AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotus japonicus

Li Xuea, Lompong Klinnaweeb, Yue Zhouc, Georgios Saridisb, Vinod Vijayakumara,c, Mathias Brandsd, Peter Dörmanna, Tamara Gigolashvilia, Franziska Turckb, and Marcel Buchera,1

Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany; bDepartment of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany; cDepartment of Plant Pathology, The Ohio State University, Columbus, OH 43210; and dDepartment of Molecular Biotechnology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany

Edited by Jeffrey L. Dangl, University of North Carolina, Chapel Hill, NC, and approved August 15, 2018 (received for review July 31, 2018)

The arbuscular mycorrhizal (AM) symbiosis, a widespread mutualistic association between land plants and fungi, depends on reciprocal exchange of phosphorus driven by proton-coupled phosphate uptake into host plants and carbon supplied to AM fungi by host-dependent sugar and lipid biosynthesis. The molecular mechanisms and cis-regulatory modules underlying the control of phosphate uptake and de novo fatty acid synthesis in AM symbiosis are poorly understood. Here, we show that the AP2 family transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), a WRINKLED1 (WR1) homolog, directly binds the evolutionary conserved CTTC motif that is enriched in mycorrhiza-regulated genes and activates Lotus japonicus phosphate transporter 4 (LjPT4) in vivo and in vitro. Moreover, the mycorrhiza-inducible gene encoding H+-ATPase (LjHA1), implicated in energizing nutrient uptake at the symbiotic interface across the periarbuscular membrane, is coregulated with LjPT4 by CBX1. Accordingly, CBX1-defective mutants show reduced mycorrhiza colonization. Furthermore, genome-wide-binding profiles, DNA-binding studies, and heterologous expression reveal additional binding of CBX1 to AW box, the consensus DNA-binding motif for WR1, that is enriched in promoters of glycolysis and fatty acid biosynthesis genes. We show that CBX1 activates expression of lipid metabolic genes including glycerol-3-phosphate acyltransferase RAM2 implicated in acylglycerol biosynthesis. Our finding defines the role of CBX1 as a regulator of host genes involved in phosphate uptake and lipid synthesis through binding to the CTTC/AW molecular module, and supports a model underlying bidirectional exchange of phosphorus and carbon, a fundamental trait in the mutualistic AM symbiosis.

T

he arbuscular mycorrhizal (AM) symbiosis is an intimate association between fungi of the phylum Glomeromycota and the roots of land plants, which have coevolved for over 400 My (1). A characteristic effect of the AM symbiosis is enhanced uptake of phosphorus in the form of inorganic phosphate (Pi) from AM fungi into the host plant in exchange for organic carbon. Physiological tracer experiments showed that up to 100% of acquired phosphorus can be delivered to plants via the mycorrhizal phosphate uptake pathway (MPU). Previous studies revealed that the CTTC cis-regulatory element (CRE) is required for promoter activation of mycorrhiza-specific phosphate transporter and H+-ATPase genes. However, the precise transcriptional mechanism directly controlling MPU is unknown. Here, we show that CBX1 binds CTTC and AW-box CRES and coregulates mycorrhizal phosphate transporter and H+-ATPase genes. Interestingly, genes involved in lipid biosynthesis are also regulated by CBX1 through binding to AW box, including RAM2. Our work suggests a common regulatory mechanism underlying complex trait control of symbiotic exchange of nutrients.

Significance

Arbuscular mycorrhizal (AM) fungi promote phosphorus uptake into host plants in exchange for organic carbon. Physiological tracer experiments showed that up to 100% of acquired phosphorus can be delivered to plants via the mycorrhizal phosphate uptake pathway (MPU). Previous studies revealed that the CTTC cis-regulatory element (CRE) is required for promoter activation of mycorrhiza-specific phosphate transporter and H+-ATPase genes. However, the precise transcriptional mechanism directly controlling MPU is unknown. Here, we show that CBX1 binds CTTC and AW-box CRES and coregulates mycorrhizal phosphate transporter and H+-ATPase genes. Interestingly, genes involved in lipid biosynthesis are also regulated by CBX1 through binding to AW box, including RAM2. Our work suggests a common regulatory mechanism underlying complex trait control of symbiotic exchange of nutrients.

Author contributions: L.X. and M. Bucher designed research; L.X., L.K., Y.Z., V.V., and M. Brands performed research; T.G. contributed new reagents/analytic tools; L.X., L.K., Y.Z., V.V., and M. Bucher analyzed data; and L.X. and M. Bucher wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence should be addressed. Email: m.bucher@uni-koeln.de.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812275115/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1812275115

PNAS Latest Articles | 1 of 8
enzymes of late glycolysis and fatty acid biosynthesis through binding to the AW box [CtTnGn(n)-CG] during seed maturation, while WRII, WRIII, and WRIIV are required for cutin biosynthesis in floral tissues (22–25). In AM symbiosis, plants provide carbohydrates and fatty acids to mycorrhizal fungi as a carbon source to maintain the mutualism (26–31). Mycorrhizal host-specific WRI genes in *M. truncatula* were designated as *MtWRI5a/b/c*. Like *A. thaliana* WRII, overexpression of *MtWRI5a/b/c* leads to accumulation of triacylglycerol (TAG) in tobacco leaves (29). Consistently, artificial microRNA silencing of *MtWRI5b* led to a lower level of mycorrhizal colonization (32). Here, we identify mycorrhiza-inducible WRI1-like AP2 transcription factor CBX1, which simultaneously regulates central components of MPU and mycorrhizal lipid biosynthesis through direct binding to the CTTC and AW-box motifs in target gene promoters. We propose that CBX1 is likely to play a central role in the evolution and maintenance of AM symbiosis.

Results

CBX1 Encodes an AP2 Domain-Containing Transcription Factor that Binds to the CTTC cis-Acting Regulatory Element.

To examine the function of the CTTC motif in the *LjPT4* promoter, chimeric constructs of the *LjPT4* promoter with the β-glucuronidase reporter gene (*pLjPT4:GUS*) containing the CTTC motif or its mutated form (mCTTC) were stably transformed into *Lotus japonicus* roots (Fig. 1A). The *LjPT4* promoter and a quadruple tandem repeat of CTTC/TTGTC fused to a minimal 35S cauliflower mosaic virus promoter (4*CTTC*) directed GUS activity specifically in arbuscule-containing roots, corroborating previous results (14, 33), while the presence of mCTTC led to a significant reduction of *LjPT4* promoter activity (Fig. 1A and SI Appendix, Fig. S1 A and B). Occasionally, residual *pLjPT4-mCTTC:GUS* expression was detectable and confined to arbuscule-containing cells (SI Appendix, Fig. S1C), suggesting the action of alternative cis elements in transcriptional activation of *LjPT4* expression. Thus, we demonstrated that the CTTC motif was required but not sufficient for full *LjPT4* promoter activity in mycorrhizal root sectors (Fig. 1A and SI Appendix, Fig. S1C).

To identify transcription factors that directly bind to the CTTC promoter, candidate genes that were responsive to AM fungi *Rhizophagus irregularis* and *Gigaspora margarita* (34, 35) were selected for protein–DNA-binding studies using an electrophoretic mobility shift assay (EMSA). We found that the protein encoded by gene Ljfg3v1048880.1 mediated a distinct shift of promoter DNA and CTTC motif, respectively (SI Appendix, Fig. S2 A and B). The binding was outcompeted by unlabeled CTTC but not mCTTC (Fig. 1B). The studied protein is hereinafter referred to as CTTC-BINDING TRANSCRIPTION FACTOR1 (CBX1). CBX1 is an AP2 family transcription factor that belongs to 15 members of the *L. japonicus* AP2 family with typical double AP2 domains (21). Five AP2 transcription factors were up-regulated by AM fungi, including CBX1, WRI5a (Lj2g3v1338890.1 and Lj2g3v1338880.1), WRI5b (Lj1g3v2952280.1 and Lj1g3v2952290.1), WRI5c (Lj2g3v103460.1), and WRI3 (Lj0g3v0151469.1), which all clustered with the WRI1-like subfamily (SI Appendix, Fig. S3) (34, 36). WRI5a, WRI5b, and WRI5c

Fig. 1. Sequence-specific DNA-binding properties of CBX1. (A) CTTC is required for *LjPT4* gene regulation in mycorrhizal roots. The schematic diagram shows *pLjPT4-GUS* and *pLjPT4-mCTTC:GUS* with mutations (Upper). Lower shows GUS activity in transgenic hairy roots harboring different reporters in the presence of *R. irregularis*. EV, pRedRoot-GUS vector; 4*CTTC*, a quadruple tandem repeat of CTTC/TTGTC fused to minimal 35S cauliflower mosaic virus promoter; 4-MU, 4-methylumbelliferone. Mean ± SD (n = 3). Kruskal–Wallis test followed by Fisher’s least significant difference test was used [Kruskal–Wallis χ² = 9.7, degree free (df) = 3, P < 0.05]. Three independent experiments were performed with similar results. (B) EMSA of CBX1 binding to CTTC motif. Unlabeled CTTC CRE or mCTTC CRE were used as competitor. Increasing amounts of competitor DNA is indicated on top. Red arrow indicates the protein-DNA complex. (C) The sequence logo of CTTC CRE was created from 21 putative CTTC motifs in promoters of 19 mycorrhiza-inducible Pi transporter genes shown in SI Appendix, Table S2 using WebLogo (weblogo.berkeley.edu/logo.cgi). Stack height represents the degree of conservation and the letter size represents relative frequency. (D) CBX1 DNA-binding preference for the CTTC motif in EMSA. Nine Cy5-labeled oligonucleotides carrying single base-pair substitutions were synthesized. WT, wild type CTTC motif; red letters, base changes within CTTC; black letters, wild-type bases. (E) Schematic diagram of truncated CBX1 proteins. AP2, APETAL2 domain; NLS, nuclear localization signal. Protein regions are labeled at left. (F) Relative binding affinities of truncated CBX1on CTTC motif (w) or mutated CTTC (m) in EMSA.
were induced by overexpression of CBX1 in L. japonicus transgenic hairy roots, and their encoding proteins could weakly bind CTTC-containing DNA in vitro (SI Appendix, Table S2 A–C).

To map the CBX1–CTTC motif interaction at single-nucleotide resolution, single base-pair substitutions within the CTTC motif (CTTCTTGTGTC) were designed for EMSA (Fig. 1C and SI Appendix, Table S1). The first C in the CTTC motif was not mutated in the synthetic oligonucleotides, as it is not conserved in MYCS (SI Appendix, Table S2). EMSA indicated strongly reduced CBX1-binding affinity to CTTC oligomers with base changes at positions T3, T5, T7, or G7, whereas changes at C4 or T4 only moderately affected DNA binding (Fig. 1D). Thus, our data indicated that TCTTGT is the core motif fulfilling the minimum sequence requirements for high-affinity DNA binding by CBX1. To determine the protein region(s) in CBX1 responsible for DNA binding, various forms of truncated CBX1 were generated for DNA-binding studies (Fig. 1E). Two AP2 domains failed to bind the CTTC element. Comparing the binding ability of CBX1 (308) and CBX1 (41–308) revealed a limited effect of the N terminus encompassing 40 amino acids. The presence of the domain spanning amino acids 212–308 in combination with the AP2 domains enabled an important role in CTTC binding can be attributed to the region spanning amino acids 271–308.

CBX1 Is Required for Proper Mycorrhizal Root Colonization. To investigate the function of CBX1, two mutants cbx1-2 and cbx1-3 carrying LORE1a insertions in the last exon or in the 5' UTR (SI Appendix, Fig. S4 A and B) were examined for mycorrhizal phenotypes grown at low Pi condition (100 μM) in the presence or absence of R. irregularis (37) (Fig. 2A). Strongly reduced colonization [Total (%)] was observed in both mutant lines relative to wild type at 6 wk after inoculation (Fig. 2A). Furthermore, the proportion of root sectors containing fungal arbuscules [(A + V + H (%)) and [A + H (%)] was significantly lower in the mutant lines than in wild type (Fig. 2A). Accordingly, the transcript levels of AM marker genes LjHA1, LjPT4, and RAM2 were significantly reduced in both mutants relative to wild type (Fig. 2B). Despite strongly reduced transcript levels of CBX1, marker gene expression was still inducible in mutants (Fig. 2B), suggesting the existence of functionally redundant regulators. Phosphate application suppresses mycorrhization and mycorrhiza-induced transcription factors (34, 38, 39). The reduced marker gene expression in cbx1-2 mutant was more pronounced under shift Pi (500 μM) (SI Appendix, Fig. S4 C and D). In addition, overexpression of CBX1 resulted in an increased level of mycorrhization and LjPT4 expression (SI Appendix, Fig. S4E). In sum, the results suggested that CBX1 is involved in arbuscule formation and expression of host genes in PAM functioning.

CBX1 Transactivates LjPT4 in a CTTC CRE-Dependent Manner. To verify the transcriptional activity of CBX1, we studied its subcellular localization and CBX1 promoter activity. CBX1-YFP and GFP-CBX1 fusion proteins exclusively localized to the nucleus in transgenic hairy roots of L. japonicus and Arabidopsis cultured cells (SI Appendix, Fig. S5 A and C). Histochemical analysis of 1.9-kb CBX1 promoter-driven GUS in transgenic hairy roots indicated cell-autonomous expression of CBX1 exclusively in root sectors colonized by AM fungus R. irregularis (Fig. 2 C–F). Moreover, CBX1 and LjPT4 gene expression patterns correlated in different plant organ types of distinct mycorrhizal status (SI Appendix, Fig. S5B). Next, a GFP-tagged CBX1 fusion protein was coexpressed with pLjPT4:GUS or pLjPT4-mCTTC:GUS reporters, or with the 4*CTTC:GUS or the 4*mCTTC:GUS construct, respectively, in suspension-cultured root cells of the mycorrhizal nonhost A. thaliana (Fig. 3A). Enhanced accumulation of the indigo dye (product of GUS activity) in the cells indicated activation of the LjPT4 promoter by CBX1, while the LjPT4 promoter containing mCTTC was not activated (Fig. 3B). The GFP-CBX1 fusion transactivated the 4*CTTC:GUS chimeric gene but not the mutated version (4*mCTTC:GUS), while GFP alone had no effect on the reporter system.

To show that promoter activation is specific for CBX1, the three AP2 transcription factors WRi5a, WRi5c, and WRi3 fused to GFP were also coexpressed with GUS reporter constructs in the suspension-cultured cells. Except for CBX1, all three AP2 proteins failed to activate the expression of pLjPT4:GUS or 4*CTTC:GUS (Fig. 3B). We also found that the two carboxyl-terminal truncations CBX11–221 and CBX11–308, which retained the ability to bind the CTTC motif in vitro (Fig. 1F) and localized to the nucleus

![Fig. 2. CBX1 is required for mycorrhizal colonization.](image-url)

Xue et al. | PNAS Latest Articles | 3 of 8
failed to activate the LjPT4 and the 4*CTTC synthetic promoter in A. thaliana cells (Fig. 3B). These results indicated that LjPT4 promoter transactivation was dependent on the presence of the CBX1 carboxyl-terminal acidic region, the potential transactivation domain, encompassing amino acids 309–378 (40).

(Fig. 3A) Diagram of reporter and effector utilized in the transactivation assay. DsRed was used to test transformation efficiency. p3SS:GFP, negative control. (B) Transactivation assay with AP2 transcription factors on four chimeric reporter genes. GUS staining of suspension cultured cells is shown at the top of the graph. Mean ± SD (n = 3). One-way ANOVA followed by Tukey’s HSD was performed (F27.56 = 44.38, P < 0.001). (C) Overexpression of CBX1 increased expression of LjPT4, LjHA1, and RAM2 genes in L. japonicus in the absence of AM fungi. Box limits indicate the 25th and 75th percentiles. Bar-plot whiskers extend to the value that is no more than 1.5× interquartile range from the upper or lower quartile. Outliers were plotted by dots. Student’s t test was used (n = 7). (D) Ectopic expression of CBX1 in hairy roots of potato led to transcript accumulation of mycorrhiza-induced Pi transporters and H^+-ATPase genes. Student’s t test was used (n = 3). (E) Induction of MUP-related genes in ectopic expression of CBX1 in tobacco leaves. Student’s t test was used (n = 6). *P < 0.05; **P < 0.01; ***P < 0.001. Three independent experiments were performed with similar results. (F) Transactivation by CBX1 of Pt transporter genes from different plant species, and of L. japonicus LjHA1 and RAM2 in A. thaliana suspension cultured cells. Mean values ± SD of GUS activity from three biological replicates are shown (n = 3; Student’s t test; *P < 0.05; ***P < 0.001). This experiment was repeated three times independently with similar results.
CBX1-CTTC CRE Regulation Mechanism Is Conserved in AM Host Species. Based on the proposed modular design of AM symbiosis (41), we hypothesized that CBX1 regulates a gene module to control mycorrhizal nutrient transport. To test this coregulation hypothesis, CBX1 (pUB:CBX1-YFP) was ectopically expressed in transgenic L. japonicus hairy roots in the absence of AM fungi, which led to a significant increase in the level of LiPT4 transcripts relative to the control, while LiPT1, LiPT2, and LiPT3 remained unchanged (Fig. 3C). Membrane localized proton-ATPase (HA1) is essential for MPU through energizing proton-coupled Pht1 Pi transport (18, 19, 42). LjHAI expression was induced in roots (SI Appendix, Fig. S6A), and its promoter region containing the CTTC motif was directly bound by CBX1 (SI Appendix, Fig. S6B). Correspondingly, overexpression of CBX1 in transformed roots led to a significant accumulation of LjHAI transcripts in the absence of AM fungi. Furthermore, ectopic expression of L. japonicus CBX1 in transgenic hairy roots of Solanum tuberosum and in leaves of Nicotiana benthamiana led to a significant accumulation of mRNA encoding respective mycorrhiza-inducible Pi transporter and H^1-ATPase, respectively (Fig. 3 D and E). In sum, this suggested the conservation of cis-regulatory activity of CBX1 in mycorrhizal Pi uptake in diverse eudicot species.

Close homologs of CBX1 exist in different taxa (SI Appendix, Fig. S7). To test the hypothesis that the transcriptional regulatory mechanism controlled by CBX1 is evolutionarily conserved, promoters from mycorrhiza-inducible Pht1 genes LjPT3, LiPT4, MiPT4, potato StPT3 and StPT4, poplar PtPT10 and PtPT12, OsPT11, and ZmPT6 were fused to the GUS reporter gene and were cotransformed with CBX1 in A. thaliana suspension-cultured root cells (4, 9, 11, 12, 33, 43–45). Except OsPT11, all of the other eight genes comprise CTTC motifs in their promoters. In this in vivo system, CBX1 activated LiPT4, StPT4, MiPT4, and PtPT10 promoters from Pht1 subfamily I genes, but not promoters from monocots, like OsPT11 and ZmPT6, or from Pht1 subfamily III genes, including StPT3, LiPT3, and PtPT12 (Fig. 3F). This activation of specific promoters from eudicot mycorrhizal hosts explains previous results obtained with the OsPT11 promoter from rice, which was not activated when transformed into mycorrhizal potato and M. truncatula roots (5). CBX1 also induced GUS expression driven by the LjHAI1 gene promoter (Fig. 3F). Overall these data suggested the operation of a mycorrhizal gene module comprising CBX1, LiPT4, and LjHAI1 involved in MPU in eudicot plants.

Genome-Wide Targets of CBX1. In addition to LiPT4 and LjHAI1, transcript amounts of RAM2 encoding glycerol-3-phosphate acyltransferase required for arbuscule development (46) were significantly increased (Fig. 3C), while expression of other mycorrhizal marker genes like Shy1, STR, and BCP1 was not affected (5, 47–49). CBX1 also activated the RAM2 gene promoter (Fig. 3F), suggesting that CBX1 orchestrates expression of a wide array of genes involved in AM symbiosis development. We therefore investigated global DNA-binding sites of a CBX1-YFP fusion protein across the L. japonicus genome using chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) (SI Appendix, Fig. S8 A and B). In total, 136 target genes belonged to the common intersect in two replicates, indicating high significance of the overlap between replicates (Fisher’s exact test, odds ratio 18.459, P < 2.2e-16; Dataset S1). CBX1-binding sites were enriched near the transcription start site of target genes (Fig. 4A) and prevailed in promoters, 5’ UTR and intergenic regions (Fig. 4B). Functional annotation analysis showed that genes involved in lipid metabolism and transcription comprise a large proportion of the 136 CBX1 targets besides nonprotein coding and unknown genes (SI Appendix, Fig. S8C).

Integrating our ChIP-seq analysis with comparative analysis of L. japonicus and R. irregularis gene regulation at transcript resolution (RNA-seq) (Dataset S2) (50) resulted in 43 CBX1 targets, which matched with mycorrhiza-inducible genes (Fisher’s exact test, odds ratio 15.73, P < 2.2e-16) (Fig. 4C and Dataset S1), including LiPT4 (Fig. 4D). ChiP-qPCR confirmed that the CBX1-YFP fusion protein had the ability to precipitate the region of LiPT4 promoter containing CTTC CRE (Fig. 4 E and F). The CTTC-containing region in LiPT3 was not enriched by CFP nor CBX1-YFP, which verified the ChIP-seq result. Consistent with A. thaliana WR1 homolog (22, 23), 12 of 43 mycorrhiza-inducible CBX1 target genes refer to lipid metabolism and comprise nine genes involved in fatty acid biosynthesis [pyruvate dehydrogenase E1 subunit (PDH_E1a and PDH_E1b), dihydrolipoyl dehydrogenase 1 (LPD1), Biotin carboxyl carrier protein 2 (BCCP2), α-carboxyltransferase (α-CT), malonyl-CoA-ACP transacylase (MAT), acyl carrier protein 1 (ACP1), enoyl-ACP reductase (ENR), and acyl ACP-thioesterase (FatM)] and three glycolytic genes [glycerol-3-phosphate dehydrogenase (GPDH), phosphoenolpyruvate/phosphate translocators (PPT), and pyruvate kinase isozyme G (PK)] (Fig. 4G and SI Appendix, Fig. S9). Recent research highlighted the important role of 16/0 fatty acid synthesis in mycorrhizal host plants and its presumed transfer to AM fungi to maintain the symbiosis (26–29, 51). Mycorrhizal induction of 11 lipid-related genes in M. truncatula is dependent on the activity of the GRAS regulator RAM1 (29). Eight of these genes were CBX1 targets in L. japonicus, including BCCP2, PDHC_E1a, PDHC_E1b, PK, ACP1, MAT, ENR, GPDH1, and PPT. RAM2 and LjHAI1 were not included in our 136 targets list due to incomplete genome sequence or presence only in one replicate experiment (SI Appendix, Fig. S13C). We therefore manually added the RAM2 sequence to the L. japonicus genome sequence, and the ChIP-seq short sequence reads were sufficient for accurate mapping of enriched DNA fragments to RAM2 (SI Appendix, Fig. S9). In sum, the results suggested that CBX1 has the ability to regulate genes underlying diverse AM functions including MPU and fatty acid biosynthesis.

AW box is enriched in CBX1-bound sites of lipid metabolic genes (Fig. 4G and SI Appendix, Fig. S9). CBX1 directly bound to the AW box in vitro (SI Appendix, Fig. S10A), which indicated conserved binding properties of WRI homologs. Overexpression of CBX1 significantly increased transcript levels of BCCP2, PDHC_E1a, PDHC_E1b, LPD1, ENR, GPDH1, ABCB, FatM, and Kelch in L. japonicus (Fig. 4H). Likewise, the increased transcript amounts of fatty acid biosynthesis genes were also observed by bromo-ectopic expression of CBX1 in tobacco leaves and in potato hairy roots (SI Appendix, Fig. S10 B and C), which stood in line with the specific accumulation of triacylglycerols in tobacco leaves after ectopic expression of L. japonicus CBX1, although total fatty acid contents were unchanged (SI Appendix, Fig. S11 A and B). In CBX1, both AP2 domains and the 212–308 region were required for binding to AW box and CTTC (Fig. 1 E and F and SI Appendix, Fig. S12A). Moreover, AW box acts in cooperation with CTTC in binding of the LiPT4 promoter in vitro and its transactivation in vivo by CBX1 (Fig. 4I and SI Appendix, Fig. S12B). In sum, the results suggested CBX1-directed AM-specific gene regulation through direct binding to CTTC and AW box in the regulatory region of diverse target genes.

Besides MPU and lipid genes, transcripts of three GRAS genes encoding homologs to M. truncatula MIG1 (Ljrg3v1914570.1) and MIG1-like proteins (Ljrg3v1598410.1 and Lj1g3v4851630.1) (34) were enriched by CBX1 (SI Appendix, Fig. S13 A and B), which placed CBX1 in a gene regulatory network of AM symbiosis. Overall, our findings showed that CBX1 coregulates different gene modules through its ability to recognize two motifs of divergent sequences, which mediates functions like the MPU and fatty acid biosynthesis and other still poorly explored interlinked processes involved in AM symbiosis.

Discussion

Reciprocal exchange of nutrients stabilizes the cooperation between mycobiont and phytobiont in the AM symbiosis over
Fig. 4. Genome-wide identification of CBX1 target genes by ChIP-seq. (A) ChIP-seq analysis shows CBX1-binding peaks enriched near the transcription start site (TSS). The peaks shared in two replicate experiments were used. Immunoprecipitated DNA fragments from 1-mo-old hairy roots harboring pUB:CBX1-YFP or pUB:CFP negative control were subjected to DNA sequencing. (B) Distribution of 136 CBX1-binding sites in the L. japonicus genome. (C) Venn diagram depicting the overlap between CBX1 targets from ChIP-seq and mycorrhiza-regulated genes. Unique genes (392 and 226) were significantly enriched by CBX1 in two experiments (two times higher in surrounding 10-kb region; fold change relative to CFP control > 2; P < 0.0001). rep, replicate. (D) IGV browser view of CBX1 binding on LjPT4 gene. Tracks display data from Input, ChIPed CFP, and ChIPed CBX1 (two replicates) samples. Number on the upper left of each track indicates track height (300 reads per bin). Peak identified in Homer is indicated in blue bar. Thick lines represent exons and thin lines introns in gene structure. Black arrow indicates TSS. Blue and red ticks under the gene structure indicate CTTC core sequence (TCTTGT) or AW-box (CnTnG(n)CG) on the positive and negative DNA strand, respectively. (E) Schematic representation of genomic regions of LjPT4 and LjPT3 at scale. Black bars represent coding region. Lines represent noncoding DNA. CTTC CRE and AW box are indicated in promoter regions as black or red bars, respectively. P1 to P4 are DNA fragments designed for ChIP-qPCR. (F) Validation of ChIP-seq by ChIP-qPCR that CBX1 bound to the promoter of LjPT4. After normalization with input, fold enrichment was calculated, compared with anti-GFP ChIPed CFP. Mean values ± SD of three independent biological replicates were shown. Student’s t test was used. *P < 0.05. (G) Mycorrhiza-inducible lipid-related genes were targeted by CBX1 in ChIP-seq. Heatmap of CBX1 target gene expression profiles based on log_{10} transformed counts per million (cpm) depicted from RNA-seq data analysis (50). The number of AW box and CTTC core (TCTTGT) were counted in the homer peaks from ChIP-seq. (H) Transcript accumulation of CBX1 targets in L. japonicus hairy root overexpressing CBX1 in the absence of AM fungi. Student’s t test was used (n = 7). *P < 0.05; **P < 0.01; ***P < 0.001. Three experiments were performed independently with similar results. (I) Transactivation assay with CBX1 on pLjPT4:GUS reporter with mutations on CTTC or/and AW box. Mean ± SD (n = 3). One-way ANOVA followed by Tukey’s HSD was performed (F_{15.32} = 14.17, P < 0.05).
evolutionary time (53). With respect to the “biological market” theory (53, 54), regulators involved in orchestrating biological processes underlying mutualism, likely shared an important role in the evolution of AM symbiosis. We show here that mycorrhiza-inducible CBX1 from* L. japonicus,* a WRII transcription factor, acts as a regulator and activates genes encoding mycorrhiza-specific Pi transporter and proton-ATPase from diverse eudicot plants and proteins involved in fatty acid biosynthesis. The computational identification of the conserved CTTC CRE (CTTGTG) (Fig. 1C) (14) through cross-species comparison of mycorrhiza-regulated genes was consistent with the binding specificity of CBX1 to TCTGT core sequence shown through EMSA (Fig. 1D). Transactivation assays in suspension cultured cells of nonmycorrhizal host* A. thaliana* and CBX1 overexpression studies in transformed roots or leaves from* L. japonicus,* potato, and tobacco in the absence of AM fungi suggests the presence of a conserved regulatory mechanism controlling simultaneous expression of Ph1 subfamily I genes and proton-ATPase genes in eudicots. Failure of CBX1 to bind in vivo (Fig. 4F) nor activate (Fig. 3F) the promoter of* LjPT3,* which also contains a CTTC motif, suggested an important role of the sequences flanking the CTTC motif in cis regulation. Significant reduction but not abolished GUS activity driven by* LjPT4-mCTTC* in transgenic roots also suggested the existence of alternative CREs (Fig. 1A). Cooccurrence of the CTTC motif and AW box was found in the promoters of several mycorrhiza-specific and mycorrhiza-up-regulated genes (Fig. 4G). CBX1 could bind to both motifs (Fig. 1 and SI Appendix, Figs. S9, S104, and S12), and CBX1-mediated activation of* LjPT3* was dependent on both motifs (Fig. 4F), implying that the two motifs build a molecular module in AM symbiosis genes. The precise regulatory function of CBX1 on the CTTC/AW molecular module of individual target gene awaits further exploration. Remaining mycorrhiza gene expression in* cbx1* mutants (Fig. 2B) suggested that other transcription factors could function redundantly, such as AM-inducible* WRI5a/b/c* (29, 34) with* -mCTTC* in* D* motifs (Fig. S2) with CTTC-binding ability (SI Appendix, Fig. S2).

Genome-wide identification of CBX1-binding sites through ChiP-seq revealed 43 mycorrhiza-inducible targets of CBX1 (Dataset S1). Among those, 12 genes are involved in de novo fatty acid synthesis and glycolysis. Enrichment of the AW box in these binding regions supported the conserved regulation of lipid synthesis by WRI-like proteins across diverse plant species (23, 55). Novel* LjPT3* (and* LjPT4*; Fig. S104) genes encoding* LjPT4, FatP4* (an AMPA-dependent synthetase and ligase), and an ABC transporter B family (*ABCB*; A6) protein were conserved in phylogenetically diverge mycorrhiza host species (56). In addition, we showed that* LjHA1* was directly regulated by CBX1, as CBX1 had the ability to bind the TCTGTG-containing promoter region of* LjHA1* in vitro (SI Appendix, Fig. S6B) and activated the* pLjHA1:GUS* chimeric gene in* A. thaliana* cells (Fig. 3F). The two CBX1 targets* RAM2* and* LjHA1* were initially not identified in our ChiP-seq analysis, which suggested that some targets were missed, owing to incomplete genome information or annotation errors, technical impediments, or harsh criteria for selecting peaks through the Homer pipeline (SI Appendix, Figs. S9 and S15C). Besides,* MIG1,* a regulator of root cortical cell expansion required for arbuscule development (52), was identified as a CBX1 target gene through ChiP-seq and ChiP-qPCR (SI Appendix, Fig. S13 A and B). In* M. truncatula,* the 230-bp truncated promoter of* MIG1* containing two CTTC motifs but lacking AW box was sufficient to drive GUS expression in response to AM fungi (52). As overexpression of CBX1 was used for ChiP-seq in the absence of AM fungi, further research will verify the function of specific CBX1 targets in mycorrhizal symbiosis.

LjPT4, LjHA1, and* RAM2* genes were shown to be regulated by GRAS protein* RAM1* (29, 57, 58), which is directly regulated by the CCAK/M–CYCLOPS–DELLA complex (49). More research is required to elucidate whether CBX1 participates in mycorrhiza gene expression independently, cooperatively, or downstream of* RAM1* during AM development. Continued investigations into how CBX1 and orthologous proteins evolved from early land plants and their algal ancestor (41) will help to understand the evolution of regulatory modules that determine mutualistic interactions at the root-fungus interface in AM symbiosis.

Materials and Methods.

Details of plant materials and growth conditions are provided in SI Appendix. Transformation of hairy roots and leaves, protein purification and EMSA, quantitative real-time PCR analysis, phylogenetic analysis, histochemical GUS analysis, transactivation assay, subcellular protein localization, ChiP-seq, and RNA-seq data analysis are described in SI Appendix, SI Materials and Methods. Constructs and primers are listed in SI Appendix, Tables S1–56. CBX1 targets and their functional annotation are listed in Dataset S1. Genes responsive to* R. irregularis* in* L. japonicus* were identified using RNA-seq as described before (50) and are listed in Dataset S2.

ACKNOWLEDGMENTS. We thank Dr. K. Schlücking and V. Wever, Y. Arlt, and C. Nothelle for experimental support; Dr. I. Fabianska for assistance with statistical data analysis; Dr. M. Böhmer (Muenster University) for support with EMSA; Dr. N. Gerlach for providing plasmid* pRedRoot-pzmPT6*; GUS; Dr. F. Martin (Institut National de la Recherche Agronomique) for providing poplar genomic DNA; Drs. F. He, and U. Höcker for helpful discussions; and S. Worth for photographs. This research was supported by an Alexander von Humboldt foundation research fellowship (to L.X.), a grant from The Institute for the Promotion of Teaching Science and Technology Thailand (to G.S.), and German Science Foundation Grant BU-2250/12-1 (to M. Bucher).

