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QtL mapping and genome-wide 
prediction of heat tolerance in 
multiple connected populations of 
temperate maize
Delphine Van inghelandt1, felix p. frey2,3, David Ries1 & Benjamin Stich1,2

climate change will lead to increasing heat stress in the temperate regions of the world. the objectives 
of this study were the following: (i) to assess the phenotypic and genotypic diversity of traits related 
to heat tolerance of maize seedlings and dissect their genetic architecture by quantitative trait locus 
(QtL) mapping, (ii) to compare the prediction ability of genome-wide prediction models using various 
numbers of KASP (Kompetitive Allele Specific PCR genotyping) single nucleotide polymorphisms (SNPs) 
and RAD (restriction site-associated DnA sequencing) Snps, and (iii) to examine the prediction ability 
of intra-, inter-, and mixed-pool calibrations. For the heat susceptibility index of five of the nine studied 
traits, we identified a total of six QTL, each explaining individually between 7 and 9% of the phenotypic 
variance. the prediction abilities observed for the genome-wide prediction models were high, especially 
for the within-population calibrations, and thus, the use of such approaches to select for heat tolerance 
at seedling stage is recommended. furthermore, we have shown that for the traits examined in our 
study, populations created from inter-pool crosses are suitable training sets to predict populations 
derived from intra-pool crosses.

Maize (Zea mays L.), compared to other crop species which grow in temperate Europe, is heat tolerant due to its 
C4 metabolism and its tropical origin1. Nevertheless, temperate maize cultivars can experience substantial dam-
ages when encountering heat stress2. Especially during flowering and grain filling, heat stress has severe impacts 
on maize plants3. Phenotypic consequences of heat stress at adult stage on phenotypic traits of maize are, among 
others, a reduction of the time to flowering4, an increased anthesis-silking interval5, a reduction of photosynthetic 
tissue due to leaf scorching4, and a reduction of grain and whole plant yield6.

However, temperate maize is also significantly affected by heat events during seedling stage7. This is of particu-
lar practical importance for biogas production for which maize is the most important crop8 in temperate Europe. 
One of the cultivation practices is that the planting of biogas maize is postponed until the harvest of the winter 
cereals in early summer. With this cropping system, sensitive maize seedlings are exposed to heat stress9.

In the future, heat stress is expected to become an even more critical threat to crop cultivation in temperate 
regions than it is today10 as the mean temperature and the severity of heat events will rise due to climate change11. 
Therefore, breeding heat-tolerant cultivars is crucial to sustain crop production in the future12.

The tolerance to heat stress in maize was studied on a molecular level with a focus on natural variation by 
Ottaviano et al.13, Frova and Sari-Gorla14, and Reimer et al.9. These studies focused on isolated plant characteris-
tics such as the cellular membrane stability, pollen germination, and root architecture. Alam et al.5 estimated var-
iance components for traits involved in heat tolerance in field trials under natural heat stress condition. However, 
we are not aware of systematic studies characterising genetic variability for heat tolerance at seedling stage on a 
whole plant level.

The classical approach to improve a trait by breeding is to screen genetic material in one or several envi-
ronments in which the conditions are such that the phenotypic trait of interest shows heritable variation. The 
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issue with an evaluation of heat tolerance in natural environments is that the timing and the strength of the 
heat event are typically unpredictable15. One way to circumvent this problem is to screen the genetic material of 
interest in an artificial environment such as greenhouses or growth chambers. The efficiency of such approaches 
can be increased by combining them with marker-assisted selection approaches. For many years, the markers 
for such approaches have been identified by quantitative trait loci (QTL) mapping or genome-wide association 
mapping. Although numerous QTL have been identified for maize (for review see Sehgal et al.16), the impact of 
marker-assisted selection for improving truly quantitative traits in maize breeding is limited17. This is primarily 
attributed to the small effects of many of the detected QTL. An alternative promising approach for such traits is 
genome-wide prediction (GWP) because it captures not only the variance of the QTL but also all genetic variance. 
However, to the best of our knowledge, such an approach has not been tested previously for traits related to heat 
tolerance.

Several studies have shown that moderate-to-high genomic prediction accuracies can be obtained in 
bi-parental populations for a trait with high heritability, even by using low marker density and a relatively small 
training population18–20. Other studies have illustrated that genotypic characterisation using high-density geno-
typing platforms might improve the prediction accuracy21–23. To the best of our knowledge, only few experimental 
studies till now have compared GWP based on low density genotyping and genotyping by sequencing (GBS)24–26. 
Furthermore, the composition and size of the training and validation sets are crucial for GWP. Technow et al.27 
analysed the possibility of combining training sets across heterotic pools. However, no earlier study has examined 
the suitability of segregating populations derived from inter-pool crosses as training set for the prediction of the 
two original heterotic pools.

The objectives of this study were the following: (I) to assess the phenotypic and genotypic diversity of traits 
related to heat tolerance of maize seedlings and dissect their genetic architecture by quantitative trait locus (QTL) 
mapping, (II) to compare the prediction ability of genome-wide prediction models using various numbers of 
KASP (Kompetitive Allele Specific PCR genotyping) single nucleotide polymorphisms (SNPs) and RAD (restric-
tion site-associated DNA sequencing) SNPs, and (III) to examine the prediction ability of intra-, inter-, and 
mixed-pool calibrations.

Methods
plant material and phenotypic evaluation. This study was based on six segregating populations derived 
from pairwise crosses of four Dent (S067 = D1, P040 = D2, S058 = D3, S070 = D4) and four Flint (L012 = F1, 
L017 = F2, L043 = F3, L023 = F4) maize inbred lines from the University of Hohenheim28. The eight inbred lines 
were previously characterised in detail for their heat tolerance at seedling stage7. The inbreds were crossed pair-
wise to create two Dent x Dent (DxD), two Flint x Flint (FxF), and two Dent x Flint (DxF) F1 genotypes 
(Supplementary Fig. 1). The F1 genotypes were further self-pollinated in an ear to row manner, resulting in six 
segregating populations (PD D1 2

, PD D3 4
, PF F1 2

, PF F3 4
, PD F1 1

, PD F4 4
) comprising between 75 and 107 F3:4 progenies with a 

total of 607 genotypes.
Seeds were sown in soil (50% ED73, 50% Mini Tray (Einheitserde- und Humuswerke, Gebr. Patzer GmbH & 

Co. KG, Sinntal-Altengronau, Germany)) in single pots (9 cm edge length) as described previously. The experi-
ment was replicated three times. The experimental design was a lattice design comprising 32 incomplete blocks 
per replication which were distributed on four tables in a walk-in growth chamber (Bronson Incubator Services 
B.V., Nieuwkuijk, Netherlands). The parental inbred lines were included as checks once on each table.

The plants were grown at 25 °C during a 16 h light period and at 20 °C during a 8 h dark period for a total of 
three weeks in the growth chamber; the relative humidity was set to 60% during this period. Photosynthetic active 
radiation emitted by fluorescent tubes was between 270–280 μmol m−2 s−1 in the canopy of the plants. The plants 
were watered every morning with an automatic irrigation system (Itec DC station Multi Program, I.T. Systems 
Ltd., Bazra, Israel) to avoid drought stress.

The leaf growth rate was assessed as follows: fourteen days after sowing, the length of the fourth leaf from the 
shoot base to the leaf tip was measured daily for a period of three days during the stage of linear growth. The slope 
of a linear trend line of leaf length measurements vs. time represented the leaf growth rate (LR). Twenty days after 
sowing, leaf greenness (SD) (SPAD-502, Minolta Corporation, Ramsey, NJ, USA) was assessed as the maximum 
value of four readings on the leaf blade of the latest fully developed leaf. Furthermore, leaf scorching of young 
leaves (SC) and leaf senescence of old leaves (SN) were recorded on a scale of 1 (weak damage) to 9 (strong dam-
age). The length of the fourth leaf (LL), the plant height (PH) from the shoot base to the point where the youngest 
leaf detached from the older leaf ’s sheath, and the number of leaves (NL) with visible leaf ligule were recorded 
per plant. 21 days after sowing, shoot dry weight (DW) and the shoot water content (WC) of the fresh material 
were determined. The above outlined experiment was repeated at a higher heat level, where the temperature was 
increased, six days after planting, to 38 °C at day and 33 °C at night to induce heat stress for a two-week period. 
The study was, thus, based on two experiments with different heat levels, which will be referred to hereafter as 
standard and heat conditions.

Genotyping. KASP SNPs. The parental inbred lines of the segregating populations were genotyped using a 
50 K SNP array29. Out of 56,110 SNPs, 170 SNP markers were selected to genotype the individuals of the six seg-
regating populations. For each population, between 47 and 77 markers were chosen (60 for PD D1 2

, 47 for PD D3 4
, 75 

for PF F1 2
, 64 for PF F3 4

, 67 for PD F1 1
, and 77 for PD F4 4

) as they were polymorphic between the two parental inbreds of 
each population and showed no heterozygosity in any of the parental inbreds. SNP marker selection was opti-
mised for equal distribution across the physical map (due to the unavailability of a genetic map at that time) and 
the overlapping of markers between populations. The selected SNP markers were genotyped using KASP SNP 
technology by TraitGenetics GmbH (Gatersleben, Germany) on a bulk of 6 to 10 F3:4 plants per genotype in the 
respective populations. This data set with 170 SNPs on 607 progenies will be designated hereafter as KASP607.
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RAD SNPs. The RAD libraries of the segregating populations were prepared for single-end sequencing accord-
ing to Baird et al.30 with the following modifications: barcodes were 5 bp long, and were at least two mutational 
steps apart from each other with regard to the first four bases, followed by the fifth checksum base. A total of 2 
μg genomic DNA of the same pool of plants that was used for KASP genotyping was digested for 30 min at 37 °C 
in a 50 μl reaction with 20 units of KpnI (New England Biolabs). Samples were inactivated by purification with 
Qiaquick spin columns (Qiagen, Hilden, Germany). Libraries were 96-fold barcoded, each genotype at two bar-
codes, resulting in 7 libraries. The sequencing of the RAD libraries was performed on a Hiseq2000 with 100 bp 
single end reads by the Max Planck-Genome-centre Cologne, Germany (https://mpgc.mpipz.mpg.de/home/), 
following the manufacturer’s protocol.

Demultiplexing of raw sequencing data by barcode was performed using the Stacks software pipeline31. 
Parameters were chosen to allow barcode rescue with a distance of two, where reads were discarded according to 
default settings. In the next steps, version 0.4.2 of Trim Galore! (http://www.bioinformatics.babraham.ac.uk/pro-
jects/trim_galore/) was used for adapter and quality trimming. In addition to the standard parameters, reads were 
filtered for a length of at least 75 bp, and the threshold for trimming low quality ends from reads was increased to 
30 for higher stringency.

The trimmed reads were mapped genotype-wise to the repeat masked and concatenated reference sequence, 
using BWA-MEM. In accordance to previous studies32, apart from an increased sensitivity parameter of -r 1.0, 
standard parameters were used.

For genotype calling, GATK’s HaplotypeCaller33 was applied to each genotype’s bam file independently, where 
the allowed maximum number of alternative alleles was set to three. The minimum base and mapping quality for 
calling were set to 30 and 40, respectively. Finally, soft-clipped bases were excluded from the analysis. All other 
parameters were set to their default values. Finally, the resulting files were combined into one and each posi-
tion was recalculated and re-genotyped, considering information of all samples, by GATK’s genotypeGVCFs. To 
ensure a high quality of the genotype calls, many filtering steps (see SM1) were applied to the resulting genotype 
call file.

After genotype calling, 53,579 SNP loci remained on 489 genotypes comprising 482 progenies and 7 parental 
inbred lines (Supplementary Fig. 1). Missing genotype calls were imputed per population using Beagle34. Three 
cutoff values were chosen to filter per genotype the genotype calls based on the genotype probabilities (GP). For 
each of the three GP cutoff values, one of the three possible genotypes calls (minor allele homozygous, heterozy-
gous, and major allele homozygous) was assigned to a genotype only when its predicted probability was greater 
than X for a given imputed genotype call, and all others were set to “NA”. The three cutoff values were X = 1, 
0.9835, and the allele with maximum genotype probability (MAX). The such created missing genotype calls were 
mean imputed. The data sets associated with the three cutoff values will be designated hereafter as RAD482-GP:1, 
RAD482-GP:0.98, and RAD482-GP:MAX, respectively. As there were less genotypes in the RAD than in the KASP data set, 
we defined an additional KASP data set with the same 482 progenies as for the RAD data set. This will be referred 
to hereafter as KASP482.

Diversity. Gene diversity D36 and population differentiation GST
37 were calculated. The average modified Roger’s 

distances (MRD) between and within populations were calculated according to Wright et al.38. Associations 
among genotypes were revealed with a principal component analysis (PCA) based on MRD estimates.

phenotypic data analysis. Adjusted entry mean calculation. To assess the significance of the heat level 
effect, the following model was used:

μ= + + + . + + +Y G C G C R B e( ) , (1)icrb i c ic cr crb icrb

where Yicrb is the phenotypic observation of the ith genotype in the bth block within the rth replication nested within 
the cth heat level. μ is the general mean, Gi is the effect of the ith genotype, Cc is the effect of the cth heat level, 

.C G( )ci is the interaction between the ith genotype and the cth heat level, Rcr is the effect of the rth replication nested 
within the cth heat level, Bcrb is the effect of the bth block in the rth replication nested within the cth heat level and 
eicrb the residual. Cc was regarded as fixed and all other effects were set as random. Traits with a significant Cc effect 
were considered heat-dependent traits. The adjusted entry means (AEM) of standard and heat conditions across 
genotypes were estimated and will be refered to as AEMs and AEMH, respectively.

To calculate AEM for each assessed trait of each genotype in each condition (AEMiS and AEMiH for standard 
and heat condition, respectively), the phenotypic observations of each heat level were separately analysed using 
the following model:

μ= + + + +Y G R B e , (2)irb i r rb irb

where Yirb is the phenotypic observation of the ith genotype in the rth replication and the bth block, Rr is the effect 
of the rth replication, Brb is the effect of the bth block nested within the rth replication, and eirb the residual. The 
genotype effect Gi was of primary interest in this analysis and was considered a fixed effect. Rr was considered 
fixed and Brb random.

Heat susceptibility index. A heat susceptibility index (HSI) for each trait and each genotype was calculated 
according to Mason et al.39:

=
−
−

HSI 1 AEM /AEM
1 AEM /AEM

,
(3)i

i iH S

H S
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where HSIi is the HSI for genotype i. The HSI of the individual traits will be designated as follows: HSILL, HSIPH, 
HSINL, HSISC, HSISN, HSISD, HSIDW, HSIWC, and HSILR. Pairwise Pearson correlation coefficients were calculated 
between the HSI of all assessed traits across all genotypes. Further, HSI of this study were correlated with HSI 
assessed during adult stage under field conditions4.

Variance components and heritability. Genotypic (σg
2) and error (σe

2) variance components for each heat level 
were calculated using model (2) with a random Gi effect. For each trait, the broad sense heritability (h2,40) of the 
observations at each heat level was calculated separately for each (hpop

2 ) as well as across (ha
2) the six populations. 

Heritability can not be assessed for HSI directly as it is not measured but calculated on a mean basis with no rep-
lication39. To calculate an approximate heritability for the HSI of each trait, we applied the following procedure, 
which is an extension of the approach of Ouk et al.41. For each of the two heat levels, we estimated, based on 
model (2), the fixed effects for Rr and Brb. In a second step, these effects were subtracted from all observations 
from the corresponding replicate and block to correct for differences in replicate and block effects. The adjusted 
data thereby comprised three replications per genotype for each of the two conditions. Subsequently, we sepa-
rately created random pairs for each genotype between one replication from the heat condition and one from the 
standard condition. Across all genotypes, 32607

 combinations of replications from the heat and standard conditions 
are possible. In the next step, for one possible combination of replications, the HSI was calculated as described 
previously, resulting in three HSI replicates for each genotype. These data were then analysed using the following 
model:

μ= + +Y G e , (4)ir i ir

where Yir is the phenotypic observation of the ith genotype in the rth replication, μ is the general mean, Gi is the 
effect of the ith genotype, and eir the residual. Based on genotypic (σg

2) and error (σe
2) variance components across 

all populations and for each population, the heritability was calculated. This procedure was repeated 100 times, 
and the median of the heritability was designed as heritability of HSI (hHSI

2 ).
The genetic variance among and within populations was estimated for each HSI by partitioning the genotype 

effect of model (4) into the effect of the population and that of the genotype nested within the population. This 
procedure was repeated 100 times with random assignments between the different replications as explained for 
the hHSI

2  calculation, and the median of the genetic variance among and within populations was calculated. The 
genetic differentiation observed for the HSI was then calculated42–44 and will be designed hereafter as QST.

QtL analyses with KASp Snps. SNP markers with a significant (P < 0.001) observed deviation from the 
expected allele frequency were excluded from the analysis (cf. Benke et al.45). To improve the mapping of mark-
ers, information of five additional segregating populations which had been genotyped with the same set of SNP 
markers by Horn et al.46 were considered during map creation. A consensus genetic linkage map was calculated 
chromosome-wise using the software CarthaGène47.

QTL associated with heat tolerance were detected based on the consensus genetic linkage map using an iter-
ative composite interval mapping approach48, implemented in the software MCQTL49,50. QTL analyses were per-
formed for the HSI of the individual traits across all six populations. We took into account connections between 
populations using an additivve kinship matrix. As the studied bi-parental F3:4 populations have an expected het-
erozygosity of 25%, dominance effects between parental alleles of each bi-parental population were considered 
in the QTL analysis. Genotypic probabilities were computed every 5 centiMorgan (cM), taking into account 
information from neighboring markers. F thresholds to detect QTL for each trait were determined by 1 000 per-
mutations, to adhere to a global type I error of 5% across populations and the entire genome51. F thresholds used 
to select co-factors were fixed at 90% of the F threshold values for QTL detection.

SNP markers associated with the respective HSI were selected as co-factors by forward regression, where the 
minimal distance between two co-factors was 10 cM. At the end of the detection process, confidence intervals 
were estimated on the basis of a 1.5 LOD unit fall52.

The dominance effect of each QTL was tested for its significance (P < 0.05) in each population using a 
two-sided t-test. The difference between the additive effects of pairs of parental alleles on the respective QTL was 
tested a posteriori using a Tukey test.

Furthermore, we overlapped the QTL detected in this study with those identified in a companion study at 
adult stage4. To identify candidate genes for heat tolerance in terms of the assessed traits, we mined genes, iden-
tified by Frey et al.7 as heat responsive or heat tolerance genes. We determined the position of these genes on the 
genetic map by linear regression with information of the nearest two SNP markers. Heat tolerance genes of Frey 
et al.7 mapping to QTL confidence intervals were designated in the following as heat tolerance candidate genes.

GWp. Genetic model. GWP was performed by genomic best linear unbiased prediction (GBLUP53):

β= + +y u eX Z , (5)

where y is the vector of the HSI of the corresponding trait, X is a design matrix assigning fixed effects to the gen-
otypes, β is a vector of fixed effects, Z is the design matrix that assigned the random effects to the genotypes, and 
u the vector of the random effects that were assumed to be normally distributed with: σ∼u N K(0, )u

2 , where K 
denotes the realised kinship matrix calculated on the basis of the molecular marker data54 with σu

2 being the var-
iance pertaining to the GBLUP model. Residuals e were assumed to be independent and normally distributed 
with σ∼e N I(0, )2 , where I is the identity matrix and σ2 the residual variance.

https://doi.org/10.1038/s41598-019-50853-2
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Two different genetic models were examined for each type of molecular marker that differed in the K matrix 
used: MA considering only additive effects with KA (the additive kinship matrix) and MAD considering additive 
and dominance effects with KA and KD (the dominance kinship matrix)55. GBLUP method was used as imple-
mented in the R package Sommer56.

Model training and performance assessment. The effects were estimated in a training set (TS) and used in a sec-
ond step to predict the breeding values of the genotypes of a validation set (VS). As measure of model perfor-
mance, prediction ability was calculated as the Pearson correlation coefficient between observed and predicted 
phenotypes of the VS, ˆr y y( , )57. In our study, different TS were used to establish the prediction model: in the TSpop 
scenario, the model was trained using one or two populations; for the TSa scenario all populations were used 
together as TS. For later scenario, prediction abilities were calculated both across all populations (ra) as well as for 
each population (rpop).

Resampling schemes. Different types of resampling schemes were used to evaluate the model performance as a 
function of the examined TS*VS combination:

•	 For TSa, we performed 20 replications of five-fold cross validation (CV) to assess the model performance 
across all populations. Accordingly, the entire data set was subdivided into five mutually independent subsets 
where four formed the training set (TS) and one the validation set (VS). To account for the structure of our 
data set with six different segregating populations, the proportion of genotypes from the different segregating 
populations in the individual subsets was kept identical to that observed in the entire data set. The median of 
the Pearson correlation coefficient between observed and predicted phenotypes of the validation set 

ˆr y y( , )VS VS  was used to assess model performance. Prediction abilities were calculated both across all popula-
tions (ra,cv) as well as for each population (rpop,cv).

•	 In the context of prediction within populations with TSpop, the influence of the size of the training set on the 
prediction ability was analysed by simulating, for each segregating population, a TS size N from 10 to 100 in 
steps of 10 using a bootstrapping approach. The median of the prediction ability across 500 replications was 
calculated for the HSI of each trait, genetic model, and type of SNP marker within each population and is 
designated in the following as rpop BSP, w

.
•	 For the between population prediction using TSpop, the influence of the composition of the TS on the predic-

tion ability was examined using three primary scenarios of TS compositions TS1, TS2, and TS3. In case of 
using the FxF and DxD populations as VS, TS1 comprised genotypes from populations for which the parental 
genotypes were from the same heterotic pool as those of the VS. TS2 comprised genotypes from one (TS2s) 
or two (TS2c) populations in which the parental genotypes belonged to the opposite heterotic pool as those 
of the VS. TS3 comprised genotypes from the DxF populations with three different scenarios: TS3sr used the 
related mixed population, TS3su used the unrelated mixed population, and TS3c combined both mixed pop-
ulations in the TS (Fig. 1, bottom).

In case of using the DxF populations as VS, the three scenarios were selected accordingly: TS1 comprised 
genotypes of the other DxF segregating population; TS2 comprised genotypes of the two combined FxF and DxD 
populations which did not have a parental inbred in common with the population in the VS. TS3 comprised gen-
otypes of the two combined FxF and DxD populations which had a parental inbred in common with the popula-
tion in the VS. To avoid differences in the prediction ability due to sample size effects, the TS were randomly 
reduced to a size of 50 such that the structure of the original TS was maintained. To obtain stable estimates for the 
prediction ability, the median of 500 independent bootstrapping runs of the TS construction was calculated for 
the HSI of each trait, genetic model, type of molecular marker, and TS*VS combination. The prediction abilities 
based on this bootstrapping strategy between populations will be referred to hereafter as rpop BSP, b

.

Number of molecular markers. In order to examine the influence of the number of molecular markers on the 
prediction ability, X random RAD SNPs were sampled from the RAD482-GP:0.98, where X ranged from 170 to 43 520 
in steps of ∗ X2 . Based on the selected SNPs, genomic predictions were obtained for the HSI of each traits using 
the MA genetic model, and the median of the prediction abilities across 100 replications was calculated.

Comparison between observed and expected within-population prediction ability. We used the formula suggested 
by Daetwyler et al.58 to estimate the expected within-population prediction ability. Following Meuwissen et al.59, 
Me was estimated as =M N L2e e  where L is the genome size in Morgans. L = 22.36 was adopted from a previous 
linkage-mapping study, using an F2 population which was characterised by genotyping by sequencing60 similarly 
to our study. The effective population size (Ne) was calculated using the harmonic mean approximation for two 
generations (Hartl and Clark, p. 29161), resulting in Ne = 2.92, 2.93, 2.94, 2.93, 2.92, and 2.92 for populations 
PD D1 2

, PD D3 4
, PF F1 2

, PF F3 4
, PD F1 1

, and PD F4 4
, respectively.

Results
phenotypic diversity. The condition effect (standard vs. heat) was significant ( < .P 0 01) across all popula-
tions and for all traits. Across the two examined conditions, ha

2 was medium to high (0.50–0.83) for all assessed 
traits (Table 1). For all traits except NL and SD, ha

2 was higher at heat compared to standard condition. hHSI
2  ranged 

from 0.41 (NL) to 0.75 (SC) and was with the exception of SC, WC, and LR lower than those of the traits in the 
two conditions. The heritability values observed on a population level (hpop

2 ) were very low for a few trait*popu-
lation*condition levels (Supplementary Table 1). This effect was the strongest for SC for which, at standard 

https://doi.org/10.1038/s41598-019-50853-2
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condition, a hpop
2  of 0 was observed for four of the six populations and smaller than 0.25 for the remaining two 

populations.
For LL, SC, DW, and LR, the mean and variation of the HSI were significantly ( < .P 0 05) higher in the two 

DxD populations (PD D1 2
 and PD D3 4

) than in the FxF and DxF populations. Especially, the population PD D3 4
 differed 

significantly from the other populations in the mean HSI for all traits except SD (Supplementary Fig. 2). QST cal-
culated for the HSI varied from 0.07 (SN) to 0.37 (SC; Table 1).

The first two principal components (PC) of the PCA of the HSI explained 45% and 14% of the total variance, 
respectively (Supplementary Fig. 3). PC1 was significantly ( < .P 0 01) correlated with each HSI where the corre-
lation coefficient was low (<|0.25|) for HSISD and between 0.36 and 0.85 for the other HSI (Supplementary Fig. 4). 
PC2 was significantly correlated with the HSI of each trait except HSINL and HSIWC where the correlation coeffi-
cient was low (<|0.25|) for all HSI except for HSISC and HSISD. The cluster of the two DxD populations overlapped 
only weakly with the cluster of the two FxF populations (Supplementary Fig. 3).

Genetic diversity. The consensus genetic linkage map for KASP SNPs had a total length of 1 823.5 cM with 
an average distance of 11.3 cM and a maximum distance of 83.2 cM between two adjacent markers.

Figure 1. Boxplot of the between-population prediction abilities rpop BSP, b
 across nine heat susceptibility indexes 

(HSI) and different validation sets (VS) using a boostrapping procedure with 50 genotypes for three different 
types of training set (TS) compositions. The analyses were based on RAD482-GP:0.98 and the MA model.

Trait

Standard condition (25 °C) Heat condition (38 °C)

HIS hHSI
2

Condition 
effect QSTMean (AEM) Range (AEM) ha

2 Mean (AEM) Range (AEM) ha
2

Leaf length 59.69 35.40–84.20 0.73 41.90 12.38–59.00 0.79 0.56 *** 0.18

Plant height 18.52 9.45–24.18 0.58 12.99 2.86–20.00 0.73 0.52 ** 0.16

Number of leaves 3.47 2.44–4.35 0.71 4.48 2.41–6.01 0.63 0.41 *** 0.23

Leaf scorching 1.05 1.00–6.34 0.49 3.51 0.78–9.18 0.82 0.75 *** 0.37

Leaf senescence 1.80 0.75–6.60 0.57 3.36 1.07–8.38 0.70 0.50 *** 0.07

Leaf greenness 50.09 37.38–63.87 0.83 38.79 23.44–53.44 0.67 0.64 *** 0.25

Shoot dry weight 0.91 0.31–1.54 0.69 0.70 0.12–1.64 0.76 0.67 *** 0.17

Shoot water content 0.93 0.90–0.95 0.54 0.89 0.81–0.93 0.59 0.56 *** 0.26

Leaf growth rate 0.25 0.12–0.39 0.50 0.22 −0.01–0.37 0.70 0.54 *** 0.17

Table 1. Mean and range of the adjusted entry mean (AEM), broad sense heritability (ha
2) of the studied traits 

for each condition, as well as for the heat susceptibility index (hHSI
2 ), significance of the environmental condition 

(standard vs heat) effect for each trait, and degree of genetic differentiation among the six populations (QST). *, 
**, *** Significant at the 0.05, 0.01, and 0.001 probability level, respectively.
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In the PCA based on MRD estimates calculated from KASP607, the first and second PC explained 21.87% and 
11.87% of the molecular variance, respectively (Supplementary Fig. 5). For RAD482-GP:0.98, PC1 and PC2 explained 
25.94 and 13.50% of the molecular variance. In the PCA based on KASP607, five distinct clusters were observed 
where one cluster was always constituted by the individuals of one segregating population except the individuals 
of the two FxF populations which were located in one overlapping cluster. For the RAD SNPs, the same trend was 
observed, but the two FxF populations (PF F1 2

 and PF F3 4
) were assigned to two distinct clusters.

The lowest gene diversity was observed for PD D3 4
 irrespective of the considered marker type (Supplementary 

Table 2). The ranking between the populations for D and Gst was different when calculated based on KASP or 
RAD SNPs. The correlation between the MRD distance matrices calculated with KASP and RAD SNPs was with 
0.84 significantly ( = . × −P 1 67 10 4) different from 0. The correlation between the KA matrices calculated with 
KASP and RAD SNPs was with 0.56 considerably lower but also significantly ( = × −P 6 10 4) different from 0.

QtL mapping and overlapping region with QtL detected at adult stage. We identified a total 
of six QTL for the HSI of five of the nine traits (Table 2), each explaining between 7% and 9% of the phenotypic 
variance (R2). The detected QTL were not randomly distributed across the genome, but a total of three QTL hot 
spots were observed. The QTL detected by Frey et al.4 for adult traits in field trials colocated with these hotspots 
(Fig. 2). Five of the heat tolerance genes identified by Frey et al.7 were located within the six QTL confidence 
intervals detected in our study (Supplementary Table 3).

GWp. The square root of the proportion of phenotypic variance explained by the QTL for the HSI of all traits 
was lower than the prediction abilities of the GWP models, irrespective of the type of molecular marker and 
genetic model used (Table 3). Furthermore, the correlation between RQTL and ra across the nine examined traits 
for KASP607 was approximately 0.33.

For the HSI of all traits, prediction abilities ra were equal or lower for KASP482 than for KASP607 (Table 3). ra 
calculated based on RAD482 were consistently higher than those for KASP482, independent of the GP cutoff value 
which was used to filter the genotype matrices. Despite this mean difference in the prediction abilities ra of the 
different data sets and genetic models, the trend across the nine traits was the same. The prediction abilities ra,cv 
varied for KASP607 between 0.31 (SN) and 0.70 (SC), whereas they ranged from 0.34 (SN) to 0.72 (SC) for 
RAD482-GP:0.98 (Fig. 3 and Supplementary Fig. 6). We observed a higher ra,cv for RAD482-GP:0.98 than for the two other 
GP cutoff values (data not shown) and, therefore, used the former data set for all further analyses. The correlation 
between QST and ra calculated for KASP482 was with 0.82 significantly different from 0 ( = .P 0 0068). In contrast, 
the correlation between QST and ra calculated based on RAD482-GP:0.98 was 0.19 and not significant ( = .P 0 62).

Based on KASP482, the prediction ability across populations ra was, apart from some exceptions, higher than 
the prediction ability calculated for each population rpop (Supplementary Fig. 6). The opposite trend was observed 
for RAD482-GP:0.98 (Fig. 3). For both molecular marker types, the prediction ability ra,cv of the MA and MAD genetic 
model did not differ significantly. However, the within-population prediction ability rpop BSP, w

 of the individual 
population*trait combinations, was either similar or higher for the MA compared to the MAD model 
(Supplementary Figs 7–12). Therefore, we focused in this study on the former model.

An increase in the prediction ability with an increasing number of molecular markers was observed (Fig. 4). 
The number of markers for which the prediction ability reached a plateau differed between the examined traits.

An increase of the within-prediction ability with an increasing size of the TS was observed for most popula-
tion*trait*genetic model*molecular marker type combinations (Supplementary Figs 7–12). With a few excep-
tions, which showed a linear increase, the detected increase followed a logarithmic trend line (Supplementary 
Figs 13–15). We observed within-population prediction abilities for three traits (WC, PH and SD) that were 
similar to or higher than the expected abilities (Fig. 5). This was not true for the other traits. Especially, NL was 
predicted worse than expected. Furthermore, two populations PD D1 2

 and PD F4 4
 were predicted better than expected, 

whereas the other four were predicted worse than expected. The within-population prediction abilities rpop BSP, w
 

Trait QTL Chr Pos LOD Interval R2

Additive effect of parent Dominance effect of population

D1 D2 D3 D4 F1 F2 F3 F4 PD D1 2 PD D3 4 PF F1 2 PF F3 4 PD F1 1 PD F4 4
HSILL QHSI:LLa 2 37 9.64 0–42 0.07 0.08B −0.11C 0.07AB −0.06AC 0.02ABC 0.01ABC 0.03ABC −0.04AC −0.00ns −0.23ns −0.02ns −4.40ns −0.03ns 0.78ns

QHSI:LLb 10 30 10.55 14–38 0.07 −0.00AB −0.05AB −0.03AB −0.10B 0.03A 0.02AB 0.06AB 0.07A 0.00ns −0.06ns −0.19** 0.05ns −0.07ns 0.29ns

Simultaneous fit 0.13

HSIPH QHSI:PH 9 3 13.20 0–17 0.09 −0.11BD 0.01ABCD 0.10A −0.13CD 0.05A 0.05AB 0.01ABCD 0.03AC 0.10ns −0.00ns 0.12ns 0.20ns 0.05ns 0.15ns

HSISC QHSI:SC 9 74 8.88 0–74 0.07 −0.33A 0.50A −0.02A 0.03A −0.35A 0.18A −0.02A 0.01A 1.34*** 1.05** −1.19ns 0.29ns −2.51ns −0.28ns

HSISD QHSI:SD 5 101 10.06 70–151 0.08 0.10B −0.27A −0.22A −0.23A −0.01AB 0.18B 0.26B 0.19B −0.17ns 0.13ns −0.16ns −0.58ns −0.00ns −0.11ns

HSILR QHSI:LR 2 82 10.06 60–141 0.07 −0.24AB −1.49C 0.12AB −0.06AB 1.00B 0.73AB 0.13AB −0.19A 0.99ns −3.63ns 0.24ns −0.69ns −0.87ns 0.66ns

Table 2. Quantitative trait loci (QTL) detected for the heat susceptibility index (HSI) of five traits (Leaf length: 
LL, Plant height: PH, Leaf scorching: SC, Leaf greenness: SD, Leaf growth rate: LR) at a significance level of 

< .P 0 05, with genetic map position [cM], logarithmic odds ratio (LOD) and their support interval, proportion 
of explained phenotypic variance (R2), additive effects of each parental genotype and dominance effects of the 
six populations. A, B, C, D Additive effects of parental inbreds with the same letters are not significantly 
( < .P 0 05) different from each other. *, **, *** Significant at the 0.05, 0.01 and 0.001 probability level, 
respectively. nsNot significant.
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Figure 2. Circle plot showing the location of quantitative trait loci (QTL) affecting heat tolerance of maize. 
Heat tolerance (green) and heat responsive (orange) candidate genes7 are represented in the first track. Tracks 
2–10 show logarithmic odds ratio (LOD) scores (black), detected QTL and confidence intervals (red) of the 
QTL for the heat susceptibility indexes (HSI) of the traits: leaf elongation rate (LR), leaf length (LL), plant height 
(PH), leaf scorching (SC) and leaf greenness (SD) at seedling stage, and leaf scorching (LS), time to female (FF) 
and male flowering (MF) and adjusted dry yield (DYA) at adult stage4.

Data set

RQTL ra ra ra ra ra

KASP607 KASP607 KASP482 RAD482-GP:MAX RAD482-GP:0.98 RAD482-GP:1

Trait

HSILL 0.36 0.66 0.64 0.88 0.92 0.93

HSIPH 0.30 0.64 0.63 0.88 0.94 0.94

HSINL 0.00 0.58 0.58 0.69 0.70 0.70

HSISC 0.26 0.80 0.81 0.85 0.88 0.88

HSISN 0.00 0.56 0.52 0.68 0.71 0.76

HSISD 0.28 0.69 0.66 0.80 0.90 0.83

HSIDW 0.00 0.63 0.62 0.88 0.93 0.94

HSIWC 0.00 0.65 0.68 0.89 0.88 0.86

HSILR 0.26 0.71 0.70 0.89 0.92 0.93

Table 3. Square root of the proportion of the explained phenotypic variance of the QTL (RQTL), genome-wide 
prediction ability based on the different KASP and RAD SNP sets for the heat susceptibility index (HSI) of nine 
traits (leaf length (LL), plant height (PH), number of leaves (NL), leaf scorching (SC), leaf senescence (SN), leaf 
greenness (SD), shoot dry weight (DW), shoot water content (WC) and leaf growth rate (LR)) across the six 
populations (ra) using the additive genetic model MA.
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were for 80% of the population*trait combinations higher than those found based on a model built across the six 
populations (rpop cv, ) when considering the same TS size of 50 (Fig. 6A). However, this was only true for 25% of the 
combinations when considering the original TS size of 385 genotypes (Fig. 6B). Across all traits and populations, 
the between-population predictions in the TS2c scenario (TS built from two combined populations) resulted in 
higher prediction abilities than those of TS2s (TS built from one population; Fig. 1, left). Furthermore, we 
observed that TS3 and especially the TS3sr scenario resulted most often in the highest prediction abilities for FxF 
or DxD VS (Fig. 1, left). For DxF populations as VS, TS1 resulted in the highest prediction ability (Fig. 1, right).

Discussion
For most traits, we observed a higher broad sense heritability (ha

2) at heat compared to standard condition. This 
observation was due to an increased genotypic variance at heat condition while the error variance was not notably 
increased (data not shown). Our findings are in contrast with field-based studies in which the heritability is 
mostly lower at heat compared to standard condition due to an increased error variance (e.g. Cairns et al.62). This 
difference might be explained by field environmental factors which are more important under heat conditions, 

Figure 3. Observed versus genome-wide predicted heat susceptibility index (HSI) for each trait using 
RAD482-GP:0.98. The prediction across all populations was based on the additive model MA applied across 
populations without (ra) or with cross validation (ra cv, ). For the prediction within-populations, the model was 
built across populations but the prediction was performed within each population without (rpop) and with 
(rpop cv, ) cross validation.
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e.g. soil heterogeneity. However, these factors have low relevance under controlled conditions, e.g. in growth 
chambers used in our study.

The ha
2 values for the assessed traits were medium to high for both environmental conditions (Table 1). ha

2 was 
comparable with heritability estimates observed by Frey et al.4 and Naveed et al.63 under heat stress, and by 
Cerrudo et al.17 under drought stress. This observation suggests that an adequate estimation of the AEM for each 
genotype was achieved, which is the prerequisite for a high power to detect QTL, for genome-wide prediction, as 
well as to interpret differences between heterotic pools.

We observed significant ( < .P 0 05) differences in the HSI between populations derived from DxD crosses 
compared to populations derived from FxF crosses (Supplementary Fig. 2). Except for SD, the HSI of FxF popu-
lations were lower than that of DxD populations. This suggests that FxF populations are more tolerant to heat 
stress than DxD populations at seedling stage. The findings of Hallauer et al.64 suggested that the Flint pool con-
tributed an improved chilling tolerance to cultivars bred for temperate Europe. Moreover, the results from 
Strigens et al.65 suggested an improved morphological and physiological adaptation of the Flint pool to chilling 
temperatures compared to the Dent pool. These observations along with ours suggest that genotypes of the Flint 
pool have a higher tolerance to temperature stress during seedling stage than genotypes of the Dent pool. This 

Figure 4. Prediction abilities (ra) for different numbers of RAD SNPs as well as for the entire KASP482 (left) and 
RAD482-GP:0.98 (right) for HSI of nine phenotypic traits. Different numbers of RAD SNPs set sizes were simulated 
using a resampling procedure. The black vertical bars at each points indicate the standard deviation of the 
prediction abilities over the 100 replications. The analyses are based on the MA model.

Figure 5. Observed vs. expected within-population prediction abilities averaged across populations (A) and 
averaged across the HSI of the different traits (B). The analyses are based on RAD482-GP:0.98 and the MA model.
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conclusion is in accordance with the results of Reimer et al.9 who observed a higher tolerance to temperature 
extremes during seedling stage of genotypes of the Flint pool compared to genotypes of the Dent pool.

The correlation between heat tolerance at seedling and adult stages, which was examined in a companion 
study4, was low (Supplementary Fig. 4). This finding was expected as plant performance in young stages might 
have limited implications on plant performance after transition from the vegetative to the generative phase. 
Similar trends were observed for salinity tolerance in wheatgrass66 or tolerance to defoliation intensity in maize67. 
Additionally, Gibert et al.68 observed that for some traits, the correlation between trait and growth changes with 
plant size and physiological stage. In summary, these results indicate that plant growth strategies should not be 
considered as constant over the entire life but is stage-dependent.

The negative correlation between the heat tolerance of maize at seedling and adult stages was also manifested 
on the level of heterotic pools. Genotypes derived from DxD crosses had a lower heat tolerance at seedling stage 
but a high heat tolerance at adult stage compared to genotypes derived from FxF crosses4. Therefore, both het-
erotic pools should be considered when increasing heat tolerance across developmental stages.

Segregating populations derived from DxF crosses are only rarely created in commercial maize breeding 
programs. Nevertheless, because of their different behaviour regarding heat tolerance, such populations were 
included in our study to test their suitability for QTL mapping and GWP. The confidence intervals of the QTL for 
heat tolerance at seedling stage detected in our study (Table 2) overlapped not only with QTL confidence inter-
vals for the same trait at adult stage4 (Fig. 2) but also with QTL regions associated with other abiotic stresses. The 
confidence intervals of QTL for HSILL on chromosome 2 overlapped with a QTL associated with cold tolerance, 
which was identified in a metaQTL-analysis69. Furthermore, a QTL identified for the shoot and root dry weight 
and the leaf area under drought stress conditions70 as well as a QTL for the leaf chlorophyll content at drought 
stress identified by Messmer et al.71 mapped to the same genomic region on top of chromosome 2. These findings 
might suggest that different abiotic stresses might have similar genetic regulation mechanisms7. Furthermore, 
four out of five heat tolerance genes detected by Frey et al.7, in an RNAseq experiment, were located within the 
QTL confidence intervals on chromosome 2 (Supplementary Table 3, Frey et al.72). This over-representation of 
heat tolerance genes in a particular region and their collocation with several QTL for heat tolerance illustrates the 
importance of genetic mechanisms for heat tolerance available on this chromosome.

Phenotypic evaluation of genetic material for heat tolerance is difficult due to irregular and uncontrolled 
appearance of heat stress conditions in field experiments and is technically demanding when performed in plant 
growth chambers. Marker-assisted selection (MAS) using QTL for traits related to heat tolerance could supple-
ment phenotypic selection. However, each QTL detected in our study explained with <10% a relatively small part 
of the phenotypic variance of the respective trait. It suggests that the heat tolerance at seedling stage is inherited 
as a true quantitative trait. This in turn makes the use of MAS for heat tolerance inefficient. Therefore, in a subse-
quent step, we evaluated the utility of GWP to improve heat tolerance of temperate maize.

With the GWP approach, we were able to explain an approximately threefold higher proportion of the genetic 
variance of the HSI of each trait compared to the detected QTL (Table 3). This is in accordance with earlier reports 
on other traits in maize73–75 and in other crops24, and illustrates the superiority of GWP over MAS for truly quan-
titative traits.

To quantify the potential advantage of GWP over phenotypic selection, the former can be seen as an indirect 
selection compared to direct phenotypic selection. The relative merit of indirect vs. direct selection can be calcu-
lated as the indirect selection response divided by the direct selection response76. This ratio can be rearranged as 
the ratio r h/a cv HSI,

2 . GWP is superior to phenotypic selection if this ratio is >1. Assuming the same selection inten-
sity for GWP and phenotypic selection and considering the prediction abilities (ra cv,  with RAD482-GP:0.98 and MA) 

Figure 6. Comparison of the prediction abilities of within-population calibration (rpop BSP TS, , 50w
) with a training 

set (TS) of 50 genotypes with the prediction abilities based on an across-population calibration (rpop cv, ) with a 
TS size of 50 (A) and 385 (B) genotypes. The analyses are based on RAD482-GP:0.98 and the MA model.
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of our study, the maximum relative cycle can be calculated for which identical selection gains are realised with 
indirect and direct selection76,77. The maximum relative cycle lengths for GWP were 92% (HSILL), 88% (HSIPH), 
100% (HSINL), 96% (HSISC), 68% (HSISN), 82% (HSISD), 76% (HSIDW), 100% (HSIWC), and 114% (HSILR) of those 
of phenotypic selection. Therefore, GWP for heat stress tolerance is already equivalent or superior to phenotypic 
selection for three traits even without considering potential advantages due to higher selection intensities, which 
is very promising in light of earlier studies27,78. In the following, various factors influencing the prediction ability 
are discussed.

We found a good agreement between observed and expected prediction abilities across all studied traits 
(Fig. 5). However, some traits were systematically over- (NL, DW) or under-estimated (WC). One of the potential 
reasons for a difference between observed and expected predicted ability could be the low heritability of the traits. 
This was especially true for the HSI of NL which had the lowest heritability (Table 1), and which prediction ability 
deviated substantially from the expected values (Fig. 5). Another reason for the systematic over- and underesti-
mations could be deviations from the highly polygenic genetic architecture of the traits which is assumed in the 
applied deterministic formula58. For such traits, one would expect that the detected QTL explained the highest 
proportion of the phenotypic variance. However, it is striking that the traits for which the most considerable 
difference between observed and expected prediction ability was found were the traits for which no QTL were 
detected in our study. This warrants further research.

The superiority of GWP over phenotypic selection was evaluated as described previously based on an additive 
genetic model. However, the F3:4 populations used in our study had an expected heterozygosity of 25%. In this 
case, it can be beneficial to investigate genetic models covering not only additive but also dominance effects when 
performing GWP. No obvious trend was observed regarding the superiority of one of the genetic models for the 
across-population prediction strategies ra, rpop, ra cv, , and rpop cv,  (data not shown). However, the rpop BSP, w

 predictions 
abilities based on the MA model were at least equal and, for some population*trait combinations, higher than that 
observed for the MAD model (Supplementary Figs 7–12). This suggests that dominance effects were either not 
relevant for the studied traits or were not captured by our GBLUP model. This result was in accordance with 
observations made in the animal breeding field that generally, the increase of the accuracy of additive breeding 
values by including dominance effects was scarce79. Therefore, we considered only the MA genetic model for all 
further analyses.

Other factors that potentially influence the prediction ability are the number and type of molecular markers 
that are used to to characterise the genetic material. From the three GP cutoff values examined for the RAD SNPs, 
RAD482-GP:0.98 resulted in the highest ra cv,  values for most of the traits (data not shown). Our finding suggests that 
the mean imputation of genotypes calls with low GP is less error-prone than the genotype calls obtained by 
Beagle. Therefore, we chose the GP cutoff value of 0.98 for all further analyses with the RAD SNPs.

The prediction abilities ra and rpop calculated for RAD482 were higher than those obtained for KASP482, inde-
pendent of the considered GP cutoff value (Table 3, Fig. 3, and Supplementary Fig. 6). Our observation is in 
accordance with the results of Elbasyoni et al.25 in wheat and could be due to the considerably higher number of 
markers that were available in the RAD data set compared to the KASP data set. This was confirmed by the 
increasing prediction abilities observed for increasing numbers of RAD SNPs (Fig. 4). A high number of markers 
increases the precision of the K estimates, increases LD between markers and QTL, as well as ensures a better 
genome representation.

A second observation leading to the same conclusion was that QST was significantly correlated with ra calcu-
lated for KASP482 but not with ra calculated for RAD482-GP:0.98. This finding suggests that the prediction abilities 
obtained with the KASP SNPs are predominantly due to the modeling of genetic relationships and are therefore 
higher when the ratio of genetic variance among- vs. within-populations increases. In contrast, the prediction 
abilities obtained with RAD SNPs are to a higher extent due to LD between marker and QTL alleles and to a lower 
extent due to the modeling of genetic relationship and thus do not correlate with QST.

Finally, the prediction abilities ra calculated for KASP482 were with 0.72 also significantly (P = 0.028) correlated 
with hHSI

2 , which is in accordance with the results of Poland et al.80, Hayes et al.81, and De Moraes et al.26. However, 
the prediction ability ra calculated for RAD482-GP:0.98 were not significantly (P = 0.14) correlated with hHSI

2 . This 
agrees theoretical considerations82 and empirical studies83 and can be explained by an increased proportion of the 
prediction abilities caused by LD between markers and QTL when a high number of molecular markers was used. 
Therefore, all discussions hereafter are based on RAD482-GP:0.98.

Further factors that have a high impact on the prediction abilities are the size and composition of the training 
set and, thus, were examined in our study. For most trait*population combinations, we observed an increase of 
the prediction ability rpop BSP, w

 with an increasing size of the training set (Supplementary Figs 7–13). This is in 
accordance with the results of Van Raden et al.84 and Technow et al.27. However, in contrast to these authors, we 
did not observe a plateau with an increasing size of the TS. One reason for this could be that our training set size 
is small and the plateau was not yet reached. Nervertheless, the TS size of this study corresponds to that typically 
used in commercial maize breeding programs.

We observed significant ( < .P 0 05) differences in the heat tolerance between the two heterotic pools. 
Therefore, we were interested in examining the potential of prediction between populations (inter-population 
calibration) and heterotic pools (inter-pool calibration) in comparison with the previously discussed 
within-population calibration. The latter resulted across all population*trait combinations in higher prediction 
abilities rpop BSP, w

 than the inter-population calibration, independent of the TS used for the rpop BSP, b
. This is in 

accordance with the results of Technow et al.27. The most likely reason for this is that LD patterns are not consist-
ent between heterotic pools85,86. To identify markers that are in LD with QTL across different heterotic pools, an 
even higher number of markers might be required86,87. Nevertheless, as situations in which within-population 
prediction rarely appear in commercial breeding programs, we evaluated various scenarios for rpop BSP, b

.
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We observed a considerably lower prediction ability for intra-pool calibration (rpop BSP, b
 based on TS1; Fig. 1, 

left) than for the intra-population calibration (rpop BSP, w
). This was more pronounced than expected according to 

Habier et al.54. Our observation can be due to the fact that the parental inbreds used to develop segregating pop-
ulations in our study were selected such that they show a high variation for heat tolerance related traits not only 
across all eight inbreds but also across the inbreds of one heterotic pool. Therefore, a high variation between the 
populations was observed even when the parental inbreds were from the same heterotic pool.

Compared to TS1, we observed a minor increase of the prediction ability when using an inter-pool calibration 
(TS2; Fig. 1, left). This was especially true when the TS was composed of two populations (TS2c). Moreover, this 
finding might be explained by the fact that the four Flint and Dent parental inbred lines used to develop the seg-
regating populations were chosen to be as diverse as possible.

Compared to the results of TS2 (s and c), the prediction abilities for the mixed-pool calibration (TS3) were 
even higher. A part of this increase was due to the fact that the DxF populations shared parental inbreds with the 
DxD and FxF populations. Our observation that the prediction ability for a scenario with shared parental inbred 
(TS3sr) were higher than for a scenario with no shared parental inbreds between TS and VS (TS3su; Fig. 1, left) 
supported this explanation. In addition to the fact that TS and VS have one common parental inbred, the higher 
prediction ability for TS3 compared to TS2 (s and c) might be due to the higher segregation variance of the mixed 
populations (Supplementary Table 2 and Supplementary Fig. 5).

This aspect was studied more in detail by examining the prediction ability for mixed populations (DxF) using 
different types of TS (Fig. 1, right). The TS with combined FxF and DxD populations which were partially derived 
from common parents with the VS (TS3) performed better than combined FxF and DxD populations that had 
no parental inbred in common with the VS (TS2). This further emphasises parental inbreds shared between the 
populations of the TS and VS is an important component for the success of genomic prediction. However, we 
observed the highest prediction ability for mixed populations when using other mixed populations as TS even 
if when had no common parents (TS1). One hypothesis to explain this result is the high diversity of such mixed 
populations (Supplementary Table 2). Our findings suggest that commercial maize breeding companies who cre-
ate DxF populations to e.g. increase the per-se performance of the Flint pool with Dent material or to introgress 
earliness in Dent inbreds with Flint material can use such populations as TS to predict the original heterotic pools.

Generally, the critical aspect when selecting the TS in routine plant breeding programs is the limited size of the 
segregating populations which hampers either the building of a TS of suitable size or reduces relatedness between 
TS and VS if several segregating populations are used to build the TS. Therefore, we have evaluated the potential 
of across-pools and -populations calibrations. rpop BSP, w

 was for 80% of the population*trait combinations better 
than a model built on the six populations (rpop cv, ) if considering the same TS size of 50. However, this was only the 
case for 25% of the combinations if considering the original TS size of 385 genotypes (Fig. 6). This implies that if 
genomic prediction is used to select among the genotypes of one single population and if the data for the TS must 
be generated de novo, the use of within-population prediction is the most promising approach. Nevertheless, in 
many cases, a commercial maize breeding company has multiple connected segregating populations for which 
predictions should be obtained. For such a scenario, our results clearly indicate that a combination of populations 
in one TS, also across different heterotic pools, increases the prediction ability compared to the use of 
within-population calibration (Fig. 6).

conclusion
In this study, we provided a basis for future research on genome regions and candidate genes involved in heat 
stress tolerance of maize seedlings. Antagonistic pleiotropy between heat tolerance at seedling and adult stages 
was observed in genomic hot-spot regions, especially on chromosome 2. Although six QTL were detected in our 
study, these explained a very small proportion of the phenotypic variance. Therefore, marker-assisted selection 
is not promising for the traits evaluated in our study. On the contrary, the prediction abilities observed for GWP 
encourages the use of such approaches for heat tolerance at seedling stage, especially if genotypic characterisation 
was carried out with a high number of markers, e.g. from RAD sequencing. Furthermore, our results suggest 
that the combination of populations from different heterotic pools in one training set is a promising approach to 
increase the prediction ability for heat tolerance traits, especially if the population in the TS share parental geno-
types with those of the VS. Finally, we demonstrated that for the examined traits, segregation populations derived 
from inter-pool crosses are very suitable to predict populations derived from intra-pool crosses.

Data Availability
The sequencing datasets generated and analysed in the current study are available in the NCBI Sequence Read 
Archive (SRA) repository, https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA564701. All phenotyping and geno-
typing data generated or analysed during this study are included as supplementary information files.

References
 1. Sage, R. F., Kocacinar, F. & Kubien, D. S. C4 photosynthesis and temperature. In Raghavendra, A. S. & Sage, R. F. (eds) C4 

Photosynthesis and Related CO2 Concentrating Mechanisms, chap. 10, 161–195 (Springer, Dordrecht, The Netherlands, 2011).
 2. Giaveno, C. & Ferrero, J. Introduction of tropical maize genotypes to increase silage production in the central area of Santa Fe, 

Argentina. Crop Breeding and Applied Biotechnology 3, 89–94 (2003).
 3. Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and 

Environment 31, 11–38, https://doi.org/10.1111/j.1365-3040.2007.01727.x (2008).
 4. Frey, F. P., Presterl, T., Lecoq, P., Orlik, A. & Stich, B. First steps to understand heat tolerance of temperate maize at adult stage: 

identification of QTL across multiple environments with connected segregating populations. Theoretical and Applied Genetics 129, 
945–961, https://doi.org/10.1007/s00122-016-2674-6 (2016).

https://doi.org/10.1038/s41598-019-50853-2
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA564701
https://doi.org/10.1111/j.1365-3040.2007.01727.x
https://doi.org/10.1007/s00122-016-2674-6


1 4Scientific RepoRtS |         (2019) 9:14418  | https://doi.org/10.1038/s41598-019-50853-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 5. Alam, M. A. et al. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crops Research 110–119, https://doi.
org/10.1016/j.fcr.2017.01.006 (2017).

 6. Wahid, A., Gelani, S., Ashraf, M. & Foolad, M. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61, 
199–223 (2007).

 7. Frey, F. P., Urbany, C., Hüttel, B., Reinhardt, R. & Stich, B. Genome-wide expression profiling and phenotypic evaluation of European 
maize inbreds at seedling stage in response to heat stress. BMC Genomics 16, 123, https://doi.org/10.1186/s12864-015-1282-1 
(2015).

 8. Deutsches Maiskomitee, http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/\break Deutschland/Statistik/Biogas (2013).
 9. Reimer, R. et al. Root response to temperature extremes: association mapping of temperate maize (\textit{Zea mays} L). Maydica 58, 

156–168 (2013).
 10. Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research 

Letters 2, 14002 (2007).
 11. IPCC. Summary for policymakers. In Stocker, T. F. et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, USA, 2013).

 12. Chen, J., Xu, W., Velten, J., Xin, Z. & Stout, J. Characterization of maize inbred lines for drought and heat tolerance. Journal of Soil 
and Water Conservation 67, 354–364 (2012).

 13. Ottaviano, E., Sari Gorla, M., Pè, E. & Frova, C. Molecular markers (RFLPs and HSPs) for the genetic dissection of thermotolerance 
in maize. Theoretical and Applied Genetics 81, 713–719 (1991).

 14. Frova, C. & Sari-Gorla, M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Molecular and General 
Genetics 245, 424–430 (1994).

 15. Buckley, L. B. & Huey, R. B. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integrative 
and Comparative Biology 56, 98–109, https://doi.org/10.1093/icb/icw004 (2016).

 16. Sehgal, D., Singh, R. & Rajpal, V. R. Quantitative Trait Loci Mapping in Plants: Concepts and Approaches. In Rajpal, V., Rao, S. & 
Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement, vol. 2, chap. 2, 31–60, https://doi.org/10.1007/978-3-319-
27090-6 (Springer, 2016).

 17. Cerrudo, D. et al. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize 
Doubled Haploid Population Across Water Treatments. Frontiers in Plant Science 9, 1–12, https://doi.org/10.3389/fpls.2018.00366 
(2018).

 18. Lorenzana, R. E. & Bernardo, R. Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. 
Theoretical and Applied Genetics 120, 151–161, https://doi.org/10.1007/s00122-009-1166-3 (2009).

 19. Albrecht, T. et al. Genome-based prediction of testcross values in maize. Theoretical and Applied Genetics 123, 339–350, https://doi.
org/10.1007/s00122-011-1587-7 (2011).

 20. Lian, L., Jacobson, A., Zhong, S. & Bernardo, R. Genomewide prediction accuracy within 969 maize biparental populations. Crop 
Science 54, 1514–1522, https://doi.org/10.2135/cropsci2013.12.0856 (2014).

 21. Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J. L. Development of high-density genetic maps for barley and wheat using a 
novel two-enzyme genotyping-by-sequencing approach. PLoS One 7, https://doi.org/10.1371/journal.pone.0032253 (2012).

 22. Crossa, J. et al. Genomic Prediction in Maize Breeding Populations with Genotyping-by-Sequencing. G3 Genes Genomes Genetics 3, 
1903–1926, https://doi.org/10.1534/g3.113.008227 (2013).

 23. Massman, J. M., Gordillo, A., Lorenzana, R. E. & Bernardo, R. Genomewide predictions from maize single-cross data. Theoretical 
and Applied Genetics 126, 13–22, https://doi.org/10.1007/s00122-012-1955-y (2013).

 24. Zhang, X. et al. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using 
low-density and GBS SNPs. Heredity 114, 291–299, https://doi.org/10.1038/hdy.2014.99 (2015).

 25. Elbasyoni, I. S. et al. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction 
accuracy in winter wheat. Plant Science 270, 123–130, https://doi.org/10.1016/j.plantsci.2018.02.019 (2018).

 26. de Moraes, B. F. X. et al. Genomic selection prediction models comparing sequence capture and SNP array genotyping methods. 
Molecular Breeding 38, https://doi.org/10.1007/s11032-018-0865-3 (2018).

 27. Technow, F., Bürger, A. & Melchinger, A. E. Genomic prediction of northern corn leaf blight resistance in maize with combined or 
separated training sets for heterotic groups. G3 Genes Genomes Genetics 3, 197–203, https://doi.org/10.1534/g3.112.004630 (2013).

 28. Andersen, J. R., Schrag, T., Melchinger, A. E., Zein, I. & Lübberstedt, T. Validation of Dwarf8 polymorphisms associated with 
flowering time in elite European inbred lines of maize (Zea mays L.). Theoretical and Applied Genetics 111, 206–217 (2005).

 29. Ganal, M. W. et al. A large maize (\textit{Zea mays} L.) SNP genotyping array: Development and germplasm genotyping, and genetic 
mapping to compare with the B73 reference genome. PLoS One 6, https://doi.org/10.1371/journal.pone.0028334 (2011).

 30. Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3, 1–7, https://doi.
org/10.1371/journal.pone.0003376 (2008).

 31. Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution 8, 
1360–1373, https://doi.org/10.1111/2041-210X.12775 (2017).

 32. Navarro, J. A. R. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nature Genetics 49, 
476–480, https://doi.org/10.1038/ng.3784 (2017).

 33. Auwera, G. A. V. D. et al. From FastQ data to high confidence varant calls: the Genonme Analysis Toolkit best practices pipeline. 
Curr Protoc Bioinformatics 11, https://doi.org/10.1002/0471250953.bi1110s43 (2014).

 34. Browning, B. L. & Browning, S. R. Genotype Imputation with Millions of Reference Samples. American Journal of Human Genetics 
98, 116–126, https://doi.org/10.1016/j.ajhg.2015.11.020 (2016).

 35. Kuo, F. Tools for genetic data management and strategies for optimized imputation of missing genotypes. Dissertation (2014).
 36. Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).
 37. Gerlach, G., Jueterbock, A., Kraemer, P., Deppermann, J. & Harmand, P. Calculations of population differentiation based on GST 

and D: Forget GST but not all of statistics. Molecular Ecology 19, 3845–3852, https://doi.org/10.1111/j.1365-294X.2010.04784.x 
(2010).

 38. Wright, S. Evolution and the Genetics of Populations. Volume 4: Variability Within and Among Natural Populations (Chicago, 1978).
 39. Mason, R. E. et al. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive 

stage heat stress. Euphytica 174, 423–436 (2010).
 40. Hallauer, A. R., Carena, M. J. & Miranda Filho, J. B. Quantitative Genetics in Maize Breeding. (Springer New York, New York, NY, 

2010).
 41. Ouk, M. et al. Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops 

Research 99, 48–58, https://doi.org/10.1016/j.fcr.2006.03.003 (2006).
 42. Lande, R. Neutral theory of quantitative genetic variance in an island model with local extinction and colonization. Evolution 46, 

381–389 (1992).
 43. Prout, T. & Barker, J. S. F. F statistics in Drosophila buzzatii: Selection, population size and inbreeding. Genetics 134, 369–375, 

https://doi.org/10.1007/978-94-009-0619-8 (1993).
 44. Spitze, K. Population structure in Daphnia obtusa: Quantitative genetic and allozymic variation. Genetics 135, 367–374, https://doi.

org/10.1007/s10709-011-9564-2 (1993).

https://doi.org/10.1038/s41598-019-50853-2
https://doi.org/10.1016/j.fcr.2017.01.006
https://doi.org/10.1016/j.fcr.2017.01.006
https://doi.org/10.1186/s12864-015-1282-1
http://www.maiskomitee.de/web/public/Fakten.aspx/Statistik/%5cbreak%20Deutschland/Statistik/Biogas
https://doi.org/10.1093/icb/icw004
https://doi.org/10.1007/978-3-319-27090-6
https://doi.org/10.1007/978-3-319-27090-6
https://doi.org/10.3389/fpls.2018.00366
https://doi.org/10.1007/s00122-009-1166-3
https://doi.org/10.1007/s00122-011-1587-7
https://doi.org/10.1007/s00122-011-1587-7
https://doi.org/10.2135/cropsci2013.12.0856
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1534/g3.113.008227
https://doi.org/10.1007/s00122-012-1955-y
https://doi.org/10.1038/hdy.2014.99
https://doi.org/10.1016/j.plantsci.2018.02.019
https://doi.org/10.1007/s11032-018-0865-3
https://doi.org/10.1534/g3.112.004630
https://doi.org/10.1371/journal.pone.0028334
https://doi.org/10.1371/journal.pone.0003376
https://doi.org/10.1371/journal.pone.0003376
https://doi.org/10.1111/2041-210X.12775
https://doi.org/10.1038/ng.3784
https://doi.org/10.1002/0471250953.bi1110s43
https://doi.org/10.1016/j.ajhg.2015.11.020
https://doi.org/10.1111/j.1365-294X.2010.04784.x
https://doi.org/10.1016/j.fcr.2006.03.003
https://doi.org/10.1007/978-94-009-0619-8
https://doi.org/10.1007/s10709-011-9564-2
https://doi.org/10.1007/s10709-011-9564-2


1 5Scientific RepoRtS |         (2019) 9:14418  | https://doi.org/10.1038/s41598-019-50853-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 45. Benke, A. et al. The genetic basis of natural variation for iron homeostasis in the maize IBM population. BMC Plant Biology 14, 12 
(2014).

 46. Horn, F., Habekuß, A. & Stich, B. Linkage mapping of barley yellow dwarf virus resistance in connected populations of maize. BMC 
Plant Biology 15, 29 (2015).

 47. de Givry, S., Bouchez, M., Chabrier, P., Milan, D. & Schiex, T. CARTHAGENE: multipopulation integrated genetic and radiation 
hybrid mapping. Bioinformatics 21, 1703–1704 (2005).

 48. Charcosset, A. et al. Heterosis in maize investigated using connected RIL populations. In Quantitative genetics and breeding methods: 
the way ahead. Les colloques no 96, 89–98 (INRA, Paris, France, 2001).

 49. Mangin, B. et al. MCQTL: A reference manual (2010).
 50. Bardol, N. et al. Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses 

highlights complementarities between models based on parental haplotype and single locus polymorphism. Theoretical and Applied 
Genetics 126, 2717–2736 (2013).

 51. Churchill, G. A. & Doerge, R. W. Empirical Threshold Values for Quantitative Trait Mapping. Genetics 138, 963–971, https://doi.
org/10.1534/genetics.107.080101 (1994).

 52. Lander, E. S. & Botstein, S. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185, 
https://doi.org/10.1038/hdy.2014.4 (1989).

 53. VanRaden, P. M. Efficient methods to compute genomic predictions. Journal of Dairy Science 91, 4414–4423, https://doi.
org/10.3168/jds.2007-0980 (2008).

 54. Habier, D., Fernando, R. L. & Dekkers, J. C. M. The impact of genetic relationship information on genome-assisted breeding values. 
Genetics 177, 2389–2397, https://doi.org/10.1534/genetics.107.081190 (2007).

 55. Muñoz, P. R. et al. Unraveling Additive from Nonadditive Effects Using. Genetics 198, 1759–1768, https://doi.org/10.1534/
genetics.114.171322 (2014).

 56. Covarrubias-Pazaran, G. Genome-Assisted prediction of quantitative traits using the r package sommer. PLoS One 11, 1–15, https://
doi.org/10.1371/journal.pone.0156744 (2016).

 57. Legarra, A., Robert-Granié, C., Manfredi, E. & Elsen, J. M. Performance of genomic selection in mice. Genetics 180, 611–618, https://
doi.org/10.1534/genetics.108.088575, 1303.3997 (2008).

 58. Daetwyler, H. D., Pong-Wong, R., Villanueva, B. & Woolliams, J. A. The impact of genetic architecture on genome-wide evaluation 
methods. Genetics 185, 1021–1031, https://doi.org/10.1534/genetics.110.116855 (2010).

 59. Meuwissen, T. & Goddard, M. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics 185, 
623–631, https://doi.org/10.1534/genetics.110.116590 (2010).

 60. Su, C. et al. High Density Linkage Map Construction and Mapping of Yield Trait QTLs in Maize (Zea mays) Using the Genotyping-
by-Sequencing (GBS) Technology. Frontiers in Plant Science 8, 1–14, https://doi.org/10.3389/fpls.2017.00706 (2017).

 61. Hartl, D. & Clark, A. Principles of population genetics (Sinauer associates Sunderland, 1997).
 62. Cairns, J. E. et al. Identification of Drought, Heat, and Combined Drought and Heat Tolerant Donors in Maize. Crop Science 53, 1335 

(2013).
 63. Naveed, M., Ahsan, M., Akram, H. M., Aslam, M. & Ahmed, N. Genetic Effects Conferring Heat Tolerance in a Cross of Tolerant x 

Susceptible Maize (Zea mays L.) Genotypes. Frontiers in Plant Science 7, 1–12, https://doi.org/10.3389/fpls.2016.00729 (2016).
 64. Hallauer, A. R. Methods used in developing maize inbreds. Maydica 35, 1–16 (1990).
 65. Strigens, A. et al. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber 

and field experiments. Plant, Cell and Environment 36, 1871–1887, https://doi.org/10.1111/pce.12096 (2013).
 66. Pearen, J. R., Pahl, M. D., Wolynetz, M. S. & Hermesh, R. Association of salt tolerance at seedling emergence with adult plant 

performance in slender wheatgrass. Canadian Journal of Plant Science 77, 81–89, https://doi.org/10.4141/P95-159 (1997).
 67. Denton, E. M., Smith, B. S., Hamerlynck, E. P. & Sheley, R. L. Seedling Defoliation and Drought Stress: Variation in Intensity and 

Frequency Affect Performance and Survival. Rangeland Ecology and Management 71, 25–34, https://doi.org/10.1016/j.
rama.2017.06.014 (2018).

 68. Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis 
shows effects change with plant size, as predicted. Journal of Ecology 104, 1488–1503, https://doi.org/10.1111/1365-2745.12594 
(2016).

 69. Rodríguez, V. M., Butrón, A., Rady, M. O. A., Soengas, P. & Revilla, P. Identification of quantitative trait loci involved in the response 
to cold stress in maize (Zea mays L.). Molecular Breeding 33, 363–371 (2013).

 70. Ruta, N., Stamp, P., Liedgens, M., Fracheboud, Y. & Hund, A. Collocations of QTLs for Seedling Traits and Yield Components of 
Tropical Maize under Water Stress Conditions. Crop Science 50, 1385 (2010).

 71. Messmer, R., Fracheboud, Y., Bänziger, M., Stamp, P. & Ribaut, J.-M. Drought stress and tropical maize: QTLs for leaf greenness, 
plant senescence, and root capacitance. Field Crops Research 124, 93–103 (2011).

 72. Frey, F. P. The genetic basis of heat tolerance in temperate maize (Zea mays L.). Ph.D. thesis (2015).
 73. Peiffer, J. A. et al. The Genetic Architecture of Maize Stalk Strength. PLoS One 8, https://doi.org/10.1371/journal.pone.0067066 

(2013).
 74. Peiffer, J. A. et al. The genetic architecture of maize height. Genetics 196, 1337–1356, https://doi.org/10.1534/genetics.113.159152 

(2014).
 75. Foiada, F. et al. Improving resistance to the European corn borer: a comprehensive study in elite maize using QTL mapping and 

genome-wide prediction. Theoretical and Applied Genetics 128, 875–891, https://doi.org/10.1007/s00122-015-2477-1 (2015).
 76. Falconer, D. S. & Mackay, T. F. C. Introduction to quantitative genetics. fourth edi edn. (Longman Group, Harlow, UK, 1996).
 77. Stich, B. & Van Inghelandt, D. Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. 

Frontiers in Plant Science 9, 1–12, https://doi.org/10.3389/fpls.2018.00159 (2018).
 78. Heffner, E. L., Lorenz, A. J., Jannink, J. L. & Sorrells, M. E. Plant breeding with Genomic selection: Gain per unit time and cost. Crop 

Science 50, 1681–1690, https://doi.org/10.2135/cropsci2009.11.0662 (2010).
 79. Varona, L., Legarra, A., Toro, M. A. & Vitezica, Z. G. Non-additive effects in genomic selection. Frontiers in Genetics 9, 1–12, https://

doi.org/10.3389/fgene.2018.00078 (2018).
 80. Poland, J. et al. Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing. Plant Genome 5, 103–113, https://doi.

org/10.3835/Plantgenome2012.06.0006 (2012).
 81. Hayes, B. J. et al. Genomic Prediction from Whole Genome Sequence in Livestock: the 1000 Bull Genomes Project. Proceedings of 

the 10th World Congress in Genetics Applied to Livestock Production, https://doi.org/10.7910/DVN/KHBDWU, 0505333v2(2014).
 82. Meuwissen, T. H. Accuracy of breeding values of ‘unrelated’ individuals predicted by dense SNP genotyping. Genetics Selection 

Evolution 41, 1–9, https://doi.org/10.1186/1297-9686-41-35 (2009).
 83. Heffner, E. L., Jannink, J.-L. & Sorrells, M. E. Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding 

Program. The Plant Genome 4, 65, https://doi.org/10.3835/plantgenome2010.12.0029 (2011).
 84. VanRaden, P. et al. Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science 

92, 16–24, https://doi.org/10.3168/jds.2008-1514 (2009).
 85. Goddard, M., Hayes, B., McPartlan, H. & Chamberlain, A. Can the same markers be used in multiple breeds? In 8th World Congress 

on Genetics Applied to Livestock Production (2006).

https://doi.org/10.1038/s41598-019-50853-2
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1038/hdy.2014.4
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.3168/jds.2007-0980
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1534/genetics.114.171322
https://doi.org/10.1534/genetics.114.171322
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1534/genetics.110.116855
https://doi.org/10.1534/genetics.110.116590
https://doi.org/10.3389/fpls.2017.00706
https://doi.org/10.3389/fpls.2016.00729
https://doi.org/10.1111/pce.12096
https://doi.org/10.4141/P95-159
https://doi.org/10.1016/j.rama.2017.06.014
https://doi.org/10.1016/j.rama.2017.06.014
https://doi.org/10.1111/1365-2745.12594
https://doi.org/10.1371/journal.pone.0067066
https://doi.org/10.1534/genetics.113.159152
https://doi.org/10.1007/s00122-015-2477-1
https://doi.org/10.3389/fpls.2018.00159
https://doi.org/10.2135/cropsci2009.11.0662
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.3389/fgene.2018.00078
https://doi.org/10.3835/Plantgenome2012.06.0006
https://doi.org/10.3835/Plantgenome2012.06.0006
https://doi.org/10.7910/DVN/KHBDWU
https://doi.org/10.1186/1297-9686-41-35
https://doi.org/10.3835/plantgenome2010.12.0029
https://doi.org/10.3168/jds.2008-1514


1 6Scientific RepoRtS |         (2019) 9:14418  | https://doi.org/10.1038/s41598-019-50853-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

 86. Van Inghelandt, D., Reif, J. C., Dhillon, B. S., Flament, P. & Melchinger, A. E. Extent and genome-wide distribution of linkage 
disequilibrium in commercial maize germplasm. Theoretical and Applied Genetics 123, 11–20, https://doi.org/10.1007/s00122-011-
1562-3 (2011).

 87. De Roos, A. P., Hayes, B. J., Spelman, R. J. & Goddard, M. E. Linkage disequilibrium and persistence of phase in Holstein-Friesian, 
Jersey and Angus cattle. Genetics 179, 1503–1512, https://doi.org/10.1534/genetics.107.084301 (2008).

Acknowledgements
We would like to thank the Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung eV (GFP) for 
supporting the grant application. We thank the Max Planck-Genome-centre Cologne http://mpgc.mpipz.mpg.de/
home/ for sequencing the RAD libraries of this study. For technical assistance with the lab work and the growth 
chamber experiments we thank Andrea Lossow, Isabell Scheibert, Nele Kaul, Nicole Kamphaus and Frederike 
Horn. Further, we thank the team of gardeners at the MPIPZ, especially Frank Eikelmann, Manfred Pohe, Sybille 
Richter, and Caren Dawidson for their help with the realisation of the growth experiments and with setting up 
the irrigation system. This research was funded by the Federal Ministry of Food, Agriculture and Consumer 
Protection - Project ID: 28-1-45.068-10 in the frame of the support of the innovation program as well as the 
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy 
- EXC 2048/1 - Project ID: 390686111. A subset of the results of this manuscript are part of the cumulative 
dissertation “The genetic basis of heat tolerance intemperate maize (Zea mays L.)” by Felix Frey.

Author contributions
B.S. conceived the study, F.F. collected the phenotypic data and performed the QTL analysis, D.R. analyzed the 
RAD sequencing data, DVI performed the RAD imputation and the genome-wide prediction analyses. D.V.I., B.S. 
and F.F. wrote the manuscript. All authors read and approved the final manuscript.

Additional information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-50853-2.
Competing Interests: The authors declare no competing interests.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-50853-2
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1007/s00122-011-1562-3
https://doi.org/10.1534/genetics.107.084301
http://mpgc.mpipz.mpg.de/home/
http://mpgc.mpipz.mpg.de/home/
https://doi.org/10.1038/s41598-019-50853-2
http://creativecommons.org/licenses/by/4.0/

	QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize
	Methods
	Plant material and phenotypic evaluation. 
	Genotyping. 
	KASP SNPs. 
	RAD SNPs. 
	Diversity. 

	Phenotypic data analysis. 
	Adjusted entry mean calculation. 
	Heat susceptibility index. 
	Variance components and heritability. 

	QTL analyses with KASP SNPs. 
	GWP. 
	Genetic model. 
	Model training and performance assessment. 
	Resampling schemes. 
	Number of molecular markers. 
	Comparison between observed and expected within-population prediction ability. 


	Results
	Phenotypic diversity. 
	Genetic diversity. 
	QTL mapping and overlapping region with QTL detected at adult stage. 
	GWP. 

	Discussion
	Conclusion
	Acknowledgements
	Figure 1 Boxplot of the between-population prediction abilities across nine heat susceptibility indexes (HSI) and different validation sets (VS) using a boostrapping procedure with 50 genotypes for three different types of training set (TS) compositions.
	Figure 2 Circle plot showing the location of quantitative trait loci (QTL) affecting heat tolerance of maize.
	Figure 3 Observed versus genome-wide predicted heat susceptibility index (HSI) for each trait using RAD482-GP:0.
	Figure 4 Prediction abilities (ra) for different numbers of RAD SNPs as well as for the entire KASP482 (left) and RAD482-GP:0.
	Figure 5 Observed vs.
	Figure 6 Comparison of the prediction abilities of within-population calibration () with a training set (TS) of 50 genotypes with the prediction abilities based on an across-population calibration () with a TS size of 50 (A) and 385 (B) genotypes.
	Table 1 Mean and range of the adjusted entry mean (AEM), broad sense heritability () of the studied traits for each condition, as well as for the heat susceptibility index (), significance of the environmental condition (standard vs heat) effect for each 
	Table 2 Quantitative trait loci (QTL) detected for the heat susceptibility index (HSI) of five traits (Leaf length: LL, Plant height: PH, Leaf scorching: SC, Leaf greenness: SD, Leaf growth rate: LR) at a significance level of , with genetic map position 
	Table 3 Square root of the proportion of the explained phenotypic variance of the QTL (RQTL), genome-wide prediction ability based on the different KASP and RAD SNP sets for the heat susceptibility index (HSI) of nine traits (leaf length (LL), plant heigh




