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Linked-read sequencing of gametes allows efficient
genome-wide analysis of meiotic recombination
Hequan Sun 1,5, Beth A. Rowan2,5, Pádraic J. Flood3, Ronny Brandt4, Janina Fuss4, Angela M. Hancock 3,

Richard W. Michelmore2, Bruno Huettel 4 & Korbinian Schneeberger 1

Meiotic crossovers (COs) ensure proper chromosome segregation and redistribute the

genetic variation that is transmitted to the next generation. Large populations and the

demand for genome-wide, fine-scale resolution challenge existing methods for CO identifi-

cation. Taking advantage of linked-read sequencing, we develop a highly efficient method for

genome-wide identification of COs at kilobase resolution in pooled recombinants. We first

test this method using a pool of Arabidopsis F2 recombinants, and recapitulate results

obtained from the same plants using individual whole-genome sequencing. By applying this

method to a pool of pollen DNA from an F1 plant, we establish a highly accurate CO land-

scape without generating or sequencing a single recombinant plant. The simplicity of this

approach enables the simultaneous generation and analysis of multiple CO landscapes,

accelerating the pace at which mechanisms for the regulation of recombination can be

elucidated through efficient comparisons of genotypic and environmental effects on

recombination.
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During meiosis, existing genetic variation is reshuffled and
passed down to offspring through COs that exchange
portions of homologous chromosomes. This results in

new combinations of alleles in the next generation that can
generate novel phenotypic variation, which is the raw material for
both natural and artificial selection1–3. In most organisms, the
locations of COs along chromosomes do not form a random
distribution4–11. Thus, the local CO rate governs the types of
allelic combinations that can arise through sexual reproduction.
Both environmental and genetic factors have been shown to affect
CO rates and distributions; some examples are the local sequence
divergence or rearrangements between the homologous chro-
mosomes12–14, the chromatin context15–18, variation in DNA
repair mechanisms19–26, and environmental stress27–29.

Despite a large body of research on CO formation, our
knowledge of what determines where and how often COs occur is
still incomplete, in part because the time, effort, and resources
needed to study this phenomenon have been limiting. Genotyp-
ing recombinant individuals, either by classical methods30,
reduced representation sequencing31,32, or whole-genome
sequencing33 and performing cytological analysis of meiotic
cells25 represent the common methods for determining CO
locations and frequencies. However, none of these methods is
easily suited for high-throughput analysis of thousands of COs in
parallel. The use of recombination reporters34,35 and pollen-
typing36 enable rapid screening, but can only assess differences in
CO frequency in a specific region of the genome. The availability
of an efficient method to assess the genome-wide distribution
and frequency of COs at a high resolution would greatly
enhance our understanding of the processes that govern meiotic
recombination.

Here we investigate the use of linked-read sequencing of bulk
recombinants for high-throughput genome-wide determination
of COs in Arabidopsis thaliana. We first develop and assess this
approach using bulked F2 individuals within known recombina-
tion sites and then apply this method to hybrid pollen to generate
a genome-wide CO map with a single sequencing experiment and
without even growing a single recombinant plant. These results
show that the time and effort needed to generate genome-wide
CO maps can be reduced to sequencing and analyzing a single
DNA library, making it feasible to compare multiple CO maps
and thereby determine the effect of genetic and environmental
factors within a single study. We believe that this method will be
widely applicable to different organisms and will have a sizeable
impact on the design of experiments aiming to decipher how
meiotic recombination is regulated.

Results
CO breakpoint detection from bulk recombinants. To establish
a set of COs for verifying our method, we first performed whole-
genome sequencing of 50 individual F2 plants derived from a
cross of two of the best-studied inbred lab strains of Arabidopsis,
Col-0 and Ler and used the haplotype reconstruction software
TIGER33 to determine a benchmark set of 400 COs across all 50
genomes (Fig. 1; Methods; Supplementary Data 1 and 2).

We then bulked the identical 50 F2 plants by pooling individual
leaves of comparable size and extracting high molecular weight
(HMW) DNA37 (Fig. 1). After size selection and quality control
(Supplementary Fig. 1), we loaded 0.25 ng DNA into a 10X
Genomics Chromium Controller. The Chromium Controller
encapsulates millions of gel beads as GEMs (Gel bead in
EMulsion), each of which is loaded with a small number of long
DNA molecules. These long molecules are fragmented and ligated
with GEM-specific DNA barcodes to generate a 10X library
suitable for Illumina sequencing. This library, which we called

P50L25, was whole-genome sequenced with 84 million 151 bp-
read pairs (Supplementary Data 1).

After aligning the reads against the Col-0 reference sequence38

using longranger (v2.2.2, 10X Genomics), we recovered 3.6
million molecules (≥1 kb) including 116 million reads using a
newly developed computational tool, DrLink, which can be
downloaded at https://github.com/schneebergerlab/DrLink
(Fig. 2a; Methods). On average, these molecules identified by
DrLink were ~45 kb in size and were covered by ~21 read pairs,
leading to a molecule base coverage of ~0.16 × (Fig. 2b–d;
Supplementary Data 1). To avoid chimeras resulting from the
accidental co-occurrence of two independent, but closely spaced
molecules with identical barcodes, we selected molecules which
were smaller than 65 kb that had fewer than 55 reads and no
heterozygous genotypes. These thresholds were based on the
distributions in molecule size and read number per molecule
(Fig. 2b–d; Methods; Supplementary Note 1). Overall, 2.7 million
molecules passed all filtering.

Initially, we genotyped these molecules using DrLink at the
~660,000 SNP markers predicted by 10X Genomics’ longranger
software. If an individual molecule was composed of two distinct
clusters of different parental alleles and fulfilled additional criteria
regarding length and marker distribution (Fig. 2a; Methods;
Supplementary Data 3; Supplementary Note 1), the molecule was
considered as a recombinant molecule revealing a CO breakpoint.
Using the SNPs called by longranger, we predicted 1786
recombinant molecules with a median CO breakpoint resolution
(distance between the two flanking markers) of 6.7 kb. However, a
comparison with the 400 benchmark COs revealed that only 674
of the molecules overlapped with verified COs, while the
remaining 1112 were putative false positives (FP). Many of the
FPs appeared close or within structural rearrangements between
the parental genomes, suggesting that the molecule reconstruc-
tion using the markers provided by longranger is vulnerable to
unrecognized structural differences between the parental genomes
and thereby leads to false predictions of recombinant molecules
(Supplementary Note 1).

Making use of chromosome-level assemblies of both parental
genomes38,39, we defined a new marker set composed of ~500,000
SNP markers, which only included SNPs in non-rearranged, co-
linear regions between the parental genomes (Supplementary
Data 4). We repeated the analysis with this new marker set and
filtered for molecules that appeared recombinant independent of
which parental genome was used as reference sequence. The
DrLink analysis identified only 558 recombinant molecules, and
475 (85.1%) of the CO breakpoints among these molecules
(median resolution 5.3 kb) overlapped with the benchmark COs.
The remaining 83 (14.9%) COs were putative FPs most likely due
to the co-occurrence of different molecules with the same
barcode (Supplementary Note 1). However, some of them might
have even been true recombination events that were missed in the
benchmark set (e.g., two closely spaced COs, gene conversion
events33,40 or mitotic COs, which were only present in some cells
of the sequenced material).

Increasing the number of molecules per library. To test whether
the number of (recombinant) molecules per library would be
increased by increasing the DNA loading, we generated two
additional 10X libraries from the same DNA pool by loading 0.40
ng (P50L40) and 0.75 ng (P50L75) into the Chromium Controller
(Fig. 1; Methods). We sequenced these libraries with 104.8 and
212.3 million read pairs in anticipation of an increased number of
molecules within both libraries (Fig. 2b–d). Following the same
analysis as for the first library, the higher DNA loading drastically
increased the number of recovered molecules. As compared to the
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2.7 million molecules for P50L25, we now found 4.7 and 10.5
million molecules for P50L40 and P50L75 after filtering (Table 1).
This also increased the number of recombinant molecules to 1012
in P50L40 and 2519 in P50L75 as compared to 558 in P50L25.
This, however, had the cost of also increasing the FP rate by 5% in
P50L40 and 10% in P50L75 (Table 1).

To investigate the effect of the FPs, we compared the
distribution (i.e., recombination landscape) of all 2519 COs in
the library with the highest FP rate, P50L75, with two other
landscapes: one calculated only from 1874 true COs (those
overlapping with the 400 benchmark COs) and one calculated
only from the remaining 645 false recombinant molecules
(Methods). The recombination landscape calculated for all COs
(TP+ FP, i.e., the set of TP and FP COs) was nearly identical to
the landscape generated from true COs only (TP), while the
distribution of the FPs was highly random (Fig. 3a; Supplemen-
tary Fig. 2: K–S test, p-value= 9.6e-01), suggesting that FPs
hardly obscure true recombination landscapes. In fact, correlating
the sliding window-values of each of the three CO landscapes
revealed that the landscape calculated from all CO sites was
almost perfectly correlated to the one generated from real COs
(Fig. 3b: Correlation test, Pearson’s r 0.97, p-value < 2.2e-16),
while the frequency of FP along the chromosomes was not
correlated to the frequency of real COs and was only marginally
correlated to landscape of all COs.

Association of COs with genomic features. To test the asso-
ciation of COs with genomic features, we checked all of the CO
sites for their annotation in the Col-0 reference sequence
(Fig. 3c). In comparison to randomly placed CO sites, permuta-
tion tests showed that the 1874 true COs sites were significantly
enriched in promoter regions (p-value 5.0e-03) and intergenic

regions (p-value 1.4e-03) and were significantly depleted in gene
bodies (p-value 6.0e-04) and transposable elements (p-value 9.0e-
04) recapitulating regional preferences, which have been descri-
bed before40,41. When additionally including the FP, the CO set
showed the same significant regional associations with one
exception: COs were slightly, but significantly enriched compared
to random COs at gene ends. Gene ends represented only a minor
fraction of all COs in both datasets and the difference between the
two was marginal (5.16% within TP+ FP CO sites vs. 4.90%
within TP COs sites) and these percentages were much closer to
each other than the percentage in the randomized CO dataset
(4.40%). A later analysis with a larger CO dataset helped to avoid
this spurious enrichment (see next section). To examine CO
associations with genomic features at a finer scale, we analyzed
the regional preferences of the CO sites in individual transposable
element super families because these were found to have strong
differences in CO rates42. Though this only included 331 putative
CO sites, we found that COs were significantly depleted within
LTR-Gypsy and En-Spm super families and enriched within
Helitron and LINE elements, as has been previously shown42,
whether or not FP were included (Supplementary Fig. 3). In
addition, the presence of FP did not affect the previously reported
relationships between COs and GC-content or DNA methyla-
tion40. The two datasets showed nearly identical correlations
between CO frequency and GC-content (Fig. 3d: Correlation test,
Pearson’s r −0.46 and −0.45, both p-value < 2.2e-16). Similarly,
COs in both datasets were found in regions with low levels of
methylation (Fig. 3e).

Together this suggests that our method is not only effective
when facing an increasing amount of FP in libraries with a large
number of molecules, but that it is also powerful enough to
accurately identify chromosome-wide and local CO patterns.
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Fig. 1 Experimental design and CO detection using linked-reads. F1 and F2 plants were derived from crosses of two divergent A. thaliana accessions. Leaf
sampling: Leaves of 50 selected F2s were individually sampled (a1~50). In addition, the leaves of all other plants were pooled in batches of 50 F2s (for further
merging), where the 50 individually sampled plants formed one of the pools. Also, pollen from a single F1 plant was sampled. DNA extraction: DNA from
individual the samples a1~50 were extracted for Illumina whole-genome sequencing, while the DNA of the 50-F2 and pollen samples were extracted with a
protocol for high molecular weight DNA (see Methods and Mayjonade et al. 37). Pooling: Four and twenty-five 50-F2 samples were merged leading to 200-
F2 and 1,250-F2 pools (P200 and P1250), each with two replicates (R1 and R2). The 50-F2 pool composed of the 50 F2s that were individually sequenced
was labelled as P50, while the pollen pool was labelled as P8000. Library preparation: 50 individual F2 DNA samples were used for preparing Illumina DNA
TruSeq libraries. The P50 DNA sample was loaded into a 10X Chromium Controller (illustration modified from 10X Genomics with official permissions)
with three different amounts of DNA including 0.25 ng, 0.40 ng and 0.75 ng (P50L25, P50L40, and P50L75). P200R1/R2 and P1250R1/R2 were loaded
using 0.75 ng and P8000 was loaded using 1.00 ng. Sequencing: All libraries were sequenced on Illumina HiSeq3000/4000 sequencers
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Increasing the number of genomes per library. Many of the
recombinant molecules that we found in the pool had identical CO
breakpoints. This implied that we re-discovered some of the CO
breakpoints in independent molecules, suggesting that there were
more recombinant molecules in the library than independent CO
breakpoints in the pooled genomes. For instance, there were only 363
distinct COs recovered by the 1874 recombinant molecules in P50L75
(Table 1). Even though identifying a single CO breakpoint multiple
times can help to increase its resolution and reliability, it does reduce
the overall number of distinct COs that can be found with one library.

The number of recombinant molecules that can be identified
within one 10X library greatly depends on the number of
molecules in the library. As the probability to overlap with a CO
breakpoint is theoretically the same for each molecule, the
number of CO molecules increases linearly with the number of
analyzed molecules. The number of molecules heavily relies on
the amount of DNA that is loaded in the 10X Chromium
machine (while sequencing depth has only a marginal effect on
molecule recovery). As a consequence, each 10X library includes
an almost fixed number of recombinant molecules.

In turn, the inclusion of more plants in the pool does not
increase the number of recombinant molecules. However, the
inclusion of more plants does increase the number of indepen-
dent recombinant molecules and thereby increases the number of
distinct CO events found with one library (Supplementary
Note 2). While this maximizes the number of distinct CO
breakpoints that can be found with one library, it also implies that
a majority of the breakpoints that are in the pool will not be
found. Thus, pools with a small number of plants/CO breakpoints
(smaller than the number of recombinant molecules) will reveal
all CO breakpoints with high confidence; pools with a large
number of plants/CO breakpoints will reveal a large number of
distinct CO breakpoints, but cannot achieve the identification of
all CO breakpoints. Hence, the false negative rate is mostly
determined by the number of independent genomes in a pool and
much less by the actual detection success of recombinant
molecules.

To test the effect of genome number on the number of distinct
COs in practice, we applied our method to pools of 200 and 1250
F2 plants. We generated two individual 10X libraries each for a
pool of 200 (P200R1, P200R2) and a pool of 1250 (P1250R1 and
P1250R2) different F2 plants (Fig. 1; Supplementary Figs. 1 and 4;
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Fig. 2Molecule recovery and genotyping using DrLink, and molecule characteristics. a Reads with the same barcode (represented by short lines in matching
colors) that were aligned within close proximity (less than 25 kb apart) have been connected to recover molecules (Molecule-1 to Molecule-4). The
genotypes that can be assessed with the read alignments of each recovered molecule fall into three major categories, non-recombinant (Molecule-1,
Molecule-2), recombinant (Molecule-3), and undetermined (Molecule-4). b Length of recovered molecules for each of the 10X libraries. c Number of reads
per recovered molecule. d Recovered molecule base coverage. Source Data are provided as a Source Data file Source_Data_main_Figure_2.zip

Table 1 Effect of increasing the molecule number by
increasing DNA loading

Pool P50L25 P50L40 P50L75

Raw molecules (≥1 kb)C
Raw molecules (≥1 kb)L

3,577,104
3,462,796

5,804,559
5,631,294

12,551,833
12,240,762

Filtered moleculesC

Filtered moleculesL
2,664,977
2,565,403

4,783,828
4,642,515

10,651,147
10,417,489

Total CO moleculesCL 558 1012 2519
TP CO moleculesCL 475

(85.1%)R
804
(79.4%)R

1874
(74.4%)R

TP unique (non-redundant)
COsCL

254
(63.5%)U

325
(81.3%)U

363
(90.8%)U

FP moleculesCL 83
(14.9%)R

208
(20.6%)R

645
(25.6%)R

TP true positive, FP false positive
CNumber based on Col-0 reference genome38
LNumber based on Ler reference genome39
CLNumber based on intersection of two sets of CO predictions (of C and L)
RPercent CO molecules of all molecules
URecall rate
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Methods). These libraries were sequenced with 168.2–194.4
million read pairs (Supplementary Data 1) and revealed
12.3–16.0 million molecules. For P200R1 and P200R2, we found
2538 and 2334 recombinant molecules, which identified 1779
(69.5%) and 1606 (68.8%) distinct CO sites. For the pool of 1250
plants, there were 2880 and 3430 recombinant molecules, which
uncovered 2386 (82.8%) and 2788 (81.3%) distinct CO sites.
Comparison of these COs with 3320 COs determined using
individual whole-genome sequencing for an independent set of
437 Col x Ler F2s20,21 showed consistent genome-wide patterns,
including on identifying genomic regions with relatively high CO
occurrences (Supplementary Fig. 5). Although we were unable to
assess FP rate in these larger pools, the above consistencies in
feature associations (even at gene ends with ~5% COs) suggested
that FPs do not interfere with the proper identification of true CO
patterns. While the larger pools revealed more distinct CO sites,
there were still nearly 20% COs overlapping, but it does not
necessarily imply that these are not unique CO events. As the
genome size of A. thaliana is relatively small (~135 Mb43),
independent COs have an unneglectable probability to overlap
(Supplementary Note 2; Supplementary Data 5). According to
simulations, given a pool of 1250 F2s, ~15% of the independent
CO events are expected to overlap (Supplementary Data 5 and 6)
making up for large parts of the overlapping recombinant
molecules in the 1250 pools.

Estimating relative recombination frequency. Since the prob-
ability to identify a CO breakpoint within a molecule depends on
the average recombination frequency among the pooled genomes,
it might be possible to estimate the average recombination fre-
quency from the fraction of observed recombinant molecules.
However, as the probability to identify a CO breakpoint also
depends on the length and sequencing coverage of the molecules
within a library, it is only meaningful to calculate an average
recombination frequency that is relative to the actual molecule
characteristics (or relative recombination frequency). To test for
significant differences in relative recombination frequencies
between libraries, it is therefore essential that they have close-to-
identical molecule characteristics. For libraries with differences in
molecule length and sequencing coverage distributions, sub-
sampling can be used to generate such identical distributions.
Once the distributions are similar, the relative recombination
frequency can be determined as the number of recombinant
molecules per million molecules (CM). Repeated subsampling
even allows for the calculation of confidence intervals for CM

values and thereby allows for testing significant differences
between the average recombination frequencies of different pools.

First, we compared the CO frequencies of P200R1 and P200R2,
which were two independent libraries generated from the same
DNA (Fig. 1; Fig. 2b–d; Methods). After subsampling (Supple-
mentary Fig. 6), there was no significant difference in CM values
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(26.7 ± 0.4 and 26.8 ± 0.4), as expected for these libraries (Table 2).
We repeated this comparison for P1250R1 and P1250R2, which
differed greatly in their original molecule characteristics
(Fig. 2b–d). After subsampling to the same molecule distributions
as for the smaller pools (Supplementary Fig. 6), the CM values of
27.2 ± 0.6 and 27.1 ± 0.7 were also not significantly different from
each other (Table 2). Moreover, when comparing the 200 and
1250 recombinant pools, we also found no significant difference
between any of the pools (all confidence intervals overlapped),
which is expected, given that all libraries were generated from
individuals of the same F2 population. Together, these results
show that CM values are stable against differences in the molecule
characteristics and pool sizes and allow for determining and
comparing average recombination frequencies between samples.

Estimating CO frequency and landscapes from gametes.
Crosses between divergent strains provide the simplest opportu-
nity for determining COs, but typically require the generation of a
recombinant population after a single round of meiosis in a
hybrid context. Observing COs directly in the products of meiosis
(gametes) would greatly expedite the study of recombination,
especially in inbred species with long generation times. To test
how our method performs on recombinant gametes, we extracted
HMW DNA from Col x Ler F1 hybrid pollen, created a 10X
library (P8000) and sequenced it with 319.9 million read pairs
(Fig.1; Supplementary Fig. 1f; Supplementary Data 1). Following
the same analysis as for the F2 pools, we identified 20 million
molecules with an average molecule base coverage of 0.26 ×
(Fig. 2b–d). Among those, there were 3246 recombinant mole-
cules with a median CO breakpoint resolution of 8.0 kb.

We compared relative recombination frequencies in pollen
with the P1250R1 and P1250R2 pools after re-sampling molecules
to obtain comparable characteristics (Supplementary Fig. 6;
Methods). The CO frequency estimate (CM) for pollen was
significantly higher than for F2s (Table 2), consistent with the
higher male recombination rate in this species44.

The distributions of the CO breakpoints in pollen and F2s were
highly correlated in most regions of the genome (Correlation test,
Pearson’s r 0.80~0.86, both p-value < 2.2e-16), and exhibited only
13 regions with local differences across the entire genome (Fig. 4;
Methods). Though we cannot exclude random processes, these
differences provide the starting point to investigate whether there
are post-meiotic processes that influence which gametes con-
tribute to the next generation.

We further compared the recombination landscape of our pollen
sample to a previously published recombination landscape from a
Col-0 x Ler backcross population, where all COs were derived from
male meiosis44. This dataset, consisting of 7418 COs at an average
resolution of ~320 kb, was generated from 1505 individuals
genotyped with 380 SNP markers that were evenly spaced
throughout the genomes. After binning our CO data into the same
windows, we found that the recombination landscapes were broadly
similar (Supplementary Fig. 7: Correlation test, Pearson’s r 0.41,

p-value < 2.2e-16). Unexpected differences, however, were observed
mostly at the end of chromosomes. COs formed by male meiosis
and identified in recombinant BCF1 plants showed significant
increases at the end of some chromosomes44, while most of these
increases were not observed in pollen data.

Table 2 Relative recombination frequency in F2 and pollen pools

Pool Moleculesa CO moleculesb CM

F2 P200R1 4,845,588 ± 1,556 129 ± 7 26.7 ± 0.4
F2 P200R2 4,856,886 ± 1,371 130 ± 7 26.8 ± 0.4
F2 P1250R1 4,650,420 ± 1,662 126 ± 9 27.2 ± 0.6
F2 P1250R2 4,309,936 ± 1,454 117 ± 10 27.1 ± 0.7
Pollen P8000 4,902,994 ± 1,722 212 ± 10 43.2 ± 0.6

a, bThe values are μ ± σ, where μ is the mean and σ is the standard deviation of the molecule and CO numbers in 50 random sub-samplings. For CM, i.e., the ratio of CO molecules to total molecules scaled
by a factor of 106, the values are μ ± s giving 95% confidence intervals for the mean μ, where s is 2.0096 × σ / 500.5 with σ being the standard deviation. Source Data are provided as a Source Data file
Source_Data_main_Table_2.zip
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Fig. 4 Genome-wide recombination landscape in pollen. a Comparison of
sliding window-based (window size 1Mb, step size 50 kb) recombination
landscapes in pollen and F2 populations (P1250R1/R2), showing genome-
wide consistencies but with 13 regional differences (1.1 ± 0.2Mb) as
indicated by horizontal lines in purple with p < 0.05 (i.e., p-values of Fisher’s
exact test; Methods). Heterochromatic regions44 are indicated by
rectangles in light blue. b Correlation of genome-wide CO frequencies in
pollen and F2s (Correlation test, Pearson’s r 0.80~0.86, both p-value < 2.2e-
16). Source Data are provided as a Source Data file
Source_Data_main_Figure_4.zip
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In general, this shows that a single sequencing library is
sufficient to derive genome-wide CO patterns from pooled
gametes without the need for producing any recombinant
individuals. Such CO maps have the advantage to measure sex-
specific meiotic recombination without doing any backcrosses
and are less influenced by post-meiotic biases.

Discussion
For the past century, the study of recombination has relied on
inferring or determining the genotypes at (limited) marker
positions along the chromosomes of recombinant individuals.
Here, we developed an efficient and accurate method for
detecting recombination breakpoints in pooled DNA using
linked-read sequencing. This method can be applied directly to
gametes, avoiding the need for generating or genotyping recom-
binant populations. In turn, this simplification allows for the
production of multiple different genome-wide CO maps with
relatively little effort. Although it has long been known that many
environmental factors influence CO rates, such as temperature,
water stress, salinity, and pathogen stress45,46, the genetic
mechanisms underlying this sensitivity have not been well char-
acterized. We expect that our approach will greatly aid research in
this area, as it is expected to make it feasible to directly compare
CO maps generated from many different genotypes or environ-
ments. Long-read sequencing or single-cell genome sequencing of
individual pollen would be two alternative methods, but the
current costs of library preparation and sequencing or time and
effort needed for sample processing are prohibitive for comparing
multiple samples. For example, Nanopore and PacBio sequencing
require 8–70 times the cost of 10X linked-read sequencing to
obtain a similar number of recombinant molecules (Supplemen-
tary Data 7). Published methods for applying single-cell genome
sequencing to the identification of COs incur the high labor cost
of sorting of individual cells or nuclei47,48. The resolution of COs
is also much poorer for single-cell genome sequencing for the
same sequencing cost as 10X linked-read sequencing, given that
much higher coverage is needed to achieve kb-scale resolution.

The small genome size of the species we used in this study, A.
thaliana, was potentially an obstacle to accurately scoring CO
events using linked-read sequencing, as this technology assigns
the same barcode to a small number of individual DNA molecules
that are tens of kb in length. Since this process is random, two
molecules that originate from different genomes in the pool that
happen to align near each other can receive the same barcode.
The probability of these collision events is much higher in small
genomes and can mimic COs if the two molecules have different
parental genotypes, giving rise to false positives (FP). However,
the FP had little effect on the overall accuracy of the CO pre-
dictions (Fig. 3). Even though the FP rate did not pose a sub-
stantial problem, making several libraries using a reduced input
would result in high molecule numbers at the lower FP rate. This
would incur higher costs of library production while maintaining
the same sequencing cost. Moreover, when applying this method
to larger genomes, the chance of collision of two molecules with
the same barcode would be lower, leading to a lower likelihood
of FPs.

The spatial distributions of COs identified with our method
recapitulated known recombination landscapes and precisely co-
localized with genomic and epigenetic features that have been
reported to be associated with meiotic recombination36,39,41. The
resolution of the CO breakpoints was very precise, with the
median CO interval less than 10 kb in each of the samples. This
accuracy, however, could only be achieved by filtering the marker
list for co-linear regions between the parental genomes as geno-
mic rearrangements between the parents were hotspots for FPs.

The careful validation studies of our method using F2s pro-
vided the basis for determining the COs directly in gametes.
Linked-read sequencing of bulk F1 pollen led to the discovery of
~3500 CO events that showed a similar distribution as was
recently published for male meiosis (Supplementary Fig. 7).
Dreissig et al. previously assessed the recombination rate in barley
pollen using whole-genome sequencing of individual pollen
nuclei47. While this allowed for the analysis of CO interference,
their method employed a more technically challenging library
preparation that does not scale to high numbers and achieved a
much lower CO resolution.

Interrogating COs in gametes (pollen, in the case of plants or
sperm in animals) has many advantages over current approaches.
It avoids the laborious and time-consuming step of growing/
rearing recombinant populations. It reduces the number of gen-
erations required, greatly facilitating recombination studies in
inbred organisms with long generation times. Because entire
recombination landscapes can be generated from single libraries,
a recombination landscape can now be studied as a single trait.
Multiple CO landscapes that can be replicated either in the same
or different genetic backgrounds and environments and com-
pared in a single study. In consequence, this now allows for a
more complex and sophisticated experimental design to test
hypotheses regarding the regulation of recombination.

Methods
F2 DNA extraction and library preparation. F2 seeds from Col-0 x Ler-0 were
stratified for 7 days at 4 °C, sown on soil in 24-pot trays, and grown under 16 h
light, 8 h dark cycles at 20 °C for three weeks. DNA pools of up to 1250 F2
individuals were constructed (Fig. 1). HMW DNA was extracted from pools with
50 distinct F2 plants37. One 50-F2 pool was selected for validating the method, for
which DNA was also extracted from each individual (a1-50) and WGS libraries were
prepared using the Illumina DNA TruSeq protocol. The DNA of four 50-F2 pools
with similar fragment size distribution (Supplementary Fig. 4a) were merged based
on equal concentration, from which replicates P200R1 and P200R2 were obtained.
In addition, 25 50-F2 pools with divergent fragment size distributions (Supple-
mentary Fig. 4b) were merged based on equal molarity of molecules between
42–70 kb according to FEMTOpulse, AATI genomic DNA quality check, and the
resultant DNA was used for replicates P1250R1 and P1250R2.

Size selection was performed on each DNA pool using the Sage Science
BluePippin high-pass protocol (i.e., 0.75% Agarose Dye-Free/0.75% DF Marker U1
high-pass 30–40 kb vs3) with starting point at 40 kb to ensure that most molecules
were over 40 kb (Supplementary Fig. 1a-e). For P200R1/2 and P1250R1/2, the size-
selected DNA was evaluated using the Qubit fluorometer and TapeStation analyzer.
After selection, for each library 0.75 ng DNA were loaded into the 10X Chromium
controller (Supplementary Data 1). P50 was subjected to the same quality control
measures. For this library three different amounts of DNA (0.25, 0.40, and 0.75 ng)
were loaded into the 10X Chromium Controller, generating the P50L25, P50L40,
P50L75 libraries.

Pollen DNA extraction and library preparation. Col CEN3 qrt 420 and Ler seeds
were stratified for 4–7 days at 4 °C before sowing on soil in 18-pot trays and
growing under 16 h light, 8 h dark cycles at 20 °C until flowering. Pollen from a
single Ler plant was used to pollinate a single Col CEN3 qrt 420 stigma to generate
F1 plants. To obtain pollen and extract DNA, we adapted a method from Drouaud
and Mezard49 as follows: Inflorescences were collected from a single F1 plant and
ground in 1 mL of 10% sucrose using a mortar and pestle. 9 mL of 10% sucrose
were added to the mortar slurry and the resulting homogenate was mixed by
pipetting up and down with a wide bore 1 mL pipet tip and filtered through an
80-μM nylon mesh before centrifugation at 350 × g for 10 min at 4 °C. The
supernatant was discarded and the pollen pellet was washed two times with 10%
sucrose. The pellet was resuspended in four volumes of lysis buffer (100 mM NaCl,
50 mM Tris–HCl (pH 8)), 1 mM EDTA, 1% SDS and proteinase K was added to
achieve a concentration of 20 μg/mL. Five to ten 2-mm glass beads were added to
the sample and it was vortexed at full speed for 30 s. To check for pollen disruption,
a 1-μL sample was removed and mixed with 10 μL of lysis buffer and examined
under a microscope. During this time, we verified that the pollen sample was free of
large amounts of cell debris. The sample was then vortexed for 30 s and checked for
pollen disruption. An equal volume of Tris-saturated phenol was added and the
sample was placed on a rotating wheel at room temperature for 30 min. After
centrifuging at 15,000 × g for 10 min, the supernatant was transferred to a new tube
and mixed with an equal volume of 24:1 chloroform:isoamylalcohol and homo-
genized by shaking the tube. The tube was centrifuged again at 15,000 × g for
10 min and the supernatant was mixed with 0.7 volumes isopropanol in a new tube
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and inverted gently. After another centrifugation step at 15,000 × g for 10 min, the
supernatant was discarded and the pellet was washed with 1 mL of 70% EtOH.
After a final centrifugation at 15,000 × g for 2 min, the supernatant was discarded
and the DNA pellet was allowed to dry at room temperature. The pellet was
resuspended in 50 μL of 10 mM Tris-HCl, pH 8 with 0.1 mM EDTA and stored
at 4 °C.

DNA was analyzed by field inversion gel electrophoresis to confirm that most
molecules were around 48 kb (Supplementary Fig. 1f) before preparing the linked-
read library (load: 1.00 ng) using the Chromium Genome Reagent Kit, the
Chromium Genome Library Kit & Gel Bead Kit, Chromium Genome Chip Kit v2,
and Chromium i7 Multiplex Kit according to the manufacturer’s instructions. As
1.00 ng is equivalent to 106Mb, the haploid genome size is ~135 Mb43, and each
pollen grain is composed of three cells, there were ~3000 pollen grains expected
with unique recombinant genomes.

In total, eight 10X and 50 standard Illumina libraries were sequenced on HiSeq
3000/4000 with 151 bp paired-end reads, where the individual F2s were at ~5x and
the pools of F2s and pollen nuclei were at 173–659 × (Supplementary Data 1).

Molecule recovery and genotyping using DrLink. Col-0 and Ler reference gen-
omes were indexed using the function mkref of longranger (v2.2.2 10X Genomics).
Linked-reads of each sample were aligned against the Col-0 and Ler reference
genomes separately using longranger wgs with options:–id=ALIGN-ID–reference
=MKREF-INDX-FOLDER–fastqs= READ-PATH–sample= READ-
ID–localcores= 40–localmem= 192–noloupe–sex=male–vcmode=
freebayes–library= LIBRARY-ID and all other options under default settings (note
that option–sex was set as male, which is required by the tool but not affecting the
alignment here). Read alignments with the same read barcodes were clustered to
recover molecules by DrLink molecule function according to their genomic location
ensuring that neighboring read alignments were not more than 25 kb away from
each other. The resultant molecules (over 1 kb) were further filtered for falsely
merged molecules by removing very long or densely covered molecules (Supple-
mentary Note 1). Next, with a set of SNP markers and the barcoded read align-
ments (in VCF) given by longranger, molecules were genotyped by DrLink recombis
function to identify recombinant molecules, with options for filtering less confident
predictions (Supplementary Data 3).

Generating the CO benchmark set. For each individually sequenced F2, read
alignments against the Arabidopsis Col-0 reference sequence38 and variant calling
were performed using Bowtie250 (version 2.2.8) and SAMtools/BCFtools51 (version
1.3.1). TIGER33 was used to reconstruct the parental haplotypes using SNPs in co-
linear regions between the Col-0 and Ler39 genomes. We determined an average of
8.3 COs per diploid genome, totaling 415 COs with a median breakpoint resolution
of 0.5 kb (Supplementary Data 2). Of those, 15 COs were located in regions with an
inter-marker distance of more than 10 kb. As local CO breakpoint identification
relies on markers near the breakpoint, we excluded these COs, generating a final
benchmark set of 400 COs.

Estimating chromosomal CO landscapes. Recombination landscapes were esti-
mated using sliding windows along each chromosome (window size 1 Mb, step size
50 kb). Within a given window, the CO frequency f was calculated by f= n / ti,
where n is the number of COs in the window and ti is the total CO number within
the respective chromosome i across each of the focal libraries. This ensures that
different CO landscapes can be compared to each other within the given
chromosome.

Comparison of CO distribution in pollen and F2 populations. Local CO
occurrence in pollen (P8000) and F2 populations (two libraries: P1250R1/2) were
compared based on sliding windows (window size 1Mb, step size 50 kb). Specifi-
cally, for each window, we counted both recombinant molecules Rx and non-
recombinant molecules Nx, where x was either P1250R1/2 or P8000. Then for each
window, two Fisher’s exact tests were performed between (RP8000, NP8000) and
(RP1250R1/2, NP1250R1/2). Finally, the windows with both p-values < 0.05 were
identified as different between P8000 and P1250R1/2, and neighboring windows
were connected into larger regions.

Relative CO frequency estimation. For frequency estimation, we first subsampled
molecules from the pools of interest by intersecting their molecule characteristic
distributions. Using the molecule length distributions as the basis (Supplementary
Fig. 6a), the molecules were randomly sampled down within 1 kb large bins. For
each bin, the number of randomly selected molecules per pool was equal to the
lowest number of molecules across all pools within this specific bin. To increase the
subsampling rate, 80% of the sampled molecules were further randomly selected
within each bin. After this second subsampling, the read and base coverage dis-
tributions were also highly similar (Supplementary Fig. 6b, c). Final molecule
filtering was applied following the same strategy as used for the complete sets of
molecules, by applying 30 kb as size and 24 as read number thresholds.

Then, COs per million molecules (CM) was calculated for each pool. The
process of molecule subsampling, CO identification and CM calculation was
repeated fifty times for each pool. The means (μ) of all 50 CM values and their 95%

confidence intervals (μ ± s, where s is 2.0096 × σ/500.5 with σ being the standard
deviation) were used to assess significant differences between samples.

DNA methylation level estimation. Within a recent study, we have assessed DNA
methylation for A. thaliana Col-052. Methylation level M for a CO or a random
interval was calculated by M=Nmet / N, where Nmet is the number of reads sup-
porting methylated cytosines at all C and G sites, while N is the total number of
reads at these sites.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Read data of all eight 10X linked-read libraries (ERS2851779-ERS2851786) and 50
whole-genome sequencing libraries (ERS2851943-ERS2851992) that support the findings
of this study are available in BAM format from European Nucleotide Archive under
accession number “ERP111558”. All other relevant data are available upon request.

Code availability
Custom code used for identification of recombinant molecules and frequency calculation
can be found online at https://github.com/schneebergerlab/DrLink under GPL v3.0.

Received: 12 December 2018 Accepted: 19 August 2019

References
1. Barton, N. H. & Charlesworth, B. Why sex and recombination? Science 281,

1986–1990 (1998).
2. Rice, W. R. & Chippindale, A. K. Sexual recombination and the power of

natural selection. Science 294, 555–559 (2001).
3. McDonald, M. J., Rice, D. P. & Desai, M. M. Sex speeds adaptation by altering

the dynamics of molecular evolution. Nature 531, 233–236 (2016).
4. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-

resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature
454, 479–485 (2008).

5. Kauppi, L., Jeffreys, A. J. & Keeney, S. Where the crossovers are:
recombination distributions in mammals. Nat. Rev. Genet. 5, 413–424 (2004).

6. Yamada, S. et al. Genomic and chromatin features shaping meiotic double-
strand break formation and repair in mice. Cell Cycle 16, 1870–1884 (2017).

7. Singhal, S. et al. Stable recombination hotspots in birds. Science 350, 928–932
(2015).

8. Miller, D. E. et al. Whole-genome analysis of individual meiotic events in
drosophila melanogaster reveals that noncrossover gene conversions are
insensitive to interference and the centromere effect. Genetics 203, 159–171
(2016).

9. Kianian, P. M. A. et al. High-resolution crossover mapping reveals similarities
and differences of male and female recombination in maize. Nat. Commun. 9,
2370 (2018).

10. Salomé, P. A. et al. The recombination landscape in Arabidopsis thaliana F2
populations. Heredity 108, 447–455 (2012).

11. Higgins, J. D., Osman, K., Jones, G. H. & Franklin, F. C. H. Factors underlying
restricted crossover localization in barley meiosis. Annu. Rev. Genet. 48, 29–47
(2014).

12. Sturtevant, A. H. A crossover reducer in Drosophila melanogaster due to
inversion of a section of the third chromosome. Biol. Zent. Bl. 46, 697–702
(1926).

13. Dobzhansky, T. The decrease of crossing-over observed in translocations, and
its probable explanation. Am. Nat. 65, 214–232 (1931).

14. Chakraborty, U. & Alani, E. Understanding how mismatch repair proteins
participate in the repair/anti-recombination decision. FEMS Yeast Res. https://
doi.org/10.1093/femsyr/fow071 (2016).

15. Choi, K. et al. Arabidopsis meiotic crossover hot spots overlap with H2A.Z
nucleosomes at gene promoters. Nat. Genet. 45, 1327–1336 (2013).

16. Underwood, C. J. et al. Epigenetic activation of meiotic recombination near
Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA
methylation. Genome Res. 28, 519–531 (2018).

17. Yelina, N. E. et al. Epigenetic remodeling of meiotic crossover frequency in
Arabidopsis thaliana DNA methyltransferase mutants. PLoS Genet. https://
doi.org/10.1371/journal.pgen.1002844 (2012).

18. Marand, A. P. et al. Meiotic crossovers are associated with open chromatin
and enriched with Stowaway transposons in potato. Genome Biol. https://doi.
org/10.1186/s13059-017-1326-8 (2017).

19. Ziolkowski, P. A. et al. Natural variation and dosage of the HEI10 meiotic E3
ligase control Arabidopsis crossover recombination. Genes Dev. 31, 306–317
(2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12209-2

8 NATURE COMMUNICATIONS |         (2019) 10:4310 | https://doi.org/10.1038/s41467-019-12209-2 | www.nature.com/naturecommunications

https://www.ebi.ac.uk/ena/data/search?query=ERP111558
https://github.com/schneebergerlab/DrLink%20under%20GPL%20v3.0
https://doi.org/10.1093/femsyr/fow071
https://doi.org/10.1093/femsyr/fow071
https://doi.org/10.1371/journal.pgen.1002844
https://doi.org/10.1371/journal.pgen.1002844
https://doi.org/10.1186/s13059-017-1326-8
https://doi.org/10.1186/s13059-017-1326-8
www.nature.com/naturecommunications


20. Serra, H. et al. Massive crossover elevation via combination of HEI10 and
recq4a recq4b during Arabidopsis meiosis. PNAS 115, 2437–2442 (2018).

21. Choi, K. et al. Recombination rate heterogeneity within Arabidopsis disease
resistance genes. PLoS Genet. https://doi.org/10.1371/journal.pgen.1006179.
(2016).

22. Fernandes, J. B., Seguéla-Arnaud, M., Larchevêque, C., Lloyd, A. H. & Mercier,
R. Unleashing meiotic crossovers in hybrid plants. PNAS 115, 2431–2436
(2017).

23. Girard, C. et al. FANCM-associated proteins MHF1 and MHF2, but not the
other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 42,
9087–9095 (2014).

24. Crismani, W. et al. FANCM limits meiotic crossovers. Science 336, 1588–1590
(2012).

25. Higgins, J. D. et al. AtMSH5 partners AtMSH4 in the class I meiotic crossover
pathway in Arabidopsis thaliana, but is not required for synapsis. Plant J. 55,
28–39 (2008).

26. Berchowitz, L. E., Francis, K. E., Bey, A. L. & Copenhaver, G. P. The role of
AtMUS81 in interference-insensitive crossovers in A. thaliana. PLoS Genet.
https://doi.org/10.1371/journal.pgen.0030132 (2007).

27. De Storme, N. & Geelen, D. The impact of environmental stress on male
reproductive development in plants: biological processes and molecular
mechanisms. Plant Cell Environ. 37, 1–18 (2014).

28. Jackson, S., Nielsen, D. M. & Singh, N. D. Increased exposure to acute thermal
stress is associated with a non-linear increase in recombination frequency and
an independent linear decrease in fitness in Drosophila. BMC Evol. Biol.
https://doi.org/10.1186/s12862-015-0452-8 (2015).

29. Lloyd, A., Morgan, C., H. Franklin, F. C. & Bomblies, K. Plasticity of meiotic
recombination rates in response to temperature in Arabidopsis. Genetics 208,
1409–1420 (2018).

30. Konieczny, A. & Ausubel, F. M. A procedure for mapping Arabidopsis
mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4,
403–410 (1993).

31. Baird, N. A., et al. Rapid SNP discovery and genetic mapping using sequenced
RAD markers. PLoS One 3, https://doi.org/10.1371/journal.pone.0003376
(2008).

32. Rowan, B. A., Danelle, K. S., Eunyoung, C., Derek., S. L. & Weigel, D. Methods
for genotyping-by-sequencing. Methods Mol. Biol. 1492, 221–242 (2017).

33. Rowan, B. A., Patel, V., Weigel, D. & Schneeberger, K. Rapid and inexpensive
whole-genome genotyping-by-sequencing for crossover localization and fine-
scale genetic mapping. G3, 385-398 (2015).

34. Melamed-Bessudo, C., Yehuda, E., Stuitje, A. R. & Levy, A. A. A new seed-
based assay for meiotic recombination in Arabidopsis thaliana. Plant J. 43,
458–466 (2005).

35. Francis, K. E. et al. Pollen tetrad-based visual assay for meiotic recombination
in Arabidopsis. PNAS 104, 3913–3918 (2007).

36. Choi, K., Yelina, N. E., Serra, H. & Henderson, I. R. Quantification and
Sequencing of Crossover Recombinant Molecules from Arabidopsis Pollen
DNA. in Haplotyping: Methods and Protocols (eds. Tiemann-Boege, I. &
Betancourt, A.) 1551, 23–57 (Springer, New York, NY, USA, 2017).

37. Mayjonade, B. et al. Extraction of high-molecular-weight genomic DNA for
long-read sequencing of single molecules. Biotechniques 61, 203–205 (2016).

38. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the
flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

39. Zapata, L. et al. Chromosome-level assembly of Arabidopsis thaliana Ler
reveals the extent of translocation and inversion polymorphisms. PNAS 113,
E4052–E4060 (2016).

40. Wijnker, E., et al. The Genomic Landscape of Meiotic Crossovers and Gene
Conversions in Arabidopsis Thaliana. elife https://doi.org/10.7554/eLife.01426
(2013).

41. Shilo, S., Melamed-Bessudo, C., Dorone, Y., Barkai, N. & Levy, A. A. DNA
crossover motifs associated with epigenetic modifications delineate open
chromatin regions in Arabidopsis. Plant Cell 27, 2427–2436 (2015).

42. Choi, K. et al. Nucleosomes and DNA methylation shape meiotic, DSB
frequency in Arabidopsis Thaliana transposons and gene regulatory regions.
Genome Res. 28, 532–546 (2018).

43. Sun, H., Ding, J., Piednoël, M. & Schneeberger, K. findGSE: estimating
genome size variation within human and Arabidopsis using k-mer
frequencies. Bioinformatics 34, 550–557 (2018).

44. Giraut, L., et al. Genome-wide crossover distribution in Arabidopsis thaliana
meiosis reveals sex-specific patterns along chromosomes. PLoS Genet. https://
doi.org/10.1371/journal.pgen.1002354 (2011).

45. Fuchs, L. K., Jenkins, G., Phillips, D. W. Anthropogenic impacts on meiosis in
plants. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01429 (2018).

46. Liu, B., Mo, W.-J., Zhang, D., De Storme, N. & Geelen, D. Cold influences
male reproductive development in plants: a hazard to fertility, but a window
for evolution. Plant Cell Physiol. 60, 7–18 (2019).

47. Dreissig, S., Fuchs, J., Himmelbach, A., Mascher, M. & Houben, A. Sequencing
of single pollen nuclei reveals meiotic recombination events at megabase
resolution and circumvents segregation distortion caused by postmeiotic
processes. Front. Plant Sci. 8, 1620 (2017).

48. Luo, C., Li, X., Zhang, Q. & Yan, J. Single gametophyte sequencing reveals that
crossover events differ between sexes in maize. Nat. Commun. 10, 785 https://
doi.org/10.1038/s41467-019-08786-x (2019).

49. Jan, D. & Mézard, C. Characterization of meiotic crossovers in pollen from
Arabidopsis Thaliana. Methods Mol. Biol. 745, 223–249 (2011).

50. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9, 357–359 (2012).

51. Li, H. et al. 1000 Genome Project Data Processing Subgroup. The sequence
alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

52. Willing, E. M. et al. Genome expansion of Arabis alpina linked with
retrotransposition and reduced symmetric DNA methylation. Nat. Plants 1,
14023 (2015).

Acknowledgements
The authors would like to thank Ian R. Henderson (Department of Plant Sciences,
University of Cambridge) for providing the CO breakpoint lists, Erik Wijnker
(Wageningen University) for providing seeds and Ulrike Hümann, Manish Goel, Wen-
Biao Jiao, Vidya Oruganti, and Onur Dogan (Max Planck Institute for Plant Breeding
Research) for their help in the greenhouse. We also would like to thank 10X Genomics
for their help on setting up the longranger software, advice on DNA extraction, and their
kind donation of library reagents to support the development of recombination identi-
fication. We thank Lutz Froenicke and the DNA Technologies Core at UC Davis for 10X
library sequencing support and discussions. We also acknowledge helpful discussions
with Detlef Weigel at the Max Planck Institute for Developmental Biology and Kyle
Fletcher, William Palmer, and Sebastian Reyes-Chin-Wo at UC Davis. We thank Felicity
Jones and Frank Chan (Friedrich Miescher Laboratory of the Max Planck Society) for
inspiring the extension of this work to gametes. This work was supported by the Max
Planck Society postdoctoral fellowship, and a combined grant by the Deutsche For-
schungsgemeinschaft (DFG) and the Agence Nationale de la Recherche (ANR) under
grant number SCHN1257/8–1 (KS), and a UC Davis Genome Center Pilot Project
grant (BAR).

Author contributions
H.S., B.A.R., and K.S. designed the project. H.S. and B.A.R. performed all analysis. B.A.R.,
H.S., and P.J.F. prepared the samples. B.A.R., R.B., J.F., and B.H. performed DNA
extraction, quality control, library preparation, and/or sequencing. K.S., B.A.R., A.M.H.,
and R.M.W. supervised the project. H.S., B.A.R., and K.S. wrote the manuscript. All
authors read and approved the final manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-12209-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12209-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4310 | https://doi.org/10.1038/s41467-019-12209-2 | www.nature.com/naturecommunications 9

https://doi.org/10.1371/journal.pgen.1006179.
https://doi.org/10.1371/journal.pgen.0030132
https://doi.org/10.1186/s12862-015-0452-8
https://doi.org/10.1371/journal.pone.0003376
https://doi.org/10.7554/eLife.01426
https://doi.org/10.1371/journal.pgen.1002354
https://doi.org/10.1371/journal.pgen.1002354
https://doi.org/10.3389/fpls.2018.01429
https://doi.org/10.1038/s41467-019-08786-x
https://doi.org/10.1038/s41467-019-08786-x
https://doi.org/10.1038/s41467-019-12209-2
https://doi.org/10.1038/s41467-019-12209-2
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Linked-read sequencing of gametes allows efficient genome-wide analysis of meiotic recombination
	Results
	CO breakpoint detection from bulk recombinants
	Increasing the number of molecules per library
	Association of COs with genomic features
	Increasing the number of genomes per library
	Estimating relative recombination frequency
	Estimating CO frequency and landscapes from gametes

	Discussion
	Methods
	F2 DNA extraction and library preparation
	Pollen DNA extraction and library preparation
	Molecule recovery and genotyping using DrLink
	Generating the CO benchmark set
	Estimating chromosomal CO landscapes
	Comparison of CO distribution in pollen and F2 populations
	Relative CO frequency estimation
	DNA methylation level estimation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Additional information




