *

WC 0.37 ± 0.21 0.53 ± 0.17 * 0.36 ± 0.19 0.57 ± 0.17 *

LAT 0.65 ± 0.15 0.17 ± 0.22 * 0.60 ± 0.17 0.31 ± 0.17 *

NEC 0.23 ± 0.20 0.19 ± 0.22 Ns 0.22 ± 0.21 0.23 ± 0.18 Ns

Note: The considered traits were the relative chlorophyll content of leaf 3–6 (SP3, SP4, SP5, and SP6), root length (RL), root weight (RW), shoot length (SL),

shoot dry weight (SDW), water content (H2O), lateral root formation (LAT), and leaf necrosis rating (NEC).

2104 STICH ET AL.



10
00

80
0

60
0

40
0

20
0

0
cM

Rendered by LinkageMapView

1

umc1354
tub1
umc1177
umc1566
bnl5.62a
mmp102
umc94a
lim179
mmp49
asg31
npi415
php20537b
ufg31
ufg33
ufg32
ufg34
bnlg1014
umc1363
umc1071
umc1269
umc1977
php20603
php20689
umc1685
mmp93
umc1160
npi579b
mmp68
csu1171
umc1166
umc1568
bnlg1429
php20640
lim504
umc1976
mmp135
bnlg1127
bnlg1953
npi403b
cdo1387b
lim122
umc1073
umc1403
npi439a
umc230
umc11a
mmp66
umc1397
npi242b
umc1479
bnlg1203
umc13
asg35b
ndp2
mmp23
ndp1
bnlg1866
umc1598
lim432
mmp151a
mmp100
mmp56
cdo938a
bnlg2238
umc1849
asg75
umc1169
asg30b
csu207
ufg13b
ufg77
isu041b
ufg43
bnlg1811
bnl9.11b
bnlg2295
asg3
csu3
mmp61
lim497
umc2025
mmp39
umc1515
uaz246c
mmp143
csu1138
umc1076
mmp101
umc1703
cdo344c
umc1906
mmp124
umc1395
umc1603
hac101b
umc67a
umc1972
myb6
umc1590
php20654
asg58
umc1811
bnlg2057
bnlg1598
umc1123
mmp156
umc1396
umc1748
umc1919
bnlg1615
psr152a
umc2151
ntf1
umc58
asg16b
mmp123
php20644
umc1924
ufg50
uaz147b
csu1132
umc1925
asg62
csu374b
php20855
bcd98a
umc1358
bnlg1556
umc23a
lim442
mmp189
mmp173
php20661
bnlg1025
bcd207a
umc1128
umc1147
bcd386a
npi447a
phi002
umc1245
umc128
umc37a
cdo98b
mmp99
bnlg2228
umc83a
lim254
npi120
umc1955
umc2181
npi255
umc1838
csh4
umc1446
umc1928
an1
umc1991
umc1383
cdj2
ufg53
csu696
rz403
chrom7
umc2047
umc140a
bnlg1331
csu222a
msu2
umc197a
csu554a
umc1082
umc1431
umc107a
cdo122a
nfa103a
mmp141
umc2149
mmp83
bnlg1671
mmp172
npi407
rz630a
lim99a
lim78
uaz130a
mmp87
lim39
umc161a
phi265454
npi238
cdo87b
umc1553
umc1421
umc1681
bnl8.29a
umc1111
npi241a
umc1118
umc1744
umc84a
umc86a
umc1630
lim228
umc1331
csu1089
umc2045
phi064
bnl6.32
umc1605

A
−

C
a1

A
−

F
e1

A
−

M
g1

A
−

M
g2

A
−

M
o1

A
−

S
1

A
−

S
2

A
−

Z
n1

C
−

F
e1

C
−

M
o1

C
−

P
1 C

−
S

1

2

isu144a
php20568b
umc1165
umc53a
npi254a
umc1542
bnlg1297
bnlg1017
umc1980
umc1265

mmc0111

eks1
bnlg2277
bnlg1327
myb5
umc1262
umc1261
umc1422
lim328
mmc0231
umc44b
npi287a
umc61
mmp33
psr901
mmp42
bnlg1064
umc34
bnlg381
npi607
umc1326
umc259b
umc1448
umc1465
umc1541
mmp167
umc134b

bnlg1175
mmp91
bnlg108
umc1259
umc2030
umc1861
npi242a
umc2088
bnlg121
umc2079
php10012
mmp89
umc1454
umc131
psr666
mmp119
csu1080b
mmc0401
umc1028
npi297
umc1079
bnlg1036
umc1658
umc2178
bnlg1138
umc1080
umc1004
umc1108
bcd926b
php20005
umc2129
umc1890
rz474c
uaz194a
phi251315
umc36b
php20017a
umc1560
asg20
umc1049
mmp116
mmp84
umc137a
phi435417
umc1947
umc1604
bnl6.20
npi210
umc2085
mmp34
npi610
mmc0381
mmp188
bnlg1746
bnlg1940
psr144a
psr144c
umc1516
umc1256
umc1252

mmp195e

bnlg469b
bnlg1893
umc36a

umc2184
mmp183
bnl17.14
lim104
nfa103b
ufg55
phi101049
umc1696

npi208c

umc1580

npi421a

bnlg1018

A
−

B
1

A
−

C
d1

C
−

C
d1

C
−

S
2

3

umc2118
umc1931
phi453121
phi404206
umc1780
bnl8.15
umc1394
umc1970
umc2071
asg64
mmp158a
umc1892
php20905
phi104127
umc2049
mmp38
asg30c
umc1458
bnlg1144
umc1886
php20042a
bnlg1647
csu324b
lim66
bnlg1447
mmp79
mmp186
asg48
bnl8.35a
npi276a
npi446
umc1425
umc2000
umc1608
umc2158
umc1495
umc1392
umc2033
psr754b
umc1742
umc2117

bnlg1638
mmp144
mmp36

mmc0312
umc1908
npi247
mmp69
rz382a
bnlg1816
rz244b
php10016c
umc1223
umc1920
umc10a
php20558a
mmp9
umc1449
hac101a
umc1527
umc1773
psr628
umc2002
cdo344a
umc102
umc1174
umc1600
mmp80
uaz288a
rz296b
umc1102
bnlg1035

umc1167
umc1501
psr119a
cdo105
umc26a
csu636
umc1973
npi296
umc1539
bnl5.37b
umc1311
umc1730
umc1027
bnl10.24a
lim486
rz538b
asg39
umc60
psr754a
umc1644
mmp5
csu1183
bnlg1951
umc82c
ufg42
csu191
bnlg1160
lim424
php15033
bnlg197
asg7b
bnl6.16a
umc2050
umc1135
umc1767
umc1528

npi212b
umc1489
umc1404
php20521
umc1825
umc17a
umc1140
mmc0251
umc1915
bnlg1108
umc2081
php10080
umc1320
umc1273
umc63a
csu303
csu845
sho89
umc2152
lim182
umc1813
bnlg1536
bnlg1754
npi457
npi425a
npi420
umc1641
lim444
lim96
lim82
umc1594

bnlg1452

cdo244d

umc2020

umc1399

bnlg1113

mmc0132

mmc0022

bnlg1605

A
−

M
o2

C
−

S
3

4

ufg26
bnlg1434
ufg52
rca1
msf1
csu221
umc1228
umc123
mmp174
bx4

umc1669

umc1943

psr144b
umc87a
umc1926
csu235
isu144b
umc2176
umc1902
mmp111
umc2039
pgd3
wip2
umc1117
lim415
umc1963
umc1652
mmc0471
bnlg490
agrr301
umc1969
umc2061
umc191
bnlg1265
umc1303
psr152b
csu509
mmp125
umc1031
umc42a
bnl15.45
umc1511
psr128
mmp140
bnlg1755
umc1142
umc1346
mmp149
mmp78
php20597a
mmc0371
umc1945
umc2027
mmp97
mmp176
rz567b
rz273a
bnlg1137
umc104a
mmp147
umc2038
umc19
mmp115
bnl5.24b
asg33
umc1775
umc1667
umc1808
mmp3
asg27a
bnlg1444
gol1
bnl10.05
bnlg2244
umc1899
umc158
npi570
ufg23
npi270
php20071
npi444
umc15a
umc2187
umc1842
rz596b
umc2135
mmp178
umc2188
umc52
lim446
umc2139
php10025
mmp134
npi449b
asg22
mmp94
umc1328
cdo534a

npi593a
umc1101
umc2046
php20608a
bnlg589
umc1532
umc124b
umc1109
lim471
bnl15.07a
asg41
umc1180

umc169

mmp182
umc1707
bnlg1890

phi295450 umc1759

A
−

C
u1

A
−

C
u2

A
−

M
n1

C
−

M
n1

5

ufg36
umc1253
csu1087
umc1423
umc1445
umc1097
mmp6
bnl8.33
umc1901
umc86b
umc1325
umc1260
sca1
npi409
umc1523
bnl7.21c
lim407
umc2036
npi282a
rz630f
tua4
asg73
bnlg565
psr922a
umc1587
umc107b
cdo122b
mmp130
bcd1072a
bnlg1879
csu164b
rz474a
umc1686
mmp112
cdo795b
bnlg1046
umc1597
bnl7.56
csu340
psr544
bcd207b
mmc0351
umc2035
cdo98a
bnl5.02a
umc1048
umc1447
lim175
umc1315
ufg49

umc1935
rz242b
umc1609
umc1
umc1355
mmp108a
umc1389
psr167
php15024
ufg60
mmp58
bnlg1902
bnl4.36
umc40
mmp60
rz87
umc1591
umc1060
umc1990
umc1747
bnlg1208
lim4
bnlg2323
npi449a
csu302
umc1349
myb3
umc1221
csu308
umc1482
bnl5.71a
mmc0081
phi333597
umc1822
umc2026
mmp47
umc1264
umc1155
nbp35
mmp90
mmp104
umc126a
mmc0481
umc54
umc1752

php20531
npi458a
bnlg609
rz567a
php20566
mmp169

bnlg1118
umc1072
mmp118

bnlg1597c
mmp170
umc1792
npi288a
php20523b
umc1225
mmp175
umc104b
rz446b
php10017
umc1153

umc43

umc1524

rz273b

bnlg118

bnl6.10

umc1680

cdo507b

bnl5.24a

A
−

C
a2

A
−

C
u3

A
−

F
e2

A
−

M
g3

A
−

M
o3

A
−

S
3

A
−

Z
n2

C
−

C
a1

C
−

C
u2

C
−

C
u1

C
−

M
g1

C
−

M
o2

6

umc49f
umc1143

rz143a
umc85a
umc1606
cdo1173c
bnlg1371
bnl6.29a
bnlg1867
umc1229
php20528
cdo545
php20854
uck1
umc1133
uaz232b
mmp160
mmp76
ufg69
mmp20
mmp10
mmp4
mmp108b
umc1006
mir1
rz242a
umc1656
mmp117
mmp51
umc1257
psr129b
csu923
umc65a
umc1796
rz476d
npi223a
umc1105
umc1979
umc1857
umc2006
umc21
ufg11
uaz280c
umc1250
csu481
umc1826
umc1352
umc1413
umc2141
umc1379
npi560
umc1388
mmp62
npi616a
npi252
bnlg1174
bnlg1702
npi608
uaz121a
mmp145
bnlg1732
rz444d
mmp150
umc38a
umc1912
umc1859
umc1463
umc1762
umc2162
bcd738a
lim379
lim151
psr162
umc2170
asg6a
umc132a
nfa102
phi299852
umc1490

npi419a
mmp113
umc2165
bnlg1759a
umc1350
bnlg1740
umc62
npi561
bnlg1136
php20599
mmp105
agp2
umc2059
cdo345c
cdo202a

bnlg161b bnlg238

A
−

M
g4

7

umc2177
csu582
umc1241

umc1672
umc1694
umc1426
bnlg2132
asg8
php20581a
umc1159
mmp18
mmp81
umc1270
asg34a
gta101a
umc1401
umc1978
npi600
crt2
bnlg1094
psr371b
uaz187
rz698d
bnlg1247
bnlg2233
bnlg1380
bnlg2203
lim333
umc1983
umc2142
umc1138
umc1929
umc1787
umc2092
umc1393
umc5b
ufg54
cdo412b
bnlg1808
umc116a
mmp127
mmc0411
umc1713
bcd926a
bnl15.21
mmp177c
umc1450
umc1987
mmp46
bnlg1070
bnlg434
npi394
mmp152
umc1660
npi389
umc56
umc110a
umc1837
rz404
bnlg155
umc111b
umc1134
psr371a
ndk1
bnlg2271
umc1112
umc1324
umc1888
bnlg1805
isu150
tif1
psr135a

umc254
umc1710
umc1251
asg32
ufg17
bnlg1666
npi240a
npi263
npi352
bnl8.29c
umc1029
bcd349
umc1708
csu8
umc1768
bnlg2259
umc1295
ufg57
umc1412
umc245
npi380
npi433
php20909b
phi069
cdo938d
umc1406
umc1407
ufg39
umc168
phi116
php20020
npi611a

umc35a

umc1301 umc1936

A
−

B
2

A
−

F
e3 A

−
F

e4

A
−

K
1

A
−

K
2

A
−

M
g5

C
−

C
a2

C
−

F
e2 C

−
F

e3

C
−

M
n2

C
−

M
o3

C
−

M
o4

C
−

P
2

C
−

Z
n1

C
−

Z
n2

8

npi220a
csu319
rz382b
npi114a
umc1139
umc2042
mmp148
umc1592
bnl13.05a
umc1414
umc1327
umc1483
mmp85
bnlg1194
npi110a
cdo460
mmp57
umc1304
bnlg2235
bcd1823a
mmp166
npi585a
umc1974
psr598
cdo328
umc1913
csu329
umc124a
umc1530
mmp120
mmp72
mmp158b
umc32b
bnlg2082
rz244a
bnlg1834
umc1807
umc1157
umc1904
npi260b
cdo1160a
umc1910
mmp195f
cdo202e
php3818
umc1415
umc1470
umc1984
phi100175
umc1735
umc1457
phi121
php20714
umc2154
umc1460
umc1858
bnlg2046
gta101d
bnl2.369
umc1130
mmp15
umc1263
umc12a
umc1889
umc1340
hda103
bnl12.30a

umc1149

umc1728
umc1905

bnlg1031
npi268a
bnlg1065
rz538a
umc1607

bnlg1823
psy2
umc1268
lim301
bnlg1828
npi414a
mmp64
php20793
umc1005
umc1933
mmp146
umc1673

npi107
npi112b

csu146b
agrr21

phi233376

umc1638
umc1916
bnlg1131

A
−

M
g6

A
−

M
o4

A
−

Z
n3

C
−

M
o5

C
−

P
3

C
−

S
4

9

umc1957
umc109
bnlg1724
npi253a
umc1370
bnlg2122
umc1867
php10005
lim343
ufg41

c1
umc1809
sh1
umc1588
umc1967
umc1596
bz1
umc1170
csu471
isu111b
umc1636
mmp162
bnlg244
bnlg1401
mmp77
mmp30
umc1698
lim286
umc1634
umc1258
umc1586
lim101
ufg71
mmp170b
psr160d
psr160c
rz273c

bcd1421
php20052
bnl5.10
csu623
umc1191
mmp2
asg63a
umc1271
umc1691
umc1688
umc20
umc1921
umc1700
umc1743
umc114
bnl5.04
rz682
lim99b
lim166
bnlg1209
psr547
psr129a
umc1107
bnlg1159b
gta101c
bnlg1012
ufg70
npi580a
ufg68
umc1492
umc1120
mmp96
mmp37
umc2121
umc38c
umc95
umc140b
umc1078
lim458
ufg13a
ufg64
ufg63
php20554
umc1231
mmp41
mmp151d
ufg67
umc2095
csu634
rz574b
npi427a
ufg24
umc2134
npi443
mmp142
npi439b
mmp132
asg44
mmp131
csu93a
ufg75c
mmp168
umc1366
bnl5.09a
mmp110
bnl14.28a
umc1789
asg12
umc1675
bnlg619
mmp136
umc2089
umc2131
mmp171a
umc1137
umc1505

bnlg1583

umc81

bnlg1810

rz953

A
−

M
o5

C
−

B
1

C
−

C
u3

10

mmp48a
mmp48b
umc1380
php20626
psr119c
bnl3.04
php20753a
phi041
php20075a
csu1061b

umc2053
umc2018
umc1152
umc2034
phi059
umc2069
umc130
csu625
npi105a
umc18b
gcsh1
lim2
bcd1072b
php06005
umc1962
bnlg210
umc1367
uaz116
php20646
umc1381
umc2016
bcd147
umc1345
ufg59
umc1239
psr690
npi445a
bnlg1712
umc155
umc1336
fgp1
umc64a
umc1995
umc1246
mmp16
umc1077
umc1911
asg2
umc1330
php15013
umc1115
umc1272
umc1930
php20719a
umc259a
npi578
umc1677
mmp12
bnlg1074
bnlg1250
ufg81
csu745a
umc1506

umc1477
bnl10.13a
bnlg1028
bnl17.02
bnlg2190
ufg62
bnl7.49a
agrr37c
umc1196
umc1084
bnlg1677
npi208b
mmp181
bnlg1839
umc1176
bnlg1360
npi254b
bnlg1450
php20568a

umc2021
umc2126

asg19b

csu48

ufg28a ufg37

A
−

M
o6

F IGURE 5 Confidence intervals of the detected quantitative trait loci (QTL) for shoot concentrations (C-*) and contents (A-*) of 12 mineral
elements on the IBM2 map of maize. QTL, for which the interval is coloured in black, showed only significant main effects. Green and blue QTL
confidence intervals indicate QTL with significant main and interaction effects as well as QTL with only significant interaction effects, respectively
[Colour figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 The plots in the
left column present the
logarithm of odds (LOD) versus
the position on the genetic map
of chromosomes two, two, one,
and one, respectively, for a
selected set of quantitative trait
loci (QTL) with significant main
effects across two iron regimes
for cadmium (Cd) and
molybdenum
(Mo) concentration (C-*) and
content (A-*) in shoots of the
maize IBM population. The
plots in the right column are
boxplots of the adjusted entry
means of the genotypes
carrying the B73 or Mo17 allele
at the QTL position across the
sufficient and deficient Fe
regime [Colour figure can be
viewed at
wileyonlinelibrary.com]
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earlier studies with maize (Baxter et al., 2013) but also with Brassica

napus (Bus et al., 2014) or with 334 angiosperm species (Neugebauer,

Broadley, El-serehy, & George, 2018). In contrast to previous studies,

we not only assessed the concentration of mineral elements but also

the shoot content. Shoot contents reflect the cumulative uptake and

translocation of mineral elements to the above-ground biomass of a

plant over the whole growth period. The proportion of pairs of min-

eral element concentrations with a significant positive correlation

(Figures 3 and 4) was much lower than that for the contents of min-

eral elements and this finding was independent of the considered Fe

regime. This observation is explained by the variation in biomass which

was in the Fe sufficient regime >threefold and even higher in the Fe-

deficient regime (Benke et al., 2014). Thus, shoot contents correct for

differences in biomass, which were here mostly related to the geno-

type rather than the genotype*environment interaction. In our RIL, the

latter made only a minor contribution to the overall variance in element

concentrations and even less in shoot element contents (Figure 1a).

Due to the design of our study that is, the assessment of the

shoot ionome of the IBM population in two contrasting Fe regimes,

we were not only able to validate correlations between pairs of min-

eral elements but to compare the correlation of two mineral elements

across different Fe regimes. By that, we identified interactions among

Fe and two other mineral elements. We observed significant

(α = 0.05) differences in 10 pairwise correlations of mineral element

concentrations between the Fe sufficient and deficient regime that

did not involve Fe (Figure 4a).

Maybe most prominent is the positive interaction between Ca

and Mg, which in angiosperms has been related to cation exchange

capacities in the cell wall of leaves (White, Broadley, El-Serehy,

George, & Neugebauer, 2018). This and other correlations got lost

under Fe deficiency, when more negative correlations prevailed

(Figure 4a). A major determinant for this shift is the degradation of

suberin in the root endodermis under Fe deficiency, which in Ara-

bidopsis has been shown to form an apoplastic barrier that is regu-

lated by the nutritional status of the plant (Barberon et al., 2016). The

degradation increases the endodermal passage and subsequent root-

to-shoot translocation particularly of Ca, Mn and Zn (Baxter

et al., 2009). Hence, correlations between these and other elements

disappear under Fe deficiency, while new ones are formed between

elements that profit in the same way, as Zn and Mn (Figure 4a).

Earlier studies have reported the interaction of Fe with the con-

centration of several mineral elements, mostly with S, P or other

metals (Astolfi, Zuchi, Passera, & Cesco, 2003; Kanai, Hirai, Yoshiba,

Tadano, & Higuchi, 2009; Mori & Nishizawa, 1987; Zheng

et al., 2009). Under Fe deficiency, all of these correlations turned

more negative (Figure 4a), which is not only related to endodermal

suberization but also to the Fe deficiency-induced expression of

genes involved in Fe acquisition which favour also Zn and Mn acquisi-

tion (Eroglu, Meier, Wiren, & Peiter, 2016; Leskova, Giehl, Hartmann,

Fargasova, & von Wiren, 2017). In maize, this includes the release of

phytosiderophores and uptake of phytosiderophore-chelated metals,

such as Zn, Cu and Ni (Schaaf et al., 2004; von Wiren et al., 1996).

In addition, we observed a particularly strong difference between

the correlations of P and all mineral elements except Fe and B

assessed in the two Fe regimes. In the sufficient Fe regime, all these

correlations were positive while in the deficient Fe regime these

F IGURE 7 Schematic gene model of the first transcript of candidate genes for C-Cd1/ACd1 (first row) and C-Mo1/A-Mo1 (second row). Blue
boxes indicate exons. Light blue boxes indicate untranslated regions (UTRs). Vertical lines indicate polymorphisms between B73 and Mo17,
where grey is used for polymorphisms in 30 and 50 UTR, yellow for intron variants, green for synonymous, and red for non-synonymous
polymorphisms in the coding sequence, respectively. The orange or red disk below the polymorphisms indicates a moderate or high severity of
the variant consequence, respectively. The y-axes indicate the positions of the polymorphisms in bp on the corresponding chromosomes [Colour
figure can be viewed at wileyonlinelibrary.com]
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correlations were negative (Figure 4a). This link between P and Fe is

in accordance with earlier studies. DeKock, Hall, and Inkson (1979)

and Zheng et al. (2009) have shown that elevated P supplies decrease

the availability and mobility of Fe in soils as well as in plants and

therewith provoke Fe deficiency-induced chlorosis (Ajakaiye, 1979).

The results of Shi et al. (2018) indicate that Fe retention in the hemi-

cellulose fraction of roots is an important determinant of the toler-

ance to Fe deficiency-induced chlorosis of graminaceous plant species

with low phytosiderophore release, like maize. Then, P-dependent Fe

retention in the hemicellulose fraction may become a determining fac-

tor for Fe provision of the shoot and, thus, for chlorosis susceptibility.

With the increasing knowledge on such mechanistic processes

underlying nutrient correlations, the shoot ionome becomes more and

more informative (Huang & Salt, 2016) and paves the way to identify

and assign anatomical changes or physiological processes to allelic

variation.

4.2 | Predictive power of the shoot ionome

Baxter et al. (2008) showed that the impact of an environmental per-

turbation on a plant can be predicted by changes in its ionome. While

this principle was demonstrated for the Col-0 accession in A. thaliana

when subjected to Fe deficiency, we first addressed the question

whether the shoot ionome is also a reliable predictor for the nutri-

tional status in a RIL population subjected to the same nutritional per-

turbation. Using the IBM population for this purpose is especially

meaningful, because it has been generated from a cross between two

parental lines opposing in P and Fe efficiency (Benke et al., 2014;

Kaeppler et al., 2000; Shi et al., 2018). Indeed, our analysis revealed a

cross-validated predictive ability of 0.90 when predicting the Fe-

regime, in which the RIL of the IBM population were cultivated. This

was based on the measured concentrations of mineral elements,

except for Fe and Zn. Predictive ability increased to 1.0 when includ-

ing Zn. Likewise, a study with 19 different Arabidopsis accessions

showed that changes in the shoot ionome can be employed to distin-

guish accessions according to their Zn nutritional status (Campos

et al., 2017). These findings indicate that even across diverse genetic

materials, the profile of the mineral elements is a reliable proxy for the

physiological state and allows identifying nutritional perturbations.

We then addressed the question whether the shoot ionome is

also a reliable predictor for morphological and physiological traits

perturbed by an altered Fe regime. In fact, when predicting from the

concentration of mineral elements, physiological and morphological

traits of individual RIL (cf. Benke et al., 2014), cross-validated predic-

tive abilities up to 0.77 were observed (Table 1). An increasing predic-

tion ability under Fe deficiency indicated that an imposed nutritional

disorder even increases the predictive power of the ionome.

We then compared the prediction of physiological and morpho-

logical traits by mineral elements with that by molecular markers.

Unexpectedly, ionome-based predictive abilities were considerably

higher compared to the predictive abilities based on molecular marker

profiles using GBLUP (Table 1). A likely explanation is that the

variation of mineral element concentrations are in direct functional

relationship to the physiological and morphological traits examined in

the frame of our study. This is emphasized by the observation that

molecular marker-based prediction values responded less to Fe defi-

ciency. We thus conclude that mineral element profiles are powerful

predictors of physiological and morphological traits. Their use for the

prediction of further, for example, yield-related traits, should be exam-

ined in further studies.

4.3 | Genetics of the shoot ionome

In contrast to most previous studies examining the inheritance of the

ionome of different species in single environments or in multiple envi-

ronments that differ with respect to multiple environmental factors

(e.g. Asaro et al., 2016; Bus et al., 2014; Shakoor et al., 2016), we

analysed the inheritance under two different environmental condi-

tions that differed only with respect to one environmental factor, in

our case the Fe regime. This allows to separate the genotype*Fe

regime interaction from the genotype*environment interaction, where

the former is biologically easier to interpret.

In this study, we exploited the significant genotypic and

genotype*Fe regime interaction variance found in the IBM population

(Figure 1a) and employed quantitative genetic analyses in order to dis-

sect this variation in the underlying genetic factors. For all mineral ele-

ments examined in the frame of this study, except for the

concentration of K and the content of P, genomic regions were identi-

fied that explained a significant part of the genotypic or genotype*Fe

regime interactions (Table S1 and S2). The proportion of variance

explained for one mineral element by all QTL interacting with the

environment simultaneously was considerably lower than that of the

main effect QTL. This finding suggests that albeit the variance of

genotype*Fe regime interactions for the concentration of mineral ele-

ments was considerably higher than the genotypic variance (Figure 1)

the QTL interacting with the environment were not detected in our

study. One major reason might be that each QTL explains only a small

proportion of the genotype*Fe interaction.

Due to the use of the IBM population, which has compared to

non intermated linkage mapping populations an increased mapping

resolution (Lee et al., 2002), the confidence intervals observed in our

study were small for most of the 60 QTL (Table S1 and S2). Out of the

detected QTL, four QTL had overlapping confidence intervals for the

concentrations and contents of the same mineral element. Two of

these pairs of QTL jutted out regarding the LOD score as well the pro-

portion of the explained phenotypic variance and these will be dis-

cussed in more detail.

4.3.1 | C-Cd1 and A-Cd1

We did not add Cd to the nutrient solution in which the IBM popula-

tion was cultivated. Nevertheless, we observed under both Fe regimes

low Cd concentrations in maize shoots. To rule out the effect of Cd
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translocation from the seeds to the growing shoot tissue, we evalu-

ated the Cd concentrations in the grains of a subset of the IBM popu-

lation. The overall amount of Cd in the grain made up less than 4% of

the shoot content, that is, the total amount of Cd accumulated in the

above-ground biomass. This indicated that the highly heritable pattern

of Cd concentrations that we observed (Figure 1) was caused by Cd

traces in the chemicals or the technical devices used to prepare the

nutrient solution. As therefore all RIL were exposed systematically to

the same Cd concentration in the nutrient solution, we interpreted

the observed variation in our study.

We detected in our study two overlapping QTL on chromosome

2 for Cd concentration and content. These QTL were in very good

accordance with the QTL detected for Cd content in maize kernels

observed in a B73*IL13H population by Baxter et al. (2014). This

observation indicates that the mechanisms contributing to the accu-

mulation and sequestration of this mineral element in maize shoots

and kernels are similar. However, for nine other mineral elements, cor-

relation coefficients between the mineral element concentrations in

maize shoots from our study and in maize kernels from Baxter

et al. (2013) were low (data not shown). Hence, a common regulation

across tissues exists for some mineral elements but not for all.

Across both Fe regimes, the trait-decreasing allele was provided

by B73 (Figure 6). This indicated that inbreds and hybrids carrying the

B73 allele are suitable to produce maize on soils with increased Cd

accumulations without increasing the Cd concentration in the harvest

product.

Within the confidence interval of C-Cd1/A-Cd1 two genes,

Zm00001d005189 and Zm00001d005190, were located directly

adjacent to each other that are annotated as HMA genes. In the cod-

ing sequence of both genes, non-synonymous polymorphisms have

been identified that are predicted (McLaren et al., 2016) to have mod-

erate or even high variant consequence (Figure 7). Zm00001d005189

is based on its amino acid sequence not of particular similarity to any

of the HMA genes of Arabidopsis or rice (data not shown). In contrast,

Zm00001d005190 has a high homology to OsHMA3 indicating that

Zm00001d005190 could be the ortholog ZmHMA3 which is in accor-

dance with results of Zhao et al. (2018).

Our result indicated that the Mo17 allele at Zm00001d005190,

which is presumably non-functional, is present at medium frequency in

the maize germplasm of the USDA genebank. This suggests that under

regular field conditions the higher accumulation of Cd does not have a

negative agronomic side effect. Another explanation is that commer-

cially used maize hybrids are typically crosses between B73-type and

Mo17-type inbreds. In this case, the hybrids do not show increased Cd

contents, as the functional allele of B73 is expected to be at least par-

tially dominant over the loss-of-function allele of Mo17 (cf. Kuromori,

Takahashi, Kondou, Shinozaki, & Matsui, 2009).

4.3.2 | C-Mo1 and A-Mo1

In the confidence interval of these QTL, a homolog of A. thaliana's Mo

transporter (MOT1) (Tomatsu et al., 2007) was detected. We observed

between the coding sequences of B73 and Mo17 one non-

synonymous sequence variant (Figure 7) that is predicted to have only

a medium effect on the protein. Instead, in accordance with findings

of Baxter et al. (2008) for A. thaliana, we consider differences in gene

expression as more relevant, because in the deficient Fe regime

mRNA levels of Zm00001d033053 were about 1,000-fold higher in

Mo17 than in B73, whereas in the sufficient Fe regime this difference

was only sixfold (Urbany et al., 2013). This Fe dependence of the Mo

accumulation was not only observed at the gene expression level but

also at the QTL level. C-Mo1 showed the strongest QTL*Fe regime

interaction of this study. However, further research is required to

unravel the molecular mechanism of the interaction between Fe

and Mo.

5 | CONCLUSIONS

Our results suggest that the shoot ionome is under tight genetic con-

trol, and that strong interactions of a genotype with the environment,

in our case the Fe regime, are driving the variation for the concentra-

tion as well as the content of mineral elements. Furthermore, the high

predictive abilities found in this study indicate that mineral elements

are powerful predictors of morphological and physiological traits.

Their use for the prediction of further, for example, yield-related

traits, merits to be examined in further studies. We propose that

ZmHMA2/3 and ZmMOT1 are major players in the natural genetic var-

iation of Cd and Mo concentrations and contents in maize shoots.

Furthermore, our results indicate that even in elite breeding material

non-functional alleles segregate at major genes for uptake and trans-

location of different mineral elements.
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