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ABSTRACT 

Several pathways conferring environmental flowering responses in Arabidopsis 
thaliana converge on developmental processes that mediate the floral transition in 
the shoot apical meristem. Many characterized mutations disrupt these 
environmental responses, but downstream developmental processes have been 
more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in 
several environmental pathways and showed that it possesses severely reduced 
flowering responses to changes in photoperiod and ambient temperature. RNA-seq 
analysis of the quintuple mutant showed that the expression of genes encoding 
gibberellin biosynthesis enzymes and transcription factors involved in the age 
pathway correlates with flowering. Mutagenesis of the quintuple mutant generated 
two late-flowering mutants, quintuple ems 1 (qem1) and qem2. The mutated genes 
were identified by isogenic mapping and transgenic complementation. The qem1 
mutant is an allele of the gibberellin 20-oxidase gene ga20ox2, confirming the 
importance of gibberellin for flowering in the absence of environmental responses. By 
contrast, qem2 is impaired in CHROMATIN REMODELING4 (CHR4), which has not 
been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-
seq and ChIP-seq, we show that CHR4 interacts with transcription factors involved in 
floral meristem identity and affects the expression of key floral regulators. Therefore, 
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CHR4 mediates the response to endogenous flowering pathways in the inflorescence 
meristem to promote floral identity. 
 
INTRODUCTION 1	  

Lateral shoot organs initiate from cells on the flanks of the shoot apical meristem 2	  

(SAM), and the identity of the formed organs changes during development (Bowman 3	  

and Eshed, 2000). In Arabidopsis thaliana, the transition from vegetative leaf 4	  

initiation to flower production occurs in response to several environmental and 5	  

endogenous cues. Important environmental signals that control flowering include 6	  

seasonal fluctuations in temperature and day length, which are mediated by the 7	  

photoperiodic and vernalization pathways, whereas ambient changes in temperature 8	  

also influence flowering time (Srikanth and Schmid, 2011; Andres and Coupland, 9	  

2012). In addition, endogenous signals such as gibberellins (GAs) and the age of the 10	  

plant contribute to the floral transition in the absence of inductive environmental cues 11	  

(Wilson et al., 1992; Wang et al., 2009). 	  12	  

Three intersecting environmental pathways that promote flowering have been 13	  

well characterized. The photoperiodic pathway promotes flowering under long days 14	  

(LDs) but not under short days (SDs), in which plants flower much later. Exposure to 15	  

LDs stabilizes the CONSTANS transcription factor (Valverde et al., 2004), which in 16	  

turn activates transcription of FLOWERING LOCUS T (FT) and TWIN SISTER OF FT 17	  

(TSF) in the leaf vascular tissue (Kardailsky et al., 1999; Kobayashi et al., 1999; 18	  

Suarez-Lopez et al., 2001; An et al., 2004; Yamaguchi et al., 2005). The FT and TSF 19	  

proteins, which are related to phophatidyl-ethanolamine binding proteins, move to the 20	  

SAM (Corbesier et al., 2007; Jaeger and Wigge, 2007; Mathieu et al., 2007), where 21	  

they physically interact with the bZIP transcription factor FD (Abe et al., 2005; Wigge 22	  

et al., 2005; Abe et al., 2019). In the SAM, the FT–FD protein complex promotes the 23	  

transcription of genes encoding floral activators, such as SUPPRESSOR OF 24	  

OVEREXPRESSION OF CO1 (SOC1) and FRUITFULL (FUL), which induce the 25	  

floral transition, as well as APETALA1 (AP1) and LEAFY (LFY), which promote floral 26	  

meristem identity (Schmid et al., 2003; Wigge et al., 2005; Torti et al., 2012; Collani 27	  

et al., 2019). Because they represent the mobile signal linking leaves and the shoot 28	  

apical meristem, FT and TSF are essential for the photoperiodic flowering response, 29	  

and ft tsf double mutants are daylength-insensitive (Yamaguchi et al., 2005; Jang et 30	  

al., 2009).	  31	  
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The seasonal cue of exposure to winter cold mediates flowering via the 32	  

vernalization pathway, which represses transcription of the floral repressor 33	  

FLOWERING LOCUS C (FLC) (Michaels and Amasino, 1999; Sheldon et al., 1999). 34	  

FLC is a MADS-box transcription factor that forms regulatory complexes with other 35	  

MADS-box floral repressors, such as SHORT VEGETATIVE PHASE (SVP) (Li et al., 36	  

2008). Thus, vernalization reduces FLC transcription and promotes flowering via the 37	  

endogenous and photoperiodic pathways, whereas mutants for FLC are essentially 38	  

insensitive to vernalization. The genome-wide binding sites of FLC and SVP include 39	  

those in several genes that promote flowering within the photoperiodic pathway, such 40	  

as FT and SOC1 (Searle et al., 2006; Lee et al., 2007; Li et al., 2008; Deng et al., 41	  

2011; Mateos et al., 2015; Richter et al., 2019). Because FLC is stably repressed by 42	  

exposure to cold, plants can flower through the photoperiodic pathway when they are 43	  

exposed to LDs after cold exposure. Also, genes within the endogenous pathway that 44	  

are repressed by FLC, such as SQUAMOSA PROMOTER BINDING PROTEIN-45	  

LIKE15 (SPL15), can promote flowering during vernalization (Deng et al., 2011; Hyun 46	  

et al., 2019)	  47	  

Arabidopsis also flowers rapidly when exposed to high temperatures, and this 48	  

response can overcome the delay in flowering observed under SDs at lower growth 49	  

temperatures (Balasubramanian et al., 2006). FT and TSF are transcribed at high 50	  

temperature under SDs and promote early flowering; thus their transcriptional 51	  

repression under SDs at lower temperatures is overcome at high temperatures 52	  

(Kumar et al., 2012; Galvao et al., 2015; Fernandez et al., 2016). Accordingly, 53	  

MADS-box repressors of FT and TSF, particularly FLOWERING LOCUS M and SVP, 54	  

do not accumulate under SDs at high temperature, and mutations in these genes 55	  

reduce the flowering response to high temperature (Lee et al., 2007; Lee et al., 2013; 56	  

Pose et al., 2013; Airoldi et al., 2015). The reduced activity of these repressors also 57	  

enhances the response of the meristem to low levels of FT and TSF transcription in 58	  

the leaves (Fernandez et al., 2016). Triple mutants for FT, TSF and SVP are 59	  

insensitive to higher temperatures under SDs (Fernandez et al., 2016).  	  60	  

In addition to these environmental pathways, there are several endogenous 61	  

flowering pathways. A set of genes was ascribed to the autonomous flowering 62	  

pathway, because they caused late-flowering under LDs and SDs and were therefore 63	  

considered to promote flowering independently of photoperiodic cues (Koornneef et 64	  

al., 1991). Mutations in all these genes caused elevated levels of FLC mRNA, and 65	  
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the encoded proteins contribute to FLC expression at the transcriptional and post-66	  

transcriptional levels (Whittaker and Dean, 2017). The late-flowering phenotype of 67	  

autonomous pathway mutants can therefore be suppressed by mutations in FLC 68	  

(Michaels and Amasino, 2001)..In addition, gibberellin (GA) is an important 69	  

contributor to endogenous flowering regulation, because mutations or transgenes 70	  

that strongly reduce GA levels almost abolished flowering under non-inductive SDs 71	  

(Wilson et al., 1992; Galvao et al., 2012; Porri et al., 2012). Finally, microRNA156 72	  

(miR156) negatively regulates the floral transition and is developmentally regulated 73	  

such that its abundance decreases progressively with increasing plant age (Wu and 74	  

Poethig, 2006; Wang et al., 2009). This miRNA negatively regulates the 75	  

accumulation of several SPL transcription factors, including SPL3, SPL9 and SPL15, 76	  

which promote the floral transition, particularly under non-inductive SDs (Gandikota 77	  

et al., 2007; Wang et al., 2009; Yamaguchi et al., 2009; Hyun et al., 2016; Xu et al., 78	  

2016). Thus, miR156/SPL modules have been associated with an endogenous 79	  

flowering pathway related to plant age.	  80	  

Here, we extend our understanding of the genetic basis of the floral transition 81	  

by screening specifically for genes that regulate flowering independently of the 82	  

environmental pathways. To this end, we constructed a high-order quintuple mutant, 83	  

svp-41 flc-3 ft-10 tsf-1 soc1-2, which shows reduced sensitivity to environmental 84	  

flowering signals because it is impaired in responses to photoperiod and high 85	  

temperature. Using RNA-seq, we characterized the expression of flowering-related 86	  

genes in this mutant, and we employed a forward genetics approach to identify 87	  

genes controlling flowering time in this background. This allowed us to define a role 88	  

for CHROMATIN REMODELING4 (CHR4) in promoting the floral transition. 89	  

RESULTS 90	  

Phenotypic and molecular characterization of a quintuple mutant strongly 91	  

impaired in responses to environmental cues 92	  

To assess the flowering time of Arabidopsis plants in which the major environmental 93	  

pathways were inactivated, we constructed the quintuple mutant svp-41 flc-3 ft-10 tsf-94	  

1 soc1-2 (hereafter referred to as the quintuple mutant). The quintuple mutant 95	  

showed a dramatically reduced flowering response to day length compared to Col-0. 96	  

Under long days (LDs), the quintuple mutant bolted later and after forming more 97	  

vegetative rosette leaves than the wild type (Col-0) (Figure 1A and B). However, 98	  
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under short days (SDs) at 21°C, the mutant bolted much earlier than Col-0 in terms 99	  

of days to flowering and rosette leaf number (Figure 1A and B). Bolting of the 100	  

quintuple mutant was delayed by fewer than 10 days in SDs compared to LDs, 101	  

whereas bolting in Col-0 was delayed by approximately 50 days. Similarly, the 102	  

quintuple mutant formed ~5 more rosette leaves under SDs than LDs, whereas Col-0 103	  

formed over 40 more rosette leaves. The flowering time of the quintuple mutant was 104	  

also insensitive to higher ambient temperatures under SDs when considering bolting 105	  

time, but it displayed partial insensitivity in terms of rosette leaf number (Figure 1A 106	  

and B). Finally, GA4 treatment accelerated flowering of Col-0 under SDs (Wilson et 107	  

al., 1992) but had a smaller effect on the flowering time of the quintuple mutant 108	  

(Supplemental Figure 1A and B). These results are consistent with the idea that the 109	  

GA response and signaling are activated in the quintuple mutant, as previously 110	  

shown for svp-41 mutants (Andres et al., 2014). Overall, the quintuple mutant 111	  

showed strongly impaired responses to environmental signals such as day-length 112	  

and ambient temperatures, in terms of time to bolting and the number of rosette 113	  

leaves formed. These data suggest that in the quintuple mutant, the floral transition 114	  

occurs via endogenous mechanisms such as the GA or age pathway.	  115	  

In addition to effects on bolting time and vegetative rosette leaf number, the 116	  

quintuple mutant produced more cauline leaves than Col-0 in all conditions tested 117	  

(Supplemental Figure 1C). The quintuple mutant formed on average 4.5-fold more 118	  

cauline leaves than Col-0 under LDs and 2.3-fold more under SDs. The increased 119	  

cauline leaf number in the mutant compared with Col-0 suggests that the mutant is 120	  

also impaired in the determination of floral meristem identity after floral induction and 121	  

bolting, such that more phytomers contain cauline leaves and axillary shoots than in 122	  

Col-0. 123	  

We then compared the developmental stage of the shoot apex of the quintuple 124	  

mutant to that of Col-0 by performing in situ hybridizations for FUL transcript on 125	  

apical cross-sections of SD-grown plants of different ages (Figure 1C). FUL encodes 126	  

a MADS-box floral activator that is partially genetically redundant with SOC1. FUL 127	  

mRNA accumulates in the SAM during the early stages of the floral transition 128	  

(Ferrandiz et al., 2000; Melzer et al., 2008; Torti et al., 2012). In the apices of SD-129	  

grown plants, FUL mRNA accumulated approximately one-week earlier in the 130	  

quintuple mutant than in Col-0 (Figure 1C), which is consistent with the earlier 131	  

flowering phenotype of the mutant. 	  132	  
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Because the quintuple mutant flowers earlier under SDs and major regulators 133	  

of flowering are inactivated, the transcriptional network associated with the floral 134	  

transition is probably differentially expressed in the mutant compared to Col-0. To 135	  

define these differences, we performed RNA-seq on apices of the quintuple mutant 136	  

and Col-0 through a developmental time course under SDs. Apical samples were 137	  

harvested from both genotypes 3, 4, 5 and 6 weeks after sowing. In vegetative 138	  

apices of both genotypes at 3 weeks after sowing, only 46 genes were differentially 139	  

expressed (adjp-value < 0.05) (DEGs) between the quintuple mutant and Col-0. At 4, 140	  

5 and 6 weeks, when the mutant flowered more rapidly than Col-0 (Figure 1C), 486, 141	  

736 and 568 genes, respectively, were differentially expressed in the mutant 142	  

compared with Col-0 (Supplemental Data Set 1). At these time points, 143	  

approximately 45%, 14% and 33% of the DEGs, respectively, were more highly 144	  

expressed in the quintuple mutant vs. Col-0 (Supplemental Data Set 1). The 145	  

mRNAs of SPL3, SPL4, SPL5, SPL9, SPL12 and SPL15, which are regulated by 146	  

miR156 and contribute to the endogenous age-related flowering pathway, were more 147	  

abundant in the quintuple mutant, which is consistent with promotion of flowering by 148	  

the age pathway (Figure 1D and E). Moreover, the floral activators FD, FDP and 149	  

AGAMOUS-LIKE6 (AGL6) were more highly expressed in the mutant vs. Col-0 150	  

(Figure 1D and E, Supplemental Figure 1D and Supplemental Data Set 1), and 151	  

the expression of the floral repressors MADS-AFFECTING FLOWERING 4 (MAF4) 152	  

and MAF5 was attenuated in the quintuple mutant (Supplemental Data Set 1). 153	  

Moreover, genes encoding enzymes involved in GA biosynthesis and catabolism 154	  

were differentially expressed in the quintuple mutant (Figure 1D). 155	  

A sensitized mutant screen in the quintuple mutant background identifies two 156	  

loci that promote flowering 157	  

We then employed the quintuple mutant as a sensitized background for mutagenesis 158	  

screening to identify genes that regulate flowering independently of environmental 159	  

pathways. This approach was expected to identify mutations in endogenous 160	  

components, because the major environmental floral response pathways are already 161	  

impaired in the mutant, and mutations in the autonomous pathway should not be 162	  

recovered, because FLC is inactive in the quintuple mutant. We screened the M2 163	  

generation for mutants with altered flowering behaviour (Methods). Two mutants 164	  

showing delayed floral transition in the quintuple mutant background, quintuple ems 1 165	  
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(qem1) and quintuple ems 2 (qem2), were selected for detailed studies because they 166	  

exhibited strong and reproducible phenotypes in the M3 generation. Both lines 167	  

segregated the mutant phenotype in a 3:1 ratio in the BC1F2 generation (Methods), 168	  

suggesting that a single recessive mutation was responsible for the phenotypes of 169	  

both mutants. Plants segregating the qem1 or qem2 phenotype in the respective 170	  

BC1F2 populations were then bulk-harvested. Fast-isogenic mapping (Methods) 171	  

(Hartwig et al., 2012) localized qem1 and qem2 with high confidence to different 172	  

regions on chromosome 5 (Supplemental Figure 2 and Figure 2).	  173	  

The qem1 mutation localized to the same region of chromosome 5 as the 174	  

gibberellin 20-oxidase gene GA20ox2 (Supplemental Figure 2C and Supplemental 175	  

Table 1). Mutation of GA20ox2 delays flowering and has a stronger effect in the svp-176	  

41 background (Rieu et al., 2008; Plackett et al., 2012; Andres et al., 2014). In qem1, 177	  

a single nucleotide polymorphism was identified in the first exon of GA20ox2 that was 178	  

predicted to cause an amino-acid substitution in the protein (ser137asn). To confirm 179	  

that this mutation causes the late-flowering phenotype of qem1, we performed 180	  

molecular complementation. Introducing the Col-0 genomic GA20ox2 locus into 181	  

qem1 strongly reduced leaf number and flowering time, so that the transgenic lines 182	  

flowered at a similar time or earlier than the quintuple mutant (Supplemental Figure 183	  

2D and E), confirming that the mutation in GA20ox2 was responsible for the delayed 184	  

flowering of qem1. This result is consistent with the RNA-seq data showing that 185	  

GA20ox2 mRNA is more highly expressed in the quintuple mutant background than 186	  

in Col-0 (Supplemental Figure 1D and with the previous observation that svp-41 187	  

mutants contain higher levels of bioactive GAs than the wild type (Andres et al., 188	  

2014). Therefore, the GA pathway likely plays a decisive role in promoting the floral 189	  

transition in the quintuple mutant. 	  190	  

The qem2 mutant was later flowering and initiated more rosette and cauline 191	  

leaves than the quintuple mutant (Figure 2A and B), indicating a delay in the floral 192	  

transition and impaired floral meristem identity. The region of chromosome 5 to which 193	  

qem2 mapped contained no previously described flowering-time genes (Figure 2C 194	  

and Table 1). Three high-confidence polymorphisms predicted to cause non-195	  

synonymous mutations in the coding sequences At5g43450, At5g44690 and 196	  

At5g44800 were identified (Table 1). At5g43450 encodes a protein with similarity to 197	  

ACC oxidase, At5g44690 encodes a protein of unknown function, and At5g44800 198	  

encodes the CHD3-like ATP-dependent chromatin-remodelling factor CHR4. In 199	  
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Arabidopsis, CHR4 is most closely related to PICKLE (PKL), which represses 200	  

flowering via the GA pathway (Fu et al., 2016; Park et al., 2017) and promotes 201	  

flowering via the photoperiodic pathway though FT activation (Jing et al., 2019a; Jing 202	  

et al., 2019b). Both PKL and CHR4 are homologous to SWI/SWF nuclear-localized 203	  

chromatin remodelling factors of the CHD3 family (Ogas et al., 1999), and CHR4 is 204	  

also named PICKLE RELATED1 (PKR1) (Aichinger et al., 2009). The chr4 mutant 205	  

shows no obvious mutant phenotype under standard growth conditions (Aichinger et 206	  

al., 2009). However, CHR4 function has been implicated in floral organ development 207	  

because it interacts with the MADS-domain transcription factors AGAMOUS (AG), 208	  

APETALA3 (AP3), PISTILLATA (PI), SEPALLATA3 (SEP3), and AP1, as revealed by 209	  

immunoprecipitation of these factors (Smaczniak et al., 2012). Therefore, we 210	  

hypothesized that the mutation in CHR4 caused the qem2 mutant phenotype. We 211	  

tested this by introducing pCHR4:CHR4 and pCHR4:CHR4-VENUS constructs into 212	  

qem2. The increased leaf number phenotype of qem2 was reduced to a similar 213	  

number as in the progenitor quintuple mutant in all transformed lines (Figure 2D). 214	  

Thus, we conclude that the later-flowering qem2 phenotype was caused by the 215	  

mutation in CHR4.	  216	  

Phenotypic characterization of chr4 and its effects on gene expression during 217	  

floral induction 218	  

The qem2 mutant contains a mutation in the SNF2-related helicase/ATPase domain 219	  

of CHR4, resulting in the substitution of a conserved alanine (ala) residue by valine 220	  

(val) (ala713val) (Figure 3A). To analyze the chr4 mutant phenotype in the Col-0 221	  

background, we characterized the T-DNA insertion allele chr4-2 (SAIL_783_C05), 222	  

containing a T-DNA insertion within the coding sequence between the 223	  

helicase/ATPase domain and the DNA-binding domain (Figure 3A). The T-DNA 224	  

insertion also causes a reduction in CHR4 mRNA levels (Supplemental Figure 3). 225	  

We compared the leaf number, bolting time, and flowering time of qem2 and 226	  

chr4-2 with those of their respective progenitors under LDs (Supplemental Figure 227	  

4A, B) and SDs (Figures 3B–E). The qem2 mutant formed approximately 20 more 228	  

rosette leaves and 30 more cauline leaves than the quintuple mutant under both LDs 229	  

and SDs (Figure 3B, C and Supplemental Figure 4A, B). Despite having more 230	  

rosette leaves, the bolting time of qem2 was similar to that of its progenitor (Figure 231	  

3D), whereas time to first open flower was markedly delayed in qem2 (Figure 3D, F), 232	  
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which is consistent with the increased number of cauline leaves. The phenotypic 233	  

difference between Col-0 and chr4-2 was less severe than that between qem2 and 234	  

the quintuple mutant. Under LDs, chr4-2 and Col-0 initiated a similar number of 235	  

leaves (Supplemental Figure 4B). Under SDs, chr4-2 and Col-0 had a similar 236	  

rosette leaf number, but chr4-2 bolted earlier and produced more cauline leaves 237	  

(Figure 3B–E). CHR4 function appeared to be more important for flowering control in 238	  

the quintuple mutant background, suggesting it might preferentially regulate flowering 239	  

via the GA and aging pathways. 240	  

The chr4-2 and qem2 mutants bolted slightly earlier than their progenitors but 241	  

initiated a similar number or more rosette leaves (Figure 3B and D), suggesting that 242	  

they might have a shorter plastochron and initiate rosette leaves more rapidly. To 243	  

determine the plastochron, we counted rosette leaves weekly until the plants bolted 244	  

under SDs. Early in rosette development, chr4-2 and qem2 produced leaves at a 245	  

similar rate as their progenitors, but later in rosette development, the mutants 246	  

produced leaves more rapidly than the progenitors, leading to a steep increase in leaf 247	  

number (Figure 3G and H). More rapid leaf initiation can be related to an enlarged 248	  

SAM (Barton, 2010); therefore, we compared the SAMs of chr4-2 and qem2 to those 249	  

of Col-0 and the quintuple mutant, respectively, after 4 and 5 weeks of growth under 250	  

SDs (Supplemental Figure 5). The SAMs of plants carrying either chr4 mutant allele 251	  

were larger than those of their progenitors, but this was most pronounced for qem2 252	  

compared with the quintuple mutant (Supplemental Figure 5).	  253	  

The transition to flowering in Arabidopsis can be conceptualised as two 254	  

sequential steps in which the inflorescence meristem acquires different identities. 255	  

After the transition from a vegetative meristem, the inflorescence meristem (I1) 256	  

initially forms cauline leaves and axillary branches, and after transition from I1 to I2, it 257	  

initiates floral primordia (Ratcliffe et al., 1999). Rosette leaf number and days to 258	  

bolting can be used as a proxy for the I1 transition, whereas the number of cauline 259	  

leaves produced on the flowering stem and days to the first open flower indicate 260	  

when the I1 to I2 transition occurs. Cauline leaves can be distinguished from rosette 261	  

leaves due to their smaller size and more pointed shape, so that the increased 262	  

number of leaves on the inflorescence stem can be explained by a delayed I2 263	  

transition rather than by enhanced internode elongation between rosette leaves. 264	  

Compared to Col-0, chr4-2 is not delayed in the transition from vegetative meristem 265	  

to I1 but is delayed in the transition from I1 to I2. By contrast, compared to the 266	  
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quintuple mutant, qem2 mutants were strongly delayed in both the transition to I1 and 267	  

to I2 (Figure 3B–E). 	  268	  

In Arabidopsis, AP1 confers floral meristem identity and is a marker for the I1 269	  

to I2 transition; therefore, we performed in situ hybridizations to monitor the 270	  

appearance of AP1 mRNA through a developmental time course (Figure 4). At 5 271	  

weeks after germination, no AP1 expression was detected in any of the genotypes, 272	  

indicating that the plant meristems were still vegetative. AP1 mRNA was detected at 273	  

6 weeks in Col-0 and chr4-2. In qem2 mutants, AP1 mRNA appeared more than 1 274	  

week later than in the quintuple mutant, which is consistent with observation that 275	  

more cauline leaves formed in qem2 (Figure 4).  276	  

 We then performed RNA-seq along a developmental time course to identify 277	  

the genome-wide effects of CHR4 on gene expression during the floral transition. We 278	  

examined the transcriptomes of shoot apices of Col-0, the quintuple mutant, chr4-2, 279	  

and qem2 plants grown for 3, 4, 5, or 6 weeks under SDs and compared the chr4-2 280	  

and qem2 transcriptomes to those of Col-0 and the quintuple mutant, respectively 281	  

(Supplemental Data Set 2). The analysis focused on 237 genes previously reported 282	  

to regulate the floral transition in Arabidopsis (Bouche et al., 2016). In total, 26 of 283	  

these genes were significantly differentially (adjp-value < 0.05 and log2FC |1|) 284	  

expressed genes (DEGs) between chr4-2 and Col-0 (Figure 5A), and 18 were DEGs 285	  

between qem2 and the quintuple mutant (Figure 5C). Nine genes were common to 286	  

the two lists (AGL79, BRANCHED1 (BRC1), FUL, SEP3, AGL17, SPL4, BROTHER 287	  

OF FT AND TFL1 (BFT), EARLY FLOWERING 4 (ELF4) and MAF4). The expression 288	  

of SPL4, which encodes a component of the age-dependent flowering pathway, 289	  

increased at several time points in the chr4 and qem2 mutants compared to their 290	  

respective progenitors (Figure 5A–D). In particular, SPL4 was most highly expressed 291	  

in 4-week-old qem2 and in 5-week-old chr4-2 plants (Figure 5B–D). FUL was also 292	  

more highly expressed in both mutants at later time points (Figure 5B and D) and is 293	  

a direct target of SPL9, SPL15, and SPL3 during the floral transition (Wang et al., 294	  

2009; Yamaguchi et al., 2009; Hyun et al., 2016). Indeed, a corresponding small 295	  

increase in mRNA levels of SPL9 and SPL15 was also observed in the CHR4 296	  

mutants (Supplemental Data Set 2). The earlier increase in expression of SPL4, 297	  

SPL9, and SPL15 is consistent with the earlier bolting observed in the mutants, as 298	  

qem2 bolted around two days and chr4-2 around 10 days earlier than their respective 299	  

progenitors (Figure 3D). 	  300	  
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We detected elevated expression of TERMINAL FLOWER1 (TFL1) in chr4-2 301	  

(Figure 5A and B) and BFT in qem2 (Figure 5C). Overexpression of TFL1 and BFT, 302	  

which both encode proteins related to phosphatidylethanolamine-binding proteins, 303	  

reduces AP1 and LFY expression and delays floral organ initiation (Ratcliffe et al., 304	  

1998; Yoo et al., 2010). Consistent with this finding, LFY mRNA was also less 305	  

abundant in qem2 (Figure 5D). During the inflorescence meristem transition from I1 306	  

to I2, increased LFY activity induces floral meristem identity by directly activating AP1 307	  

transcription and reducing GA levels, such that SPL9 recruits DELLA proteins to the 308	  

regulatory region of AP1 (Weigel et al., 1992; Wagner et al., 1999; Yamaguchi et al., 309	  

2014). Therefore, in the absence of CHR4 function, attenuated LFY transcription 310	  

likely contributes to a delay in the transition to the I2 phase, as reflected by the 311	  

increased number of cauline leaves in qem2. 	  312	  

CHR4 protein localisation in planta and identification of in vivo protein 313	  

interactors of CHR4  314	  

Chromatin remodelers are often recruited to target genes by specific transcription 315	  

factors. Therefore, to further understand its mode of action during the floral transition, 316	  

we identified proteins that interact with CHR4. We used the transgenic plants 317	  

described above that express a fusion of VENUS fluorescent protein and CHR4 318	  

expressed from its native promoter (pCHR4:CHR4-VENUS). We analyzed the 319	  

expression pattern of this CHR4-VENUS protein by confocal microscopy and 320	  

compared it to the results of in situ hybridization analysis of CHR4 mRNA. CHR4-321	  

VENUS was localized to the nucleus and its spatial pattern was similar to the mRNA 322	  

pattern detected by in situ hybridization in the SAM, floral organs, and young leaves 323	  

(Supplemental Figure 6). 324	  

To identify protein interactors, we immunoprecipitated CHR4-VENUS protein 325	  

from inflorescence tissue and 5-week-old SD apical-enriched tissue using anti-GFP 326	  

antibodies and used p35S-YFP transgenic plants as a negative control. Proteins that 327	  

specifically co-immunoprecipitated with CHR4-VENUS were identified by protein 328	  

mass spectrometry (Methods). In total, 136 and 342 proteins were significantly (FDR 329	  

= 0.01) enriched in inflorescences and 5-week-old SD apex enriched tissue, 330	  

respectively. The CHR4-interacting proteins in inflorescences included the floral 331	  

homeotic MADS-domain transcription factors AP1, SEP3, PI and AP3 (Table 2 and 332	  

Supplemental Data Set 3). The reciprocal experiment of immunoprecipitating AP1 333	  
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was performed with gAP1:GFP plants and CHR4 was detected among the 334	  

coimmunoprecipitated proteins (Supplemental Data Set 3 and Supplemental 335	  

Figure 7). Taken together, these results confirm the previous finding that CHR4 336	  

could be co-immunoprecipitated with AG, AP3, PI, SEP3 and AP1 (Smaczniak et al., 337	  

2012). Moreover, SEP1 and SEP2 were also found here to be interaction partners of 338	  

CHR4 in inflorescence tissues (Table 2, Supplemental Data Set 3, Supplemental 339	  

Figure 7). In addition to floral homeotic proteins, other MADS-domain proteins were 340	  

found to interact with CHR4 in inflorescences, including AGL6 and the fruit- and 341	  

ovule-specific protein SHATTERPROOF2 (SHP2) (Favaro et al., 2003) (Table 2, 342	  

Supplemental Data Set 3, Supplemental Figure 7). 	  343	  

Other classes of transcription factors involved in the floral transition were 344	  

identified in CHR4 complexes. Notably, SPL2, SPL8, and SPL11 were found to be 345	  

interaction partners in inflorescences, whereas SPL13 was identified as a partner in 346	  

inflorescences and enriched apices (Table 2, Supplemental Data Set 3, 347	  

Supplemental Figure 7). Furthermore, TARGET OF EARLY ACTIVATION 348	  

TAGGED1 (TOE1), an AP2-domain transcription factor that represses the floral 349	  

transition (Aukerman and Sakai, 2003), also interacted with CHR4 in enriched apices. 350	  

A further list of transcription factors and chromatin remodellers identified as CHR4 351	  

interactors is provided in Table 2 and Supplemental Data Set 3.	  352	  

These experiments demonstrated that CHR4 associates in vivo with several 353	  

transcription factors of the MADS, SPL, and AP2 classes that contribute to the floral 354	  

transition and floral meristem identity.  355	  

Genome-wide effects of CHR4 on histone modifications and gene expression  356	  

Proteins from the CHD3 group that includes CHR4 can participate in different 357	  

chromatin remodelling pathways and either repress or activate gene expression, 358	  

depending on the factors with which they associate. For example, PKL associates 359	  

with genes enriched in trimethylation of histone H3 lysine 27 (H3K27me3), which is 360	  

related to gene repression (Zhang et al., 2008; Zhang et al., 2012), and maintains 361	  

this epigenetic state (Carter et al., 2018). In addition, PKL reduces H3K27me3 at 362	  

specific target genes in particular tissues and environments (Jing et al., 2013). 363	  

Changes in H3K27me3 and H3K4me3 were also reported in the rice (Oryza sativa) 364	  

mutant of a CHR4 homologue (Hu et al., 2012). To test whether CHR4 regulates 365	  

gene expression by influencing histone modifications, we compared global 366	  
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H3K27me3 and H3K4me3 levels in Col-0 and chr4-2 plants (Supplemental Figure 367	  

8). No clear difference in the global frequency of these histone marks was observed 368	  

between the two genotypes, suggesting that CHR4 does not affect the total 369	  

accumulation of these histone modifications. 	  370	  

To test whether CHR4 affects the deposition of these histone marks at specific 371	  

loci, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to 372	  

compare genome-wide H3K27me3 and H3K4me3 levels in Col-0 and chr4-2. 373	  

H3K27me3 and H3K4me3 ChIP-seq experiments were performed on three biological 374	  

replicates for each genotype (see Methods). In total, 10,194 H3K27me3-marked 375	  

regions and 15,992 H3K4me3-marked regions were identified in the two genotypes 376	  

(Supplemental Data Set 4). Quantitative comparison with DANPOS2 (Chen et al., 377	  

2013) revealed a subset of regions with significant differences (FDR < 0.05) in 378	  

H3K27me3 or H3K4me3 levels between Col-0 and chr4-2. In total, 857 regions were 379	  

differentially marked with H3K27me3 and 1,032 regions were differentially marked 380	  

with H3K4me3 (Supplemental Data Set 4). Notably, hypermethylated as well as 381	  

hypomethylated regions were identified in chr4-2 (Figure 6A). The genes 382	  

differentially marked with H3K27me3 included regulators of key hormonal pathways 383	  

involved in the floral transition, such as GIBBERELLIN 3-OXIDASE1 (GA3ox1) and 384	  

GA3ox4, which encode GA biosynthesis enzymes. Genes encoding components of 385	  

auxin signalling (ETTIN (ETT) and AUXIN RESISTANT 1 (AUX1)) and an enzyme 386	  

that catabolises cytokinin (CYTOKININ OXIDASE 5 (CKX5)) were also differentially 387	  

marked with H3K27me3 in chr4-2 (Supplemental Data Set 4). Genes differentially 388	  

marked with H3K4me3 included the regulators of the floral transition SPL15, FLORAL 389	  

TRANSITION AT THE MERISTEM1 (FTM1) (Torti et al., 2012), and JUMONJI 390	  

DOMAIN-CONTAINING PROTEIN30 (JMJ30) (Jones et al., 2010; Yan et al., 2014) 391	  

(Supplemental Data Set 4). In addition, 39 genes differentially marked by both 392	  

H3K27me3 and H3K4me3 were detected, including the flowering-time regulators 393	  

miR156D and AGL19 (Supplemental Data Set 4, Figure 6C). 	  394	  

We also examined the extent to which the differentially marked genes were 395	  

also differentially expressed. H3K27me3 is associated with gene repression, and 396	  

therefore, genes with higher H3K27me3 levels in chr4-2 compared to Col-0 were 397	  

expected to be expressed at lower levels in chr4-2 than in Col-0. Indeed, a significant 398	  

overrepresentation (Representation factor: 6.2, p-value < 1.317e-11) of 399	  

downregulated genes was observed among those marked with increased levels of 400	  
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H3K27me3 in chr4-2 (Figure 6B). Among the downregulated and hypermethylated 401	  

genes in chr4-2 was AHL3, encoding an AT-hook protein that regulates vascular 402	  

tissue boundaries in roots (Zhou et al., 2013) (Figure 6C). By contrast, H3K4me3 is 403	  

associated with gene activation and therefore, genes marked with higher H3K4me3 404	  

levels in chr4-2 compared to Col-0 were expected to be expressed at higher levels. 405	  

Indeed, a significant overrepresentation (Representation factor: 10.8, p-value < 406	  

2.176e-48) of upregulated genes between those marked with higher levels of 407	  

H3K4me3 was observed (Figure 6B). Among the upregulated and hypermethylated 408	  

genes in chr4-2 are CHR23, which is involved in stem-cell maintenance at the SAM 409	  

(Sang et al., 2012) and SPL15, a promoter of the floral transition at the shoot 410	  

meristem (Hyun et al., 2016) (Figure 6C). Moreover, spl15 produced fewer cauline 411	  

leaves than the wild type (Schwarz et al., 2008), indicating a premature transition to 412	  

the I2 phase of flower initiation. On the other hand, plants expressing a miR156-413	  

resistant transcript of SPL15 (rSPL15), which leads to an increase in SPL15 protein 414	  

accumulation, produced more cauline leaves than the wild type (Hyun et al, 2016), 415	  

indicating a delay in the transition to the I2 phase of flower initiation, as observed in 416	  

qem2 mutants. 417	  

In conclusion, CHR4 affects H3K27me3 and H3K4me3 levels at a subset of 418	  

loci in the genome, and changes in both histone modifications in chr4-2 are 419	  

significantly correlated with changes in gene expression. Notably, a significant 420	  

increase in H3K4me3 was detected at the SPL15 locus, and a higher level of SPL15 421	  

mRNA was found in chr4-2; these findings are consistent with the premature bolting 422	  

and delay in the transition to the I2 phase of flower initiation observed in chr4-2. 423	  

DISCUSSION 424	  

We performed an enhanced genetic screen to identify regulators of the floral 425	  

transition, and in particular, to focus on endogenous flowering pathways at the shoot 426	  

meristem. To this end, we generated a quintuple mutant background strongly 427	  

impaired in floral responses to environmental stimuli. Mutagenesis of these plants 428	  

identified a chromatin remodeller, CHR4, which plays important roles in the floral 429	  

transition, especially in response to endogenous flowering pathways and during the 430	  

transition from forming cauline leaves with axillary branches (I1) to forming floral 431	  

primordia (I2). 432	  
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The quintuple mutant is strongly impaired in environmental flowering 433	  

responses and flowers via endogenous pathways  434	  

The quintuple mutant showed strongly reduced flowering responses to long 435	  

photoperiods and high ambient temperature. This insensitivity is consistent with the 436	  

loss of function of FT and TSF, which confer photoperiodic responses, and the loss of 437	  

function of FT, TSF and SVP, which are involved in responses to high ambient 438	  

temperature (Yamaguchi et al., 2005; Kumar et al., 2012; Fernandez et al., 2016). 439	  

Therefore, the floral transition in the quintuple mutant is likely promoted by 440	  

endogenous flowering pathways. In support of this conclusion, RNA-seq analysis 441	  

detected higher mRNA levels of several SPL genes in the mutant vs. Col-0. Some of 442	  

these genes, such as SPL15 and SPL4, are negatively regulated by miR156, which 443	  

decreases in abundance as plants proceed from the juvenile to the adult phase (Wu 444	  

and Poethig, 2006; Gandikota et al., 2007; Hyun et al., 2016). Therefore, these SPLs 445	  

were previously considered to be components of an age-related flowering pathway 446	  

(Wang et al., 2009; Hyun et al., 2017). However, the mRNA of SPL8, which is not 447	  

regulated by miR156 but has overlapping functions with the miR156-targeted SPL 448	  

genes (Xing et al., 2010), also increased in abundance in the quintuple mutant, 449	  

suggesting a broader deregulation of this class of transcription factors in this genetic 450	  

background. 	  451	  

Transcriptome profiling of the quintuple mutant also detected differential 452	  

expression of genes encoding enzymes involved in GA biosynthesis, such 453	  

as GA20ox2. Higher GA20ox2 mRNA expression was detected in the quintuple 454	  

mutant compared to Col-0 under SDs. The accumulation of GA4 under SDs in Col-0 455	  

plants coincides with the floral transition and increased abundance of the mRNAs of 456	  

floral meristem identity genes such as LFY (Eriksson et al., 2006). Although the GA 457	  

biosynthesis pathway is complex and includes many enzymatic steps (Yamaguchi, 458	  

2008), GA20ox2 appears to be important for controlling the floral transition, especially 459	  

under SDs (Rieu et al., 2008; Plackett et al., 2012; Andres et al., 2014). SVP reduces 460	  

GA20ox2 transcript levels and GA levels at the shoot apex as part of the mechanism 461	  

by which it represses flowering (Andres et al., 2014). We therefore propose that 462	  

increased GA20ox2 transcription in the quintuple mutant contributes to its higher GA 463	  

levels and earlier floral transition under SDs. In support of this notion, the qem1 464	  

mutation was found to be an allele of GA20ox2 and to delay flowering of the 465	  

quintuple mutant. 	  466	  
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The proposed role for SPLs and GA in causing early flowering of the quintuple 467	  

mutant is consistent with the previous finding that SPL proteins mediate some of the 468	  

effects of GA during reproductive development (Porri et al., 2012; Yu et al., 2012; 469	  

Yamaguchi et al., 2014; Hyun et al., 2016) and that SPL8 regulates several GA-470	  

mediated developmental processes (Zhang et al., 2007). Furthermore, SPL9 and 471	  

SPL15 interact with DELLA proteins, which are negative regulators of GA responses 472	  

that are degraded in the presence of GA (Daviere and Achard, 2013). SPL15 473	  

promotes the transcription of target genes that induce flowering, such as FUL and 474	  

miR172b, and activation of these genes by SPL15 is repressed by interaction with 475	  

DELLAs (Hyun et al., 2016). In Col-0, the role of SPL15 in flowering is particularly 476	  

important under SDs, when floral induction occurs independently of environmental 477	  

cues and is dependent on endogenous processes such as the GA pathway (Hyun et 478	  

al., 2019). By contrast, the DELLA-SPL9 interaction can negatively or positively affect 479	  

transcription, depending on the target genes and the developmental context 480	  

(Yamaguchi et al., 2009; Yu et al., 2012). Taken together, these results demonstrate 481	  

that the floral transition in the sensitized quintuple mutant background involves the 482	  

interdependent functions of GA and SPL proteins. 	  483	  

A chromatin remodeller was identified as a regulator of the floral transition in 484	  

the sensitized screen 485	  

The genetic framework for flowering-time control in Arabidopsis is based on analysis 486	  

of late-flowering mutants identified after mutagenesis of early-flowering accessions 487	  

(Koornneef et al., 1998). However, important regulators were not identified in these 488	  

screens, but were readily found as early-flowering mutants from mutagenising late-489	  

flowering lines (Michaels and Amasino, 1999) or as late-flowering suppressor 490	  

mutants after mutagenesis of transgenic plants or mutants requiring vernalization 491	  

(Chandler et al., 1996; Onouchi et al., 2000). Here, we extended this approach by 492	  

mutagenising a quintuple mutant background that flowered almost independently of 493	  

environmental cues. Until recently, the molecular characterization of mutations 494	  

isolated in such complex backgrounds using classical genetic approaches would 495	  

have been extremely time-consuming and laborious, but this process has been 496	  

simplified by the implementation of bulk-segregant analysis after backcrossing the 497	  

mutant to the progenitor followed by whole-genome resequencing (Abe et al., 2012; 498	  

Hartwig et al., 2012; Schneeberger, 2014).	  499	  
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The second characterized mutation identified in the quintuple mutant 500	  

background, qem2, is an allele of CHR4. This gene encodes a chromatin remodeller 501	  

that was previously identified as a member of protein complexes that include AP1 502	  

and other MADS-box transcription factors (Smaczniak et al., 2012), but its role in 503	  

flowering had not been demonstrated genetically. Nevertheless, several chromatin 504	  

modifiers and remodellers contribute to the regulation of the floral transition (Farrona 505	  

et al., 2008), such as BRAHMA (BRM), a member of the SWI/SNF complex involved 506	  

in nucleosome sliding and/or eviction, and the H3K27me3-specific histone 507	  

demethylase RELATIVE OF EARLY FLOWERING6 (REF6), which acts cooperatively 508	  

with BRM to regulate gene expression during floral development (Farrona et al., 509	  

2004; Lu et al., 2011; Wu et al., 2012; Li et al., 2016; Richter et al., 2019). Also, the 510	  

SWI2/SNF2-RELATED1 (SWR1) complex protein PHOTOPERIOD-INSENSITIVE 511	  

EARLY FLOWERING1 (PIE1) is involved in H2A.Z deposition and delays the floral 512	  

transition (Noh and Amasino, 2003; March-Diaz et al., 2008; Coleman-Derr and 513	  

Zilberman, 2012). Interestingly, PKL and PIE1 were previously proposed to act in the 514	  

same pathway to define and maintain genomic domains with elevated H3K27me3 515	  

levels, suggesting that CHR4 may contribute at different levels within this process 516	  

(Carter et al., 2018). Taken together, mass spectrometry identified several proteins in 517	  

association with CHR4 that are involved in regulating histone modifications as well as 518	  

multiple transcription factors with specific roles in floral meristem identity or the floral 519	  

transition, suggesting that CHR4 functions in different multimeric complexes that 520	  

regulate flowering.	  521	  

 522	  

CHR4 affects the expression of flowering genes by modulating H3K4me3 and 523	  

H3K27me3 levels and affects different stages of the floral transition 524	  

The most closely related protein to CHR4 is another CHD3-like family member, PKL, 525	  

which orchestrates deposition of H3K27me3 and facilitates nucleosome retention 526	  

(Zhang et al., 2008; Zhang et al., 2012; Jing et al., 2013; Carter et al., 2018). In rice, 527	  

loss of function of the CHR4 homologue CHR729 results in changes in the 528	  

abundance of H3K27me3 and H3K4me3 at approximately 56% and 23%, 529	  

respectively, of loci marked by these modifications (Hu et al., 2012). Similarly, we 530	  

observed variation in H3K27me3 or H3K4me3 levels at a subset of loci marked by 531	  

these modifications in chr4-2, indicating a conserved function between rice and 532	  
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Arabidopsis. Notably, we observed higher levels of H3K4me3 at the SPL15 locus in 533	  

chr4-2 vs. the wild type. 	  534	  

The floral transition is considered to be a dual-step process: in the first step, 535	  

the inflorescence meristem produces cauline leaves and axillary branches (I1), and in 536	  

the second phase, it forms floral primordia (I2) (Ratcliffe et al., 1999). Detailed 537	  

phenotypic analysis of chr4 mutants showed that CHR4 affects both these phases 538	  

but with opposite effects. The chr4 mutation accelerates the transition from the 539	  

vegetative meristem to I1 but delays the I1 to I2 transition. The premature transition to 540	  

I1 was reflected by earlier bolting, and this correlated with increased abundance of 541	  

SPL15, SPL4 and FUL mRNA expression. These genes are associated with early 542	  

bolting and flowering, and SPL15 in particular caused premature bolting when its 543	  

expression was increased by mutations that rendered its mRNA insensitive to 544	  

miR156 (Hyun et al., 2016). SPL15 also promotes the meristematic transition from 545	  

vegetative to inflorescence meristem (Hyun et al., 2016). Moreover, spl15 mutants 546	  

produced fewer cauline leaves than the wild type (Schwarz et al., 2008), whereas 547	  

rSPL15 transgenic plants produced more cauline leaves (Hyun et al., 2016), 548	  

indicating that SPL15 extends the I1 phase. We propose that the higher expression of 549	  

SPL15 in chr4 promotes earlier bolting and extends the I1 phase. This increased 550	  

activity of SPL15 could also be enhanced in chr4 by increased activity of the GA 551	  

biosynthetic pathway, as the resulting reduction in DELLA activity would be predicted 552	  

to allow SPL15 to more effectively activate transcription of its target genes, leading to 553	  

premature bolting and more cauline leaves. 	  554	  

Mutant chr4 plants also produced more cauline leaves and required more time 555	  

to open the first flowers than their progenitors, indicating a delay in the I2 transition. 556	  

These mutants also exhibited higher levels of TFL1 and BFT mRNAs; the 557	  

overexpression of these genes delays the I2 transition by repressing AP1 and LFY 558	  

expression (Ratcliffe et al., 1998; Yoo et al., 2010). Consistent with this conclusion, 559	  

the onset of AP1 transcription occurred later in qem2 than in the quintuple mutant 560	  

progenitor, and LFY mRNA was less abundant in qem2 than in the quintuple mutant 561	  

in the RNA-seq time-course at week 6 in SDs. The chr4 mutant phenotype is strongly 562	  

enhanced in the quintuple mutant background, probably explaining why chr4 was 563	  

recovered in the sensitized mutant screen but was not previously identified by 564	  

mutagenesis of Col-0 plants, where it exhibited a strong effect only under SDs. We 565	  
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propose that CHR4 contributes to the floral transition in response to GA signalling 566	  

and that the increased dependency of the quintuple mutant on the GA pathway to 567	  

promote flowering increases the impact of CHR4 loss of function on the floral 568	  

transition. Similarly, the stronger phenotype of chr4-2 in Col-0 under SDs than LDs is 569	  

consistent with a specific role in the floral transition mediated by GA.	  570	  

 In conclusion, the combination of forward genetics and functional gene 571	  

characterization identified CHR4 as a regulator of different stages of the floral 572	  

transition. Immunoprecipitation of CHR4 suggested that it acts in distinct protein 573	  

complexes that contain different transcription factors as well as other chromatin 574	  

remodelling proteins. The contribution of CHR4 within distinct complexes presumably 575	  

explains its pleiotropic effects, even during flowering, where it affects both bolting and 576	  

floral identity during the transition from I1 to I2. Our genome-wide analyses represent 577	  

the first step in understanding the mechanism by which CHR4 affects these 578	  

phenotypes by identifying genes whose expression is altered by H3K27me3 or 579	  

H3K4me3 in chr4 mutants. Further studies are now required to link the specific 580	  

protein complexes in which CHR4 contributes to histone changes on defined targets. 581	  

Attempts to perform ChIP-seq on pCHR4:CHR4-VENUS lines did not succeed, but 582	  

pursuing this approach in the future would define the genome-wide sites with which 583	  

CHR4 associates and help define its effects on the histone marks at direct target 584	  

genes. Such approaches would help determine the mechanisms by which CHR4 585	  

regulates gene expression and allow this mechanism to be compared with that of 586	  

PKL, which cooperates with PIE1 and CLF at target genes to maintain elevated 587	  

H3K27me3 levels (Carter et al., 2018). 	  588	  

 589	  

METHODS 590	  

Plant materials, growth conditions, and phenotypic analysis 591	  

For all studies, Arabidopsis thaliana Columbia (Col-0) ecotype was used as the wild 592	  

type (WT). To construct the svp-41 flc-3 ft-10 tsf-1 soc1-2 quintuple mutant, svp-41 593	  

flc-3 FRI plants (Mateos et al., 2015) were first crossed to svp-41 ft-10 tsf-1 soc1-2 594	  

ful-2 plants (Andres et al., 2014). The F1 plants were self-fertilized and the F2 595	  

progeny were genotyped for each mutation except ful-2, which was scored 596	  

phenotypically. Approximately 1,000 F2 plants were grown in soil under LD conditions 597	  

and DNA was extracted from those that flowered later than Col-0. Genotyping was 598	  
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performed to identify plants that carried all mutations, lacked the FRI introgression, 599	  

and were homozygous for FUL in the F3 generation. chr4-2 corresponds to 600	  

SAIL_783_C05. Homozygous mutant plants were selected by PCR using specific 601	  

primers (Supplemental Data Set 5).	  602	  

Seeds were immersed in 0.1% melt universal agarose (Bio-Budget 603	  

Technologies GmbH) for three days at 4°C in darkness for stratification. Plants were 604	  

grown in soil under controlled conditions of LDs (16 h light/8 h dark) and SDs (8 h 605	  

light/16 h dark) at 21°C or 27°C. The light intensity was 150 µmol⋅m-2⋅s-1 under all 606	  

conditions. The growth-chamber is equipped with fluorescent tube bulbs from Philips 607	  

(F17T8/TL841 ALTO-T8) to supply wavelengths from 430 to 650 nm, and 608	  

supplemented with LEDs to provide light in the far-red spectrum. As a proxy for 609	  

flowering time, the number of rosette and cauline leaves on the main shoot was 610	  

counted as well as the number of days to bolting and first flower opening. 611	  

Ethylmethanesulfonate (EMS) treatment of seeds 612	  

For EMS treatment, 200 mg (~10,000) seeds of the quintuple mutant were wrapped 613	  

in Miracloth and immersed in 0.1% KCl solution on a shaker at 4°C for 14 h. The 614	  

seeds were washed with ddH2O and treated with 100 mL 30 mM EMS diluted in 615	  

ddH2O on a magnetic stirrer in a fume hood overnight (8–9 h). The seeds were 616	  

washed twice with 100 mL 100 mM sodium thiosulfate for 15 min and three times 617	  

with 500 mL ddH2O for 30 min. After washing, the seeds were immersed in 2 L 0.1% 618	  

agarose. Approximately 50 seeds in 10 mL agarose were sown as the M1 generation 619	  

in 9 × 9 cm pots using plastic pipettes. The M1 plants were grown and self-fertilized, 620	  

and seeds were harvested in bulks of 50 M1 plants. One hundred and forty-six M2 621	  

bulked families were screened for plants showing altered flowering time. 622	  

GA treatment 623	  

The GA4 stock (Sigma, Cat. G7276-5MG) was prepared in 100% ethanol with a final 624	  

concentration of 1 mM. GA treatments were performed by spraying 2-week-old plants 625	  

under SDs with either a GA solution (10 µM GA4, 0.02% Silwet 77) or a mock solution 626	  

(1% ethanol, 0.02% Silwet 77). Spraying was performed twice weekly until the plants 627	  

bolted. 628	  

Selection of mutants and sequencing 629	  
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Approximately 10 M2 generation seeds from each M1 plant were sown. Screening for 630	  

potential mutants was initially performed under LD greenhouse conditions, and all 631	  

plants were grown together with the quintuple mutant and Col-0 plants as a 632	  

reference. Individuals that flowered later or earlier than the quintuple mutant in the M2 633	  

population were selected. These M2 putative mutants were self-fertilized and 634	  

rescreened in the M3 generation. Approximately 24 M3 progeny of each potential 635	  

mutant were grown under the same conditions to test the heritability of the 636	  

phenotype. M3 plants were backcrossed to the quintuple mutants to generate BC1F1 637	  

seeds. The BC1F2 offspring of such a cross formed the isogenic mapping population. 638	  

Approximately 70 plants showing the mutant phenotype were selected from a 639	  

population of ~300 BC1F2 plants. One leaf sample of each selected plant was 640	  

harvested and pooled. Leaf material from the quintuple plants was also harvested as 641	  

a control. Genomic DNA was extracted from both pools and sent for Illumina 642	  

sequencing with a depth of approximately 80-fold coverage. Reads were aligned to 643	  

the TAIR10 reference genome using SHORE (Schneeberger et al., 2009). 644	  

SHOREmap (Schneeberger et al., 2009; Sun and Schneeberger, 2015) was used to 645	  

identify polymorphisms, and those present in approximately 100% of reads in the 646	  

identified mutant but absent from the progenitor were identified as candidates for the 647	  

causal mutation.	  648	  

In situ hybridization 649	  

In situ hybridization was performed as previously described (Bradley et al., 1993), 650	  

with minor modifications. Instead of Pronase, proteinase K (1 mg/mL in 100 mM Tris, 651	  

pH 8, and 50 mM EDTA) was used for protease treatment by incubating at 37°C for 652	  

30 min. Post-hybridization washes were performed in 0.1× SSC instead of the 653	  

original 2× SSC with 50% formamide. The sequences of primers used to generate 654	  

the probes are listed in Supplemental Data Set 5. For each genotype and time point, 655	  

3 independent apices were analyzed. 	  656	  

RNA extraction and RNA-seq analysis 657	  

Total RNA was extracted from 15 shoot apices after removing all visible leaves under 658	  

a binocular for each of the three independent biological replicates using an RNeasy 659	  

Plant Mini Kit (Qiagen) and treated with DNase (Ambion) to remove residual genomic 660	  

DNA. Library for sequencing was prepared using an Illumina TruSeq library 661	  

preparation kit according to the manufacturer’s protocol. Sequencing was performed 662	  
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using Illumina the HiSeq3000 platform in 150-bp single reads. For each sample, 663	  

approximatively 15,000,000 reads were generated. FastQC was used to assess 664	  

quality control parameters 665	  

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To estimate expression 666	  

levels, the RNA-seq reads were mapped to the A. thaliana TAIR10 (Lamesch et al., 667	  

2012) reference genome (ftp://ftp.arabidopsis.org/home/tair) using TopHat2 under 668	  

default settings (Kim et al., 2013), except that only a single alignment was permitted 669	  

per read and the coverage-based junction search was disabled (settings: -g 1 –no-670	  

coverage-search). Samtools was used to sort and index BAM alignment files and to 671	  

calculate BAM file statistics (Li et al., 2009). HTSeq was used to tabulate the number 672	  

of reads mapping to each genomic feature, with counts tabulated only for genes that 673	  

completely overlapped a given feature (Anders et al., 2015). We used the Wald test 674	  

implemented in DESeq2 to detect differentially expressed genes for pair-wised 675	  

comparison. To visualise the expression levels of candidate genes, the expression 676	  

level for each gene was calculated as transcripts per million (TPM).	  677	  

ChIP-seq experiment and data analysis 678	  

Three independent biological replicates for each genotype were generated. For each 679	  

sample, 1 g plant material was used per biological replicate. Material was collected 680	  

from plants grown in SD at 21°C for 5 weeks (5–6 h after lights on). Using jeweler’s 681	  

forceps, leaves with elongated petioles were removed to obtain SAM-enriched 682	  

tissues. ChIP experiments were performed following a previously published protocol 683	  

(Kaufmann et al., 2010) with minor modifications. Samples were sonicated in a water 684	  

bath Bioruptor (Diagenode) four times for 5 min each of 15 sec on and 15 sec off, 685	  

with a 1-min incubation between each sonication treatment. After the preclearing 686	  

step, the sample was split into three aliquots: the first aliquot was incubated with anti-687	  

H3K27me3 antibody (Active Motif, Cat. 39155, Lot. 25812014), the second one was 688	  

incubated with anti-H3K4me3 antibody (Millipore, Cat.17–614, Lot.1973237) and the 689	  

third one with anti-H3 antibody (ab1791, Abcam). Samples were prepared for Illumina 690	  

sequencing using the Ovation Ultralow V2 DNA-Seq Library Preparation Kit from 691	  

Tecan Genomics according to the manufacturer’s protocol. H3K27me3 and 692	  

H3K4me3 enrichment was tested by ChIP-qPCR before and after library preparation.	  693	  

Libraries were analyzed on the Bioanalyzer and quantified with the qBit before 694	  

sequencing on the HiSeq3000. Samples were sequenced in a 150-bp single reads 695	  

run. 696	  
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FASTQ files were mapped to the A. thaliana genome TAIR10 using Bowtie 697	  

(Langmead et al., 2009) with default parameters. Clonal reads were removed using a 698	  

customised python script. Reproducibility between biological replicates was assessed 699	  

using the Spearman correlation for the genome-wide read distribution at each pair of 700	  

replicates using DeepTool (Ramirez et al., 2014). The “multiBamSummary” function 701	  

was used with default parameters except for “bin size”, which was set to 1 kb and the 702	  

“plotCorrelation” function of deepTools2 in Galaxy (http://deeptools.ie-703	  

freiburg.mpg.de/) (Supplemental Figure 9). H3K27me3 and H3K4me3 modified 704	  

regions were identified with DANPOS2 (Chen et al., 2013). The “Dpeak” function in 705	  

DANPOS2 was used with default parameters, except for the parameter – l (read 706	  

extension length), which was set to 300 bp, the mean size of the DNA in the samples 707	  

after sonification. Genomic regions were associated with genes if located within the 708	  

start and the end of the gene using a customised python script.	  709	  

Plasmid construction 710	  

Cloning of the CHR4 locus was performed based on polymerase incomplete primer 711	  

extension (Klock and Lesley, 2009) with modifications for large fragments and 712	  

multiple inserts. All PCR amplifications were performed with Phusion Enzyme (New 713	  

England BioLabs) following the manufacturer’s recommendations. The constructs 714	  

pCHR4:CHR4-pDONR207 (18.4 kb) and pCHR4:CHR4:9AV-pDONR207 (19 kb) 715	  

were generated as follows. Primers Q810 and Q811 were used to amplify the CHR4 716	  

promoter (3.6 kb) and the PCR products were cloned into pDONR207 by BP reaction 717	  

to generate the pCHR4-pDONR207 construct. The primer pairs Q058 and Q814, and 718	  

Q815 and Q816 were used to amplify a fragment containing 9xala-VENUS (9AV) (0.7 719	  

kb) and the 3´UTR of CHR4 (3.8 kb), respectively. Overlap PCR with primers Q058 720	  

and Q816 was performed to fuse the amplicons. The primers Q817 and Q818 were 721	  

used to linearize the construct pCHR4-pDONR207. The amplicons were mixed with 722	  

linearized pCHR4-pDONR207 to construct the plasmid pCHR4:9AV:3’URTCHR4-723	  

pDONR207. The obtained plasmid was linearized with primers Q835 and Q836 and 724	  

mixed with the coding sequence of CHR4 (8.5 kb) amplified with primers Q819 and 725	  

Q820 to construct the plasmid pCHR4:CHR4:9AV-pDONR207 (called pCHR4:CHR4-726	  

VENUS in the text). All primers used for molecular cloning are listed in 727	  

Supplemental Data Set 5. Subsequently, the plasmids were cloned into the binary 728	  

vector pEarleyGate301 (Earley et al., 2006) by LR reaction and transformed into E. 729	  



24	  
	  

coli DH5-α-cells before being transformed into Agrobacterium tumefaciens GV3101 730	  

cells (Van Larebeke et al., 1974).	  731	  

Plant transformation and selection 732	  

Plants (Col-0 and svp flc ft tsf soc1) were transformed by the floral-dip method 733	  

(Clough and Bent, 1998). Transformants were selected by spraying twice with 734	  

BASTA. The progenies were grown on plates with 1× Murashige and Skoog (MS) 735	  

medium (Murashige and Skoog, 1962) containing sucrose and 10 µg mL-1 736	  

phosphinotricin (PPT) to test for segregation and to select for single locus insertion 737	  

lines and homozygosity in the following generations. Alternatively, the nondestructive 738	  

ppt leaf assay was used to assess resistance to PPT. One young leaf per plant was 739	  

harvested and placed on a plate with 1 MS without sucrose with 10 µg mL-1 PPT. The 740	  

plates were incubated for four days. 	  741	  

Confocal microscopic analyses 742	  

To visualise VENUS expression in shoot meristems, the method of (Kurihara et al., 743	  

2015) was used with minor modifications. Shoot apices were collected and placed in 744	  

ice-cold 4% paraformaldehyde (PFA; Sigma-Aldrich) prepared in phosphate-buffered 745	  

saline (PBS) at pH 7.0. The samples were vacuum infiltrated twice for 10 min each 746	  

time, transferred to fresh 4% PFA, and stored at 4°C overnight. The next day, the 747	  

samples were washed in PBS twice for 10 min each and cleared with ClearSee (10% 748	  

xylitol, 15% sodium deoxycholate and 25% urea) at room temperature for ~1 week. 749	  

The samples were then transferred to fresh ClearSee solution with 0.1% 750	  

Renaissance 2200 and incubated in the dark overnight. The shoot meristems were 751	  

imaged by confocal laser scanning microscopy (Zeiss LSM780) using settings 752	  

optimised to visualise VENUS fluorescent proteins (laser wavelength, 514 nm; 753	  

detection wavelength, 517–569 nm) and Renaissance 2200 (laser wavelength, 405 754	  

nm; detection wavelength, 410–510 nm).	  755	  

Sample preparation and LC-MS/MS data acquisition 756	  

Three independent biological replicates for each genotype (gCHR4-VENUS and 757	  

p35S-YFP), each consisting of 1 g plant material were generated. For inflorescence 758	  

tissues, plants were grown in LD at 21°C, whereas SAM-enriched tissue samples 759	  

were collected from plants growing in SD at 21°C for 5 weeks (5–6 h after lights on). 760	  

Using jeweler’s forceps, leaves with elongated petioles were removed to obtain SAM-761	  
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enriched tissues. Nuclei were isolated according to a published protocol (Kaufmann 762	  

et al., 2010). Samples were sonicated in a Bioruptor (Diagenode) water bath four 763	  

times, 5 min each of 15 sec on and 15 sec off, with a 1-min incubation between each 764	  

sonication treatment. Sonicated samples were centrifuged twice at 4°C for 10 min. 765	  

The supernatants were transferred to a clean tube. After adding 40 µL GFP-trap 766	  

Agarose beads from Chromotek (gta-20) and 10 µL Benzonase, the samples were 767	  

incubated at 4°C for 2 hr. After incubation, the GFP-trap beads were washed four 768	  

times with 1 mL wash buffer (750 µL 5M NaCl, 1.25 mL Tris-HCl pH 7.4 in 25 mL 769	  

H2O). Immunoprecipitated samples enriched with GFP-trap beads were submitted to 770	  

on-bead digestion. In brief, dry beads were re-dissolved in 25 µL digestion buffer 1 771	  

(50 mM Tris, pH 7.5, 2M urea, 1 mM DTT, 5 µg µL-1 trypsin) and incubated for 30 min 772	  

at 30°C in a Thermomixer with 400 rpm. Next, the beads were pelleted and the 773	  

supernatant was transferred to a fresh tube. Digestion buffer 2 (50 mM Tris, pH 7.5, 774	  

2M urea, 5 mM CAA) was added to the beads. After mixing and centrifugation, the 775	  

supernatant was collected and combined with the previous one. The combined 776	  

supernatants were incubated overnight in the dark at 32°C in a Thermomixer at 400 777	  

rpm. The digestion was stopped by adding 1 µL trifluoroacetic acid (TFA) and the 778	  

samples were desalted with C18 Empore disk membranes according to the StageTip 779	  

protocol (Rappsilber et al., 2003).	  780	  

Dried peptides were re-dissolved in 2% acetonitrile (ACN), 0.1% TFA (10 µL) 781	  

for analysis and measured without dilution. The samples were analyzed using an 782	  

EASY-nLC 1200 (Thermo Fisher) coupled to a Q Exactive Plus mass spectrometer 783	  

(Thermo Fisher). Peptides were separated on 16-cm frit-less silica emitters (New 784	  

Objective, 0.75 µm inner diameter), packed in-house with reversed-phase ReproSil-785	  

Pur C18 AQ 1.9 µm resin (Dr. Maisch). Peptides (0.5 µg) were loaded onto the 786	  

column and eluted for 115 min using a segmented linear gradient of 5% to 95% 787	  

solvent B (0 min: 5%B; 0–5 min -> 5%B; 5–65 min -> 20%B; 65–90 min ->35%B; 90–788	  

100 min -> 55%; 100–105 min ->95%, 105–115 min ->95%) (solvent A 0% ACN, 789	  

0.1% FA; solvent B 80% ACN, 0.1%FA) at a flow rate of 300 nL min-1. Mass spectra 790	  

were acquired in data-dependent acquisition mode using the TOP15 method. MS 791	  

spectra were acquired in the Orbitrap analyzer with a mass range of 300–1750 m/z at 792	  

a resolution of 70,000 FWHM and a target value of 3 × 106 ions. Precursors were 793	  

selected with an isolation window of 1.3 m/z. HCD fragmentation was performed at a 794	  

normalized collision energy of 25. MS/MS spectra were acquired with a target value 795	  
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of 105 ions at a resolution of 17,500 FWHM, a maximum injection time of 55 ms, and 796	  

a fixed first mass of m/z 100. Peptides with a charge of +1, greater than 6, or with an 797	  

unassigned charge state were excluded from fragmentation for MS2. Dynamic 798	  

exclusion for 30s prevented repeated selection of precursors. 799	  

Data analysis 800	  

Raw data were processed using MaxQuant software (version 1.5.7.4, 801	  

http://www.maxquant.org/) (Cox and Mann, 2008) with label-free quantification (LFQ) 802	  

and iBAQ enabled (Tyanova et al., 2016). MS/MS spectra were searched by the 803	  

Andromeda search engine against a combined database containing A. thaliana 804	  

sequences (TAIR10_pep_20101214; ftp://ftp.arabidopsis.org/home/tair/Proteins/ 805	  

TAIR10_protein_lists/) and sequences of 248 common contaminant proteins and 806	  

decoy sequences. Trypsin specificity was required and a maximum of two missed 807	  

cleavages allowed. Minimal peptide length was set to seven amino acids. 808	  

Carbamidomethylation of cysteine residues was set as fixed and oxidation of 809	  

methionine and protein N-terminal acetylation as variable modifications. Peptide-810	  

spectrum-matches and proteins were retained if they were below a false discovery 811	  

rate of 1%. Statistical analysis of the MaxLFQ values was carried out using Perseus 812	  

(version 1.5.8.5, http://www.maxquant.org/). Quantified proteins were filtered for 813	  

reverse hits and hits “identified by site”, and MaxLFQ values were log2-transformed. 814	  

After grouping the samples by condition, only proteins that had two valid values in 815	  

one of the conditions were retained for subsequent analysis. Two-sample t-tests were 816	  

performed with a permutation-based FDR of 5%. Alternatively, quantified proteins 817	  

were grouped by condition and only hits that had three valid values in one of the 818	  

conditions were retained. Missing values were imputed from a normal distribution (0.3 819	  

width, 2.0 downshift, separately for each column). Volcano plots were generated in 820	  

Perseus using an FDR of 1% and an S0 = 1. The Perseus output was exported and 821	  

further processed using Excel. ANOVA tables are shown in Supplemental Data Set 822	  

6.823	  

824	  

Accession Numbers 825	  

The sequence of the genes and loci described here can be obtained from TAIR using 826	  
the following gene identifiers: CHR4 (AT5G44800), SVP (AT2G22540), FLC 827	  
(AT5G10140), SOC1 (AT2G45660), FT (AT1G65480), TSF (AT4G20370), GA20ox2 828	  
(AT5G51810) and SPL15 (AT3G57920). 829	  
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830	  

The Illumina sequencing data have been deposited to the GEO with the dataset 831	  

identifier GSE140728. The mass spectrometry proteomics data have been deposited 832	  

to the ProteomeXchange Consortium via the PRIDE (Vizcaino et al., 2016) partner 833	  

repository with the dataset identifier PXD016457.	  834	  

835	  
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863	  

864	  

Table 1. Candidate SNPs in qem2 annotated in genes. 865	  

Chr1 Pos2 R3 M4 N5 AF6 Sh7 Region8 Gene ID9 Type10 AR11 AM12 Name 
5 16,021,261 C T 60 0.87 40 CDS At5g40010 Nonsyn G S ASD 
5 17,457,889 C T 38 1 40 CDS At5g43450 Nonsyn D N 
5 18,031,708 G A 27 1 40 CDS At5g44690 Nonsyn R STOP 
5 18,089,069 G A 52 1 40 CDS At5g44800 Nonsyn A V CHR4 
5 19,281,739 G A 40 0.93 40 CDS At5g47530 Nonsyn G E 
5 19,572,635 G A 17 0.94 32 3‘UTR At5g48300 ADG1 
5 19,637,792 G A 43 0.96 40 CDS At5g48460 Nonsyn A V ATFIM2 
5 20,946,101 G A 49 0.83 40 CDS At5g51560 Nonsyn G S 

866	  
1 Chr: chromosome. 2 Position: position of the mutated nucleotide. 3 R: nucleotide in the reference genome (svp 867	  
flc ft tsf soc1). 4 M: nucleotide in qem2. 5 N: number of reads supporting the mutation. 6 AF: allele frequency. 7 Sh: 868	  
SHORE Score (max. 40). 8 Region: region of the locus where the mutation was identified. 9 Gen ID: gene 869	  
identifier. 10 Type: type of mutation (nonsynonymous or synonymous). 11 AR: amino acid in the reference genome 870	  
(svp flc ft tsf soc1). 12 AM: amino acid inqem2.  871	  

Table 2. List of CHR4 
interacting proteins. SAMs with younger leaves at 5w-SD-stage 

Gene ID Name No. Of Unique Peptides 
(IP1-IP2-IP3) 

Sequence Coverage (%) 
(IP1-IP2-IP3) 

log2 ratio p-value

AT5G44800 CHR4 142 (128-130-114) 59.6 (55.2-55.9-53.7) 10.41 1.43E-05 

TRANSCRIPTION FACTORS 
AT1G69120 AP1  - -  - - 
AT5G20240 PI  - -  - - 
AT3G54340 AP3  - -  - - 
AT5G15800 SEP1  - -  - - 
AT3G02310 SEP2  - -  - - 
AT2G45650 AGL6  - -  - - 
AT2G42830 SHP2  - -  - - 
AT3G13960 GRF5 7 (6-5-4) 18.1 (15.9-13.9-9.6) 6.05 2.16E-04 
AT4G37740 GRF2 6 (6-5-3) 17.4 (17.4-15.3-9.5) 5.19 1.90E-05 
AT5G43270 SPL2  - -  - - 
AT1G02065 SPL8  - -  - - 
AT1G27360 SPL11  - -  - - 
AT5G50670 SPL13 5 (5-4-2) 19.2 (19.2-15-6.7) 4.84 2.20E-03 
AT2G28550 TOE1 5 (5-5-3) 15.4 (15.4-15.4-8.7) 4.01 1.89E-03 
AT3G02150 TCP13 5 (4-4-3) 18 (18-18-10.4) 4.21 2.20E-02 

CHROMATIN REMODELLER 
AT2G46020 BRM 37 (30-31-16) 24.2 (19.3-19.7-10.8) 2.68 8.95E-04 
AT1G08600 ATRX 23 (19-22-6) 13.9 (11.7-13.3-5.5) 5.23 9.14E-05 
AT5G04240 ELF6 10 (8-10-1) 11.7 (7.8-11.7-0.8) 3.09 2.20E-03 
AT2G28290 SYD 27 (21-21-15) 11.1 (7.9-7.9-5.9) 3.09 1.19E-03 
AT2G25170 PKL 19 (17-17-14) 19.8 (16.7-17.4-14.8) 2.71 5.48E-04 
AT3G12810 PIE1 18 (14-15-9) 11.5 (9.9-9.8-6.8) 3.23 6.26E-03 
AT5G18620 CHR17 17 (15-15-8) 44.1 (42.4-42.4-25.3) 2.85 5.34E-04 
AT3G06400 CHR11 12 (11-10-10) 45.1 (41.9-41.7-30.3) 2.90 6.86E-04 
AT3G48430 REF6 27 (22-25-18) 23.4 (18.8-21-17) 2.92 2.49E-03 
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AT5G11530 EMF1 10 (7-8-3) 10.4 (6.9-8.3-3.5) 5.12 1.12E-04 
AT2G06210 ELF8 14 (12-13-9) 15.9 (11.8-13.6-11.2) 2.72 2.50E-03 
AT5G53430 SDG29 5 (4-5-2) 8 (7-8-4.5) 4.40 8.19E-03 
AT4G02020 SWN 3 (2-1-2) 4.8 (3-1.3-3) 2.40 5.04E-03 

General transcriptional coregulators 
AT3G07780 OBE1 14 (13-13-8) 31.3 (29.7-31.3-20.8) 6.47 7.02E-05 
AT5G48160 OBE2 23 (21-17-9) 41.5 (40.8-30.1-19.3) 5.16 3.03E-03 
AT1G15750 TPL 12 (11-10-9) 31.7 (27-26.9-24.4) 3.93 3.17E-04 
AT1G80490 TPR1 9 (8-7-6) 25.4 (23.6-22.5-17.5) 4.59 2.03E-03 
AT3G16830 TPR2 8 (7-6-4) 13.5 (12.6-10.2-5.1) 3.57 1.99E-02 
AT2G32950 COP1 7 (6-7-2) 12.7 (11.7-12.7-4.3) 3.99 4.02E-03 
AT2G46340 SPA1 10 (7-10-3) 13.2 (9.2-13.2-3.6) 2.72 3.80E-02 
AT1G43850 SEU 12 (11-10-6) 18.1 (16.9-12.9-9.9) 3.69 2.49E-03 

Inflorescence under LDs 

Gene ID Name No. Of Unique Peptides 
(IP1-IP2-IP3) 

Sequence Coverage (%) 
(IP1-IP2-IP3) 

log2 ratio p-value

AT5G44800 CHR4 117 (114-99-114) 51.4 (51.4-49.7-51.2) 8.76 1.09E-04 
TRANSCRIPTION FACTORS 
AT1G69120 AP1 12 (8-3-7) 34 (21.5-10.2-24.2) 3.55 1.24E-02 
AT5G20240 PI 8 (6-3-8) 31.7 (25.5-11.5-31.7) 6.31 3.36E-03 
AT3G54340 AP3 7 (7-5-7) 31.5 (31.5-19-31.5) 4.56 4.63E-02 
AT5G15800 SEP1 2 (2-1-2) 23.5 (23.5-17.1-21.9) 4.06 2.63E-02 
AT3G02310 SEP2 3 (2-1-2) 32.8 (23.6-17.2-22) 4.05 4.47E-03 
AT2G45650 AGL6 3 (3-2-3) 10.3 (10.3-10.3-10.3) 3.78 9.16E-03 
AT2G42830 SHP2 4 (4-3-4) 29.3 (29.3-24-29.3) 4.88 6.01E-03 
AT3G13960 GRF5 4 (3-3-4) 13.6 (9.1-9.1-13.6) 3.62 3.28E-02 
AT4G37740 GRF2 1 (1-1-1) 3.2 (3.2-3.2-3.2) 1.39 2.17E-01 
AT5G43270 SPL2 4 (4-4-4) 17.2 (17.2-17.2-17.2) 5.30 3.32E-03 
AT1G02065 SPL8 4 (4-2-4) 18.3 (18.3-12-18.3) 3.93 1.40E-02 
AT1G27360 SPL11 8 (5-2-7) 27 (17.8-10.2-21.9) 5.57 1.53E-03 
AT5G50670 SPL13 4 (3-1-4) 13.9 (11.1-3.1-13.9) 3.68 4.96E-03 
AT2G28550 TOE1  - -  - - 
AT3G02150 TCP13 6 (5-3-5) 18.3 (15.5-10.1-15.5) 3.96 5.85E-03 
CHROMATIN REMODELLER 
AT2G46020 BRM 24 (13-12-18) 13 (8.6-8.4-10) 2.57 2.36E-02 
AT1G08600 ATRX 28 (20-18-24) 18.3 (13.8-13.3-16.3) 4.64 2.59E-03 
AT5G04240 ELF6 4 (4-1-4) 5.8 (5.8-0.7-5.8) 2.63 5.22E-02 
AT2G28290 SYD 21 (19-12-20) 8 (7.6-4.6-8) 3.70 4.76E-02 
AT2G25170 PKL 26 (23-18-24) 23.6 (23-17.4-20.9) 3.49 1.38E-02 
AT3G12810 PIE1 7 (4-3-6) 4.5 (3.2-2.6-4.1) 1.89 1.04E-01 
AT5G18620 CHR17 14 (11-13-12) 37.4 (35.6-32.6-37.2) 2.97 1.49E-02 
AT3G06400 CHR11 17 (13-9-14) 41.3 (39.2-32-39.1) 2.34 9.72E-03 
AT3G48430 REF6 33 (27-17-29) 28.8 (24.8-12.9-24.5) 2.21 1.39E-02 
AT5G11530 EMF1 7 (6-3-7) 8.5 (7.8-2.9-8.5) 3.31 1.96E-02 
AT2G06210 ELF8  - -  - - 
AT5G53430 SDG29 7 (4-1-5) 10.6 (7-2.5-7.2) 1.99 3.08E-02 
AT4G02020 SWN 3 (2-2-2) 4.2 (2.5-2.5-2.5) 1.52 3.13E-02 
General transcriptional coregulators 
AT3G07780 OBE1 12 (7-6-8) 26 (17.8-14.7-20.7) 4.12 3.47E-03 
AT5G48160 OBE2 11 (9-5-11) 26.3 (21.3-12.9-26.3) 3.73 6.56E-03 
AT1G15750 TPL  - -  - - 
AT1G80490 TPR1  - -  - - 
AT3G16830 TPR2  - -  - - 
AT2G32950 COP1 4 (3-3-3) 6.7 (5.6-5.6-5.6) 1.17 1.63E-01 
AT2G46340 SPA1 3 (1-1-2) 4.4 (1.4-1.4-2.6) 1.75 9.65E-03 
AT1G43850 SEU 7 (6-2-6) 9.8 (9.7-3.6-8.6) 3.55 2.64E-03 

872	  
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Figure 1. Phenotypic and molecular characterization of the quintuple mutant svp flc ft tsf soc1. 
(A) Days to bolting and (B) leaf number of plants grown under LD-21°C, SD-21°C and SD-27°C
compared with Col-0. At least 17 plants were analyzed for each genotype. The data were analyzed with
one-way ANOVA using Tukey’s HSD as a post-hoc test. Different letters indicate significant differences
(p ≤ 0.05). Whiskers represent a distance of 1.5 times the interquartile range.  (C) In situ hybridization
analysis of FUL mRNA accumulation in shoot apical meristems of different genotypes grown in short
days (SDs). Plants were harvested each week between 2 and 6 weeks after germination. Scale bar =
50 μm. (D) Transcriptional profile comparisons in apices of svp flc ft tsf soc1. The analysis focuses on
genes implicated in flowering time control. The data are represented as a heatmap to highlight
upregulated (red) and downregulated genes (blue). Gene expression changes are represented as log2-
fold changes. (E) Box plots from RNA-seq data showing differential expression of SPL9, SPL15, FD,
FUL and AGL6 in the apices of svp flc ft tsf soc1 and Col-0 under SDs. The Y axis shows transcripts
per kilobase million (TPM). The X axis shows time of sampling as weeks after sowing. Whiskers
represent distance from the lowest to the largest data point.



Figure 2. Molecular genetic analysis of qem2. (A) Leaf number at flowering of plants grown under 
LDs. Twelve plants were analyzed per genotype. The data were compared with one-way ANOVA using 
Tukey’s HSD as a post-hoc test. Different letters indicate significant differences (p ≤ 0.05). Whiskers 
represent the distance of 1.5 times the interquartile range.  (B) Images of qem2 and svp flc ft tsf soc1 
plants approximately 50 days after germination, showing that qem2 produces more leaves than svp flc 
ft tsf soc1 under LDs. (C) Allele frequency (AF) estimates for EMS-induced mutations. Local AFs indicate 
that the qem2 mutation localized to chromosome (chr) 5. (D) Leaf number for svp flc ft tsf soc1, qem2, 
gCHR4 qem2 and gCHR4-VENUS qem2 plants under LDs. At least 11 plants per genotype were 
analyzed. The data were compared with one-way ANOVA using Tukey’s HSD as a post-hoc test. 
Different letters indicate significant differences (p ≤ 0.05). Whiskers represent a distance of 1.5 times 
the interquartile range. 



Figure 3. Characterization of CHR4. (A) Schematic representation of the CHR4 locus showing the 
position of the mutation in qem2 and the T-DNA insertion site (chr4-2). The CHR4 protein domains are 
illustrated: a plant homeodomain (PHD) zinc finger (blue), a chromo domain (red), a SNF2-related 
helicase/ATPase domain (green) and a DNA-binding domain (yellow). The EMS-induced protein 
sequence change is located within the SNF2-related helicase/ATPase domain. (B) Leaf number, (C) 
cauline leaf number, (D) days to bolting and flowering and (E) number of days from bolting to flowering 
of Col-0, chr4-2, svp flc ft tsf soc1 and qem2 plants grown under short days (SDs). At least 17 plants 
were analyzed for each genotype. The data were compared with one-way ANOVA using Tukey HSD as 
a post-hoc test. Different letters indicate significant differences (p ≤ 0.05). Whiskers represent a distance 
of 1.5 times the interquartile range.  (F) 12-week-old plants growing in SDs. Red arrows indicate first 
open flower. Scale bar = 10 cm (G) Rosettes of Col-0, chr4-2, svp flc ft tsf soc1 and qem2 plants after 
38 days and 43 days of growth in SDs. Scale bar = 1 cm (H) Rosette leaf number of Col-0, chr4-2, svp 
flc ft tsf soc1 and qem2 plants grown under SDs from 3 weeks to 7 weeks. 18 plants were analyzed for 
each genotype. Error bars represent standard deviation of the mean. * indicates significant differences 
(p-value < 0.05) between Col-0 and chr4-2 (blue) or svp flc ft tsf soc1 and qem2 (red). 



Figure 4. Temporal and spatial patterns of expression of the floral meristem identity gene AP1 in 
Col-0, chr4-2, svp flc ft tsf soc1 and qem2. In situ hybridization analysis of AP1 mRNA accumulation 
in the shoot apical meristems of plants under SDs. The genotypes analyzed are shown together with 
the number of weeks (w) after germination when material was harvested. For each time point and 
genotype, three independent apices were examined with similar results. Scale bar = 50 μm. 



Figure 5. Transcriptional changes in chr4 mutants. (A) Transcriptional profile comparisons 
represented as a heatmap to highlight genes implicated in flowering time control that are significantly 
upregulated (red) or downregulated (blue) in chr4-2 compared to WT. Gene expression changes are 
represented as log2-fold change. (B) Box plots from RNA-seq data showing FD, TFL1, FUL, and SPL4 
transcript levels in apices of chr4-2 and Col-0 under SDs. The Y axis shows transcripts per kilobase 
million (TPM). The X axis shows time of sampling as weeks after sowing. Whiskers represent distance 
from the lowest to the largest data point. (C) Transcriptional profile comparisons represented as a 
heatmap to highlight genes implicated in flowering time control that are significantly upregulated (red) 
or downregulated (blue) in qem2 compared to svp flc ft tsf soc1. (D) Box plots from RNA-seq data 
showing FUL, SPL4, LFY and BRC1 transcript levels shown as transcripts per kilobase million (TPM) in 
apices of qem2 and svp flc ft tsf soc1 under SDs. The Y axis shows transcripts per kilobase million 
(TPM). The X axis shows time of sampling as weeks after sowing. Whiskers represent distance from 
the lowest to the largest data point. 



Figure 6. Histone modification variation in chr4-2. (A) Scatterplots showing H3K27me3 and 
H3K4me3 enrichment between Col-0 and chr4-2 in apices of five- week-old plants grown under SDs. 
Blue and orange dots represent significantly more highly methylated regions at FDR = 0.05 in Col-0 and 
chr4-2, respectively. (B) Venn diagram showing the overlap between differentially expressed genes 
(DEGs) and genes differentially marked by H3K27me3 and H3K4me3. (C) H3K27me3 and H3K4me3 
profiles and expression of AHL3, AGL19, CHR23 and SPL15. 
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