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Abstract: The transition to reproduction is a crucial step in the life cycle of any organism. In
Arabidopsis thaliana the establishment of reproductive growth can be divided into two phases: Firstly,
cauline leaves with axillary meristems are formed and internode elongation begins. Secondly, lateral
meristems develop into flowers with defined organs. Floral shoots are usually determinate and
suppress the development of lateral shoots. Here, we describe a transposon insertion mutant in the
Nossen accession with defects in floral development and growth. Most strikingly is the outgrowth
of stems from the axillary bracts of the primary flower carrying secondary flowers. Therefore,
we named this mutant flower-in-flower (fif). However, the transposon insertion in the annotated
gene is not the cause for the fif phenotype. By means of classical and genome sequencing-based
mapping, the mutation responsible for the fif phenotype was found to be in the LEAFY gene. The
mutation, a G-to-A exchange in the second exon of LEAFY, creates a novel Ify allele and results in
a cysteine-to-tyrosine exchange in the «1-helix of LEAFY’s DNA-binding domain. This exchange
abolishes target DNA-binding, whereas subcellular localization and homomerization are not affected.
To explain the strong fif phenotype against these molecular findings, several hypotheses are discussed.

Keywords: Arabidopsis thaliana; floral development; flower morphology; Ds transposon;
classical/sequencing-based mapping; LEAFY; DNA-binding

1. Introduction

The development of flowers is indispensable for the reproductive success of angiosperm plants.
During vegetative growth, the shoot apical meristem (SAM) develops leaves and/or branches, the latter
with their own SAMs. After the switch to reproductive growth, the apical meristems give rise to flowers.
Floral development differs crucially from vegetative shoot growth, as the flower possesses several
types of organs of which the number, arrangement and morphology are species-specific. Furthermore,
the development of lateral shoots is inhibited in flowers and floral shoots are determinate after the last
reproductive organs have been initiated [1-3]. Thus, the coordination of complex molecular processes
is necessary for successful floral development.

There has been significant progress in recent years towards understanding the molecular
mechanisms underlying flower formation [4-8]. Central to this was the identification and cloning of
the genes that initiate and maintain floral development in plant species, including Arabidopsis thaliana.
The most intriguing discovery was the Arabidopsis loss-of-function mutants with structures that are
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intermediate between floral and vegetative shoots. The cloning of the corresponding genes revealed
the existence of the master regulators required for the floral initiation process. To date, five regulatory
master genes are known: LEAFY (LFY), APETALA1 (AP1), CAULIFLOWER (CAL), APETALA2 (AP2)
and UNUSUAL FLORAL ORGANS (UFO) [3]. LFY and AP1 play a primary role in initiating the floral
program, as the corresponding loss-of-function mutants do not generate shoots with floral characteristics
and the ectopic expression of either gene induces precocious flower formation [9-11]. LFY, AP1 and
CAL encode for transcription factors and are expressed predominantly in floral primordia [12-14].

During plant vegetative growth, LFY expression increases in newly formed leaves until a certain
threshold is reached [15]. LFY then induces the expression of AP1/CAL genes by activation of the
AP1/CAL promoters. Through their mutual transcriptional up-regulation, LFY and AP1/CAL cooperate
to cause the floral transition [16,17]. Once the floral meristem is established, the floral initiation gene
functions govern its spatial patterning by inducing the expression of the floral homeotic ABC genes,
such as AP2, AP3, Pistillata (PI) and AGAMOUS (AG). The ABC gene functions in turn control the
identity of the stereotypically arranged Arabidopsis floral organs [18,19].

In the course of our study of the influence of abiotic stress on flower symmetry, we searched for
novel insertion mutants with defects in floral development or morphology in different Arabidopsis
thaliana accessions. We focused on genes that had not yet been linked to flowering. A Ds transposon
insertion mutant, which developed secondary inflorescences with partially aberrant flowers and had
an aberrant growth phenotype, was identified in the No-0 accession. The wild type allele of the gene
carrying the Ds transposon codes for a cystein/histidine-rich C1 domain protein [20,21]. However, a
thorough genetic analysis revealed that the transposon-inserted allele is not the cause of the observed
floral and developmental phenotype. Using classical mapping and mapping-by-sequencing, we
eventually found a novel mutant allele of LFY to be responsible for the aberrant floral development,
flower morphology and addressed the molecular reason for LFY malfunction.

2. Results

2.1. The Flower-in-Flower (fif) Transposon Insertion Line Displays a Novel Flower Phenotype

In order to identify novel Arabidopsis thaliana mutants with defects in flowering we screened
the RIKEN Arabidopsis Phenome Information Database (RAPID; [22]). RAPID also covers a Ds
transposon mutant collection in the Arabidopsis Nossen-0 (No-0) background [23,24]. We identified a
transposon-tagged line (15-3794-1), which developed secondary inflorescences with partially aberrant
flowers (Figure 1a). Because of this phenotype, we named this Arabidopsis mutant flower-in-flower (fif).

Wild type Arabidopsis flowers does not have bracts but consist of four concentric rings of four
sepals, four petals, six stamens and two fused carpels (Figure 1c). In contrast, the primary flower of
the fif mutant had bracts as well as sepals but the petals were incompletely developed or entirely
missing (Figure 1b). In addition, there were either no stamens or the stamens displaying an aberrant
development (Figure 1b). Furthermore, there were more than two carpels per flower, which were not
or only partially overgrown and sterile. Most obvious, however, was the outgrowth of stems from the
axillary meristems of the leaf-like sepal structures, which carried terminal secondary flowers (1d). A
few secondary fif flowers showed a wild type-like phenotype and were fertile (Figure 1b,d).
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Figure 1. Flower phenotype of the Arabidopsis thaliana (No-0) flower-in-flower (fif) mutant. (a) Overview

over a representative fif mutant “inflorescence” displaying different flower types 1 to 4. (b) Floral
organs of the primary fif flower (1) and different secondary fif flowers (2—4). (c) Flower of the wild
type No-0 accession. (d) Primary flowers of the fif mutant with stems that outgrow from axillary bract
meristems (red arrow heads) and carry secondary flowers. Size bar: 1 mm.

Furthermore, the fif mutant plant displayed an aberrant growth habitus compared to wild type
No-0 (Figure 2a,b). The “bushy” appearance of the fif mutant was due to an enhanced number of
stem-born side branches compared to wild type No-0, whereas the number of rosette-born side shoots
was the same in fif and wild type No-0 plants (Figure 2c). Furthermore, the stem length of the fif
mutant plants a month after sowing showed a different size distribution compared to wild type No-0
and Col-0 (Figure 2d). Whereas the majority of the stem length of the No-0 and Col-0 plants was at
0 cm and between 0.5 and 3.0 cm, the fif plants by majority exhibited stem lengths between 3 and
8 cm (Figure 2d). In addition, the fif mutant plants showed extended vegetative growth and, therefore,
delayed flowering compared to wild type No-0 and Col-0 as indicated by the enhanced number of
rosette leaves until flowering (Figure 2e).
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Figure 2. Growth habitus and flowering time of wild type No-0, wild type Col-0 and fif mutant plants.
Overview over the growth habitus and magnification of the inflorescence of 6.5-weeks old wild type
No-0 (a) and fif plants (b), grown side-by-side in the greenhouse. Size bar: 5.0 cm. (c¢) Number of
rosette-born side branches and stem-born side branches of wild type No-0 (white bars) and fif (black
bars) plants. Error bars indicate the standard deviation of the mean. The statistical significance
(nNo-0 = 33, ngr = 25) was testet by two-sited t-test (***: p =2 X 1023). (d) Relative distribution of
stem length in wild type No-0, wild type Col-0 and fif mutant plants 31 days after sowing (ncej.0 =7,
nNo-0 = 16, ngr = 89). (e) Number of rosette leaves at the onset of senescence for wild type No-0, wild
type Col-0 and fif mutant plants. The data are presented in Box-and-Whisker plots including the median
(thick line), the upper and lower quartile (+/— 25%, white boxes) and the maximum and minimum
(dottet line). The statistical significance (nNo-0 = 4, Ncolo = 9, ngr = 38) was tested with ANOVA
followed by a Tukey honest significant difference post-hoc test (*: p < 0.05; **: p < 0.01; ***: p < 0.001).

2.2. The Transposon Insertion is Not Responsible for the fif Phenotype

According to the RIKEN RAPID and our own genotyping results, the Ds transposon was located
in the second exon of the gene At1¢20990 that codes for a putative cysteine/histidine-rich C1 domain
protein with a yet unknown function. To validate, whether the mutant allele of the At1¢g20990 locus is
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actually the cause for the fif phenotype, we performed a (co-) segregation analysis by backcrossing
the fif mutant with wild type No-0 in both directions (2fif X "No-0, ?No-0 X J'fif). Irrespective
of the direction, the crosses were successful as demonstrated by PCR on genomic DNA extracted
from F1 plants using Ds transposon- and At1¢20990-specific primers (Figure S1). All tested F1 plants
were heterozygous for the Ds transposon and wild type At1¢20990 and displayed wild type floral
organs and growth (Figure S1). Therefore, the mutation that causes the fif phenotype is recessive.
Next, six F1 plants were self-fertilized and 20 to 30 progenies each analysed for their pheno- and
genotypes, respectively. As shown in Figure 3a, around one quarter of the F2 plants displayed the fif
phenotype indicating that it is caused by a single mutant gene. Intriguingly, our genotyping results
showed that the Ds transposon insertion did not co-segregate with the fif phenotype: 29% of the
fif phenotype-displaying plants did not contain the transposon, an additional 45.8% contained the
transposon insertion only heterozygously (Figure 3a). These results prove that the Ds insertion into the
At1g20990 locus is not the cause for the fif phenotype.
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Figure 3. Segregation analysis and mapping of the mutant locus causal for the fif mutant phenotype.
(a) Segregation of the floral phenotype and the Ds transposon insertion within the combined F,
population of (2fif X & No-0) and (?No-0 x J'fif) backcrosses showing either the wild type (78.4%) or
the fif floral phenotype (21.6%) (left) and distribution of the transposon insertions within the plants of
the F, population that displayed the fif floral phenotype (right); white circle outcut: no transposon
insertion (29.2%), striped outcut: heterozygous for the Ds transposon insertion (45.8%), black outcut:
homozygous for the Ds transposon insertion (25.0%). (b,c) Insertion and DELetion INDEL marker-
and single nucleotide polymorphism (SNP)-based derived cleaved amplified polymorphic sequences
(dCAP) marker-associated containment of the fif locus using a mapping population generated by a
cross of the fif mutant (No-0) with wild type Col-0. Schematic representation of the Arabidopsis thaliana
chromosome 5 (sizes in MB) and the localization of the chromosome-specific INDEL markers initially
used for mapping (codes above blue lines) (b). Schematic representation of the g-arm of chromosome
5 and the localization of INDEL (codes above the blue lines) and SNP-based dCAP markers (codes
above red lines) used for fine mapping (c). The pie charts show the distribution of the No-0 and
Col-0 genotypes for chromosome 5 (b) and the g-arm of chromosome 5 (c). White circular outcut:
homozygous for Col-0, striped outcut: heterozygous for Col-0/No-0, black outcut: homozygous for
No-0; red dot: localization of the centromere.
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2.3. The fif Phenotype is Caused by a Novel Allele of LEAFY (LFY)

To identify the mutant locus genetically responsible for the fif phenotype, we combined a classical
mapping [25-27] with a mapping-by-sequencing approach [28,29]. To establish a mapping population,
fif mutant plants (No-0) were crossed in both direction with plants of the Col-0 accession. Irrespective
of the crossing direction, all the F1 plant displayed a wild type phenotype. Eight F1 plants were
self-fertilized and 1582 F2 plants characterized phenotypically. In accordance with the self-crossing
results described above, around 25% of the F2 plants (437 of the 1582) showed the fif phenotype. Leaf
material was harvested from 425 of the 437 F2 plants in groups of 15 to 20 individuals; in addition,
leaf material from 200 F2 plants was collected individually. Genomic DNA was extracted and used
for classical mapping. Using chromosome-specific INsertion and DELetion (INDEL) markers [27]
the mutant locus was mapped to the g-arm of chromosome 5 (Figure 3b). Two additional INDEL
markers and two single nucleotide polymorphism (SNP)-based derived cleaved amplified polymorphic
sequences (dCAP) markers [25,26] limited the quantitative trait locus (QTL) responsible for the fif
phenotype to the terminal end of chromosome 5’s g-arm (Figure 3¢, dCAP S5-24: 99% No-0).

To establish the exact localization of the mutant locus, we deep-sequenced the total genome
of 245 homozygous fif mutant plants derived from the fif (No-0) x WT (Col-0) crosses described
above, and determined the frequencies of No-0 and Col-0 alleles along the chromosomes. Whereas
the heterozygous distribution of No-0 and Col-0 sequences was found to be equal with respect to
chromosomes 1 to 4 (Figure S2a—d), there was a very significant deviation towards No-0 sequences at
the terminal end of chromosome 5 (Figure 4a). A detailed examination of this 300 kb stretch revealed
100% identity with the No-0 sequence (Figure 4b). This sequence stretch conformed with the QTL
identified by the classical mapping.

A detailed comparison of the fif and wild type No-0 sequence in this 300 kb stretch revealed a
single SNP, which did not result in a silent mutation but caused a change in a codon. This SNP was
also found in all the 143 individually tested fif mutant plants and reflected a single guanine-to-adenine
exchange in the second exon of the LEAFY (LFY) gene (At5g61850, Figure 4c). This mutation caused
a cysteine-to-tyrosine amino acid exchange at position 263 in the DNA-binding domain of the LFY
protein (Figure 4d). To prove that this point mutation causes the fif phenotype, we transformed the
fif mutant (No-0) with constructs coding for wild type LFY-GFP under the control of the Arabidopsis
ubiquitin 10 (UBI10) promoter. The functionality of C- (and N-terminal) GFP fusions of LFY was
previously shown by the genetic complementation of the /fy-12 mutant phenotype [30]. Although
expressed to a very low level, LFY-GFP was detectable inside the nucleus of cells of the transgenic fif
mutant plants and complemented the fif phenotype (Figure 5).
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Figure 4. Identification of the fif-related SNP in the second exon of the LEAFY (LFY) locus on
chromosome 5 by genome sequencing of a mapping population generated by a cross of the fif mutant
(No-0) with wild type Col-0. (a) Allele frequency analysis of the No-0 genotype within chromosome 5
of the recombinant mutant pool. Each red circle refers to a SNP marker distinguishing the No-0 and
Col-0 genotypes. The blue line refers to a 200 kb sliding window analysis of the allele frequencies. The
brown line and blue box highlight the estimated mapping intervals (x-axis: genomic location; y-axis:
Nos allele frequency). (b) Like (a), but only showing the 300 kb mapping interval. (c) Sequence of
the LFY gene showing the fif SNP (G to A exchange, red) and the resulting amino acid exchange (C
to Y, red) within the DNA-binding domain of the LFY protein. Green boxes: [3-sheets; blue boxes:
a-helices. (d) Structural representation of the wild type LFY dimer bound to DNA according to Hames
and colleagues (2008). The o1 helix in the monomers is shown in magenta and the cysteine (C) in
yellow that are mutated to tyrosine (Y) in the fif mutant.
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Figure 5. Complementation of the fif mutant phenotype by the UBI10 promoter-driven expression
of wild type LFY-GFP. (a) Inflorescence (left) and confocal image of epidermal cells (right) of a
representative non-transformed fif mutant plant. (b) As in (a), but for a representative LFY-GFP
transgenic plant in the fif mutant background. The fluorescent nuclei are highlighted by arrowheads.
Three independent transgenic lines were obtained displaying nuclear localization of LFY-GFP and in
parallel the complementation of the fif phenotype.

2.4. LFYFF Impairs DNA-Binding Capability but Shows Wild Type Intracellular Localization
and Homomerization

Having identified a new LFY allele to be responsible for the fif phenotype, we next analysed the
putative consequences of the Cys263-to-Tyr exchange for LFY protein properties at molecular and
cellular level.

To test a putative alteration in subcellular localization, a C-terminal GFP fusion of wild type LFY
and a C-terminal RFP fusion of the mutant LFY version (LFYF) were co-expressed under the control
of the UBQ10 promoter in transiently transformed Nicotiana benthamiana epidermal leaf cells. As
shown in Figure 6a, LFY-GFP and LFYF'F-RFP localised to the cytoplasm and the nucleus in a similar
manner. The observed fluorescence pattern of LFY-GFP and LFYF'F-RFP is in accordance with the
pattern previously reported for the expression of fluorophore-tagged LFY fusion proteins in tobacco
epidermal leaf cells [31].

Next, we tested by in vivo FRET-FLIM whether LFY protein—protein interaction, here especially
LFY homomerization [31], was altered. To do so, C-terminal GFP fusions (FRET donors) and
C-terminal RFP fusions (FRET acceptors) were transiently expressed, either individually (donor
only) or in combination in N. benthamiana epidermal leaf cells and the fluorescence lifetime of the
donor fusion was measured. As shown in Figure 6b, the fluorescence lifetimes of LFY-GFP and
LFYHF-GFP were similar in the absence of the acceptor fusions. However, the lifetimes of LFY-GFP and
LFYHF-GFP decreased significantly when they were co-expressed with either LFY-RFP or LFYFF-RFP
demonstrating homotypic (LFY-LFY, LFYFF-LFYFF) and heterotypic (LFY-LFYF) homomerization in
planta (Figure 6b). There was no significant difference in the interaction properties of the homotypic
and heterotypic homomers (Figure 6b).
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Figure 6. Comparative analysis of the intracellular localization and homomerization capacity of LFY
and LFYFIF, (a) Confocal fluorescence images of transiently transformed Nicotiana benthamina epidermal
leaf cells expressing LFY-GFP and LFYFIF-RFP in the same cell. Size bar: 5 um. (b) FRET-FLIM analysis
of the homo- and heterotypic interaction of LFY and LFYFF LEFY-GFP or LFYFF-GFP were expressed
either alone or together with the indicated RFP fusions and the fluorescence lifetime of the GFP fusions
measured in the nuclei. A reduction of the GFP fluorescence lifetime indicates interaction. The data are
presented in Box-and-Whisker plots including the median (thick line), the upper and lower quartile
(+/— 25%, white boxes), the maximum and minimum (dottet line) and outlier points (1 > 20, each). The
variance was analyzed by a Levene test and statistical significance was determined with an all-pair,
two-sided Kruskal-Wallis test followed by an all-pair Steel-Dwass test (**: p < 0.01; ***: p < 0.001).

The Cys263-to-Tyr exchange is located in the first «-helix of the LFY DNA-binding domain
(Figure 4d). We, therefore, used a quantitative DNA-protein interaction ELISA approach
(qDPI-ELISA; [32]) to test whether the mutation interferes with the DNA-binding capability of
LFY in vitro. We expressed N-terminally GFP-tagged full-length LFY, LFY't and GFP, in E. coli
independently and applied the crude extracts containing the fusion proteins or GFD, in identical
amounts, based on the GFP fluorescence and Western-blotting, to ELISA plates in two dilutions
(Figure 7). The plates were covered with double-stranded (ds) DNA oligonucleotides representing
either the LFY-binding sequence of the AP1 promoter (pAP1), a mutated pAP1 version (pAP1m) that
is not recognized by LFY [17], a random sequence without any similarity to the LFY binding motif
(C28M12), or were uncovered. The DNA-binding efficiency of the proteins was recorded by determining
the GFP fluorescence of the bound proteins [32]. GFP-LFY exhibited a specific binding to pAP1 and no
binding to any other oligonucleotide or to the oligonucleotide-free ELISA plate (Figure 7). In contrast,
GFP-LFYFIF, like GFP or the E. coli crude extract without recombinant protein, was unable to recognize
pAP1 or any other oligonucleotide (Figure 7). To exclude the possibility that the Cys263-to-Tyr exchange
may alter the DNA-binding specificity we used a quantitative DPI-ELISA based in vitro approach to
screen a dsDNA oligonucleotide library representing 4096 randomized DNA hexamers [33,34] with
GFP-LFY- and GFP-LFY F-containing E. coli extracts. With this approach it is possible to narrow down
the target dsDNA site of almost any DNA-binding GFP-tagged fusion protein of interest in vitro [32].
Whereas an in vitro DNA-binding sequence was obtained for GFP-LFY (5'-GGGC-3'/3’-CCCG-5’),
there was no DNA-binding of GFP-LFY!'F to any oligonucleotide in the library.
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Figure 7. Comparative analysis of the in vitro DNA-binding capacity of LFY and LFYFIF using a
GFP-fluorescence-based DPI-ELISA approach. GFP-LFY, GFP-LFYFF and GFP were expressed in E. coli.
After extraction, crude extracts containing either no recombinant protein (w/o protein) or, based on GFP
fluorescence, equal amounts of GFP or the GFP fusion proteins were added to ELISA plates covered
with either the double-stranded (ds) DNA oligonucleotide pAP1, which contains a LFY binding site, an
altered version of pAP1 (pAP1m), in which the binding site was mutated, a dsDNA oligonucleotide
unrelated to the pAP1 and pAP1m sequences (C28M12) or without any DNA-oligonucleotide. The
amount of DNA-bound fusion protein was detected by reading out the GFP fluorescence. The crude
extract was either used undiluted (black bars) or in a 1:4 dilution (grey bars). Error bars indicate the
standard deviation of the mean (n = 3) and asterisk statistically significant differences to the background
fluorescence (dotted horizontal line), determined by two-sided t-test (*: p < 0.05; **: p < 0.01). The inlet
shows a Western-blot of the crude extracts using a GFP polyclonal antiserum for detection of GFP,
GFP-LFY and GFP-LFY!™F as well as a Coomassie stain as loading control.

3. Discussion

In our search for novel floral genes in Arabidopsis thaliana we identified the fif Ds transposon
insertion mutant in the No-0 accession in the RIKEN RAPID collection [23,24]. fif mutant plants
display a striking floral phenotype and inflorescence architecture, as they develop aberrant and infertile
primary flowers in combination with short stems that emerge from vegetative meristems in the axillars
of the bracts and carry fertile secondary flowers.

The Ds transposon insertion in the genome of the fif mutant was annotated to gene At1g20990.
However, as demonstrated here, the Ds transposon insertion into the At1g20990 locus is not the cause
for the fif phenotype. Obviously, another mutant locus generated somewhere else in the genome,
most likely during transposon movement, is responsible for the fif phenotype. Using combined
classical and genome sequencing-based mapping approaches and complementation of the mutant
phenotype by UBI10-driven expression of wild type LFY-GFP in the fif mutant, the causal mutation for
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the fif phenotype was found to be in the LFY gene. In contrast to LFY overexpression by the strong
35S promoter in Nossen [35], the UBI10-driven expression of wild type LFY-GFP in the fif mutant
background did not cause primary shoot termination and conversion of axillary meristems into solitary
flowers. We ascribe this to the very low accumulation of LFY-GFP that can hardly be detected in the
nuclei of the stably transgenic Arabidopsis cells.

The fif phenotype-causing mutation is a single G-to-A exchange in the second exon of LFY, creating
the novel, recessive Ify allele. The mutation causes a Cys-to-Tyr exchange at position 263 in the LEYFIF
amino acid sequence. The cell biological analysis of LFY-GFP and LFY"'F-GFP revealed an intracellular
localization in the cytoplasm and nucleus of tobacco epidermal leaf cells identical to that previously
reported for LFY-GFP [31]. Thus, a mis-localisation cannot be the cause of the LEYFF malfunction. In
addition, as shown by quantitative FRET-FLIM interaction studies the mutation does not interfere with
the oligomerization capacity of LFY that is essential for its floral function [36]. Especially the latter
result was to be expected as the domain, required for oligomerization is located at the N-terminus of
LFY [36].

However, our quantitative DPI-ELISA assay demonstrated that, in contrast to LFY-GFP, LFYFIF-GFP
lost its capacity to bind to its DNA target in vitro, as it is present, for instance, in the AP1 promoter [17].
Furthermore, the in vitro DPI-ELISA based screen for the determination of putative alterations in
binding specificity did not reveal any DNA-binding activity for LFY'F-GFP, whilst a defined sequence
was found for LFY-GFP. This sequence did not perfectly match the LFY consensus sequence identified by,
for instance, in vivo chromatin immunoprecipitation [37]. However, this discrepancy is very likely due
to the design of the dsDNA oligonucleotides (e.g., the region flanking the hexameric core) used for the
library and the applied in vitro conditions [33,34] that could modify LFY-GFP’s binding characteristics.

According to the available crystal structure of the DNA-bound dimer, Cys263 is well conserved
between the LFY homologs of many plant species but has never previously been reported to be
crucial for DNA-binding [38]. Intriguingly, Cys263 does not contribute to the physical contact of
LFY with DNA; however, the al-helix, in which Cys263 is positioned, participates in the cooperative
DNA-binding of LFY, as it facilitates the establishment and stabilization of the DNA-binding domains
in the minor and major grove of DNA [38]. Therefore, the change of the relatively small Cys to the
bulky, aromatic Tyr might prevent the folding of the ct1-helix and thereby might restrict the cooperative
binding of LFY to its target DNA.

The total failure of LFYFIF to bind to DNA explains the strong floral phenotype of especially the
primary flowers. LFY is one of the master regulators in the floral initiation process of Arabidopsis (and
other plant species) and controls, together with other factors and via a complex regulatory network, the
spatiotemporal expression of downstream genes and also of the homeotic flower genes required for
flower organ formation. Although only a single amino acid exchange is affected, fif mirrors in principle
the flower phenotype of known strong Ify alleles. However, of the more than 15 described Ify alleles [12],
the six alleles that show such a strong floral phenotype produce shortened LFY polypeptides caused
by either premature stop codons (Ify-1, Ify-6, Ify-7, Ify-8, Ify-11) or a non-sense frame shift C-terminal of
GIn196 (Ify-15). Hence, the strong phenotype of the fif allele needs a different explanation: LFYF'f may
titrate out interaction partners by binding them and not binding to DNA. Thereby, LFY!'F increases its
own phenotype.

The failure of LFY'F to bind to DNA also explains the growth architecture of the fif mutant. It
has been shown [10,12] that mutations in [fy can cause the emergence of axillary meristems instead of
floral meristems resulting in an enhanced number of side branches. In addition, the expression of a
nearly full-length LFY version with weaker in vitro DNA-binding capacity under the LFY promoter
dramatically reduced in vivo transcriptional activity of [LFYara(a40)] in the Col-0 accession. This
causes the formation of shoot-like structures in positions where flowers should outgrow [39].

Taken together, our data demonstrate the general importance of Cys263 for LFY function not only
in floral development but also in axillary meristem outgrowth in Arabidopsis.
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Most intriguingly, the fif floral phenotype appears to be specific for the No-0 accession, as, to our
knowledge, it has never been reported for the Col-0 or any other accession. However, the fif phenotype
also becomes manifest in the Col-0 accession when the fif locus of No-0 is transferred to Col-0. This
phenomenon might be explained by differences in the spatio-temporal transcriptional activity of
the No-0 and Col-0 LFY loci during vegetative meristem and floral development. Therefore, the fif
phenotype may only be visible in other accessions such as Col-0 when the No-0 locus is artificially

YFIF

introduced into them and drives LF accumulation there.

4. Materials and Methods

4.1. Plant Material and Arabidopsis thaliana Transformation

Seeds of the homozygous Ds transposon insertion line 15-3794-1 and the corresponding wild-type
accession (No-0) were obtained from the RIKEN Arabidopsis Phenome Information database (RAPID; [22].
Agrobacterium tumefaciens-mediated transformation of the fif mutant with pUGTI1-LFY leading to
LHY-GFP expression and selection of transgenic lines were carried as described previously [40].

4.2. Plasmid Construction

Using gene-specific primers [sense (S): 5'-caccATGGATCCTGAAGGTTTCACG-3’, antisense
(A): 5-GAAACGCAAGTCGTCGCCG-3’) the cDNA of LFY was amplified from pSST14
(gift Jan Lohmann, University of Heidelberg, Germany) and cloned in pENTR™/D-TOPO®.
Site-directed mutagenesis (SDM) was performed to produce the fif c¢cDNA using the
following primers (S: 5’-CTGTTCCACTTGTACGAACAATaCCGTGAGTTCCTTCTTCAG-3’, A:
5-CTGAAGAAGGAACTCACGGIATTGTTCGTACAAGTGGAACAG-3'). With Gateway™ LR
Clonase™ II Enzyme mix the LFY cDNA was inserted into pUGT1-Dest (A. Hahn, unpublished) and
pB7RWG2-Dest [41] for plant expression and into pET-Dest42GFP [32] for E. coli expression.

4.3. Classical Mapping and Mapping by Genome Sequencing

Genetic mapping was accomplished using 100 phenotypic fif plants collected from a F2 population
derived from a cross between fif (No-0) and Col-0. The mapping strategy and the molecular markers
used to identify the causal locus were described by Pacurar, Pacurar, Street, Bussell, Pop, Gutierrez
and Bellini [27]. After mapping of the chromosome arm and next-generation sequencing (NGS, see
below) the point mutation was confirmed by derived cleaved-amplified polymorphic sequence primers
designed by using the dCAPS Finder 2.0 software [25]. One or two mismatches were introduced in
one of the used primers to incorporate an allele-specific restriction site into the PCR product. After
amplification, the PCR products were digested (enzymes from Thermo Scientific, city, country, USA)
following the manufacturer’s recommendations and separated on a 4% agarose gel. All used markers
are listed in Table S1.

NGS mapping was performed using a pool of 425 phenotypic fif plants from the crossing described
above. A pool of 40 wild-type No-0 plants was sequenced to generate a genome-wide marker list
and to mine the fif genome for acquired mutations. Isolation of genomic DNA was performed in
groups up to 20 plants using the DNeasy® Plant Mini Kit (QIAGEN, Venlo, Netherlands) following
the manufacturer’s recommendations. DNA concentration was determined with the use of NanoDrop
ND-1000 and the whole pool composed by using 100 pg DNA of each group. Sequencing was
performed at the Max Planck-Genome-Centre Cologne by a HiSeq2500 (Illumina, San Diego, CA, USA)
Sequencer producing ~35.000.000 read-pairs for each pool. Short reads of both pools were respectively
aligned against the Col-0 reference sequence (TAIR10) and SNPs were called using shore pipeline
(version v0.8) with GenomeMapper (version v0.4.4s) with default parameters [42,43]. Genome-wide SNP
markers were defined with filtering for sequencing coverage and allele frequency using SHOREmap
(version 3.0, [29,44,45]. Sliding window-based estimation of allele frequencies of the Nos allele in the
pooled F2 samples and identification of a mapping interval were performed with SHOREmap (version
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3.0) using default parameters. Comparison of the consensus calls of both pools in the 300 kb mapping
interval revealed the mutation in LFY.

4.4. Localization and FRET-FLIM Studies

The indicated constructs and p19 as gene silencing suppressor were transformed into Agrobacterium
tumefaciens strain GV3101 and infiltrated into Nicotiana benthamiana leaves. The localization of the
fusion proteins was performed 3 days after infiltration using 488 nm or 561 nm lasers for GFP or RFP
excitation, respectively, at the SP8 laser scanning microscope (Leica Microsystems GMBH) with LAS AF
and SymPhoTime software using a 63x/1.20 water immersion objective [46]. FLIM data were derived
from measurements of at least 20 probes for each fusion protein combination. To excite LFY-GFP
and LFYHF-GFP for FLIM experiments, a 470 nm pulsed laser (LDH-P-C-470) was used, and the
corresponding emission was detected with a SMD Emission SPFLIM PMT from 495 to 545 nm by
time-correlated single-photon counting using a Picoharp 300 module (PicoQuant, Berlin, Germany).
Each time-correlated single-photon counting histogram was reconvoluted with the corresponding
instrument response function and fitted against a monoexponential decay function for donor-only
samples and a biexponential decay function for the other samples to unravel the GFP fluorescence
lifetime of each probe. The average GFP fluorescence lifetimes as well as the standard error values
were calculated using Microsoft Excel 2013. To test for homogenity of variance Levene’s test (df = 5/140,
F =26.298, p < 0.0001) was used and statistical significance was calculated by a two-tailed, all-pair
Kruskal-Wallis test followed by a Steel-Dwass post hoc correction using JMP version 12.2.0 [47].

4.5. qDPI-ELISA, DPI-ELISA Based Screening and Western Blotting

qDPI-ELISA was performed using E. coli crude extracts containing GFP-tagged LFY or LFYF!F,
GEFP alone or no fluorescent protein according to Fischer, Boser, Hirsch and Wanke [32]. The sequences
of the 5’-biotinylated dsDNA oligonucleotides AP1, mAP1 and C28M12 used for the immobilization on
Streptavidin-coated 384 well microtiter plate are displayed in Table S2. Before addition to the microtiter
plate, the equal content of GFP-tagged fusion protein in the crude extracts was adjusted according to
the GFP fluorescence using a fluorescence reader (TECAN Safire, Mdnnedorf, Switzerland). Western
blotting with GFP antibodies was performed according to Brand, et al. [48].

The quantitative DPI-ELISA based specificity screening, using a dsDNA oligo array on a 384 well
microtiter plate covering all possible 4096 hexanucleotide DNA motifs was performed as described
previously [32-34].

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/8/12/599/s1,
Figure S1: Proof of the successful backcross of the fif mutant with wild type No-0, Figure S2: Allele frequency
analysis of the No-0 allele within the recombinant mutant pool, Table S1: Names and sequences of the INDEL and
dCAP primers. Table S2: Sequences of the dsDNA oligonucleotides used in the DPI-ELISA.
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