NLR locus-mediated trade-off between abiotic and biotic stress adaptation in *Arabidopsis*

Hirotaka Ariga^{1†}, Taku Katori^{1‡}, Takashi Tsuchimatsu^{2‡}, Taishi Hirase^{3‡}, Yuri Tajima³, Jane E. Parker⁴, Rubén Alcázar⁵, Maarten Koornneef⁶, Owen Hoekenga^{7†}, Alexander E. Lipka^{7†}, Michael A. Gore^{8†}, Hitoshi Sakakibara⁹, Mikiko Kojima⁹, Yuriko Kobayashi^{10†}, Satoshi Iuchi¹⁰, Masatomo Kobayashi¹⁰, Kazuo Shinozaki¹¹, Yoichi Sakata¹, Takahisa Hayashi¹, Yusuke Saijo^{3,12} and Teruaki Taji¹*

Osmotic stress caused by drought, salt or cold decreases plant fitness. Acquired stress tolerance defines the ability of plants to withstand stress following an initial exposure¹. We found previously that acquired osmotolerance after salt stress is widespread among Arabidopsis thaliana accessions². Here, we identify ACQOS as the locus responsible for ACQUIRED **OSMOTOLERANCE.** Of its five haplotypes, only plants carrying group 1 ACOOS are impaired in acquired osmotolerance, ACOOS is identical to VICTR, encoding a nucleotide-binding leucine-rich repeat (NLR) protein³. In the absence of osmotic stress, group 1 ACQOS contributes to bacterial resistance. In its presence, ACQOS causes detrimental autoimmunity, thereby reducing osmotolerance. Analysis of natural variation at the ACQOS locus suggests that functional and non-functional ACQOS alleles are being maintained due to a trade-off between biotic and abiotic stress adaptation. Thus, polymorphism in certain plant NLR genes might be influenced by competing environmental stresses.

Natural genetic variation has facilitated the identification of genes underlying complex traits such as growth, flowering and stress tolerance while creating opportunities for adaptation to changing environmental conditions⁴. Studies of several hundred A. thaliana accessions have provided new insights into genome evolution, differentiation among geographic populations and selective mechanisms that shape complex trait variation in nature⁵. Plants have evolved the ability to acclimatize to various stresses after initial exposure to a related stress cue¹. A large-scale analysis of 350 A. thaliana accessions revealed extensive variation in acquired osmotolerance on mild salt exposure². When 7-day-old seedlings were pre-exposed to 100 mM NaCl for 7 days (acclimation period), the A. thaliana accessions Bu-5 and Bur-0, but not Col-0 or Wl-0, acquired osmotolerance to 750 mM sorbitol² (Fig. 1a). Using the progeny of a $Bu-5 \times Col-0$ cross, we mapped a single locus on chromosome 5, which we named acquired osmotolerance (ACQOS).

Here, we resolved the *ACQOS* locus to a 100 kilobase (kb) region on chromosome 5 containing 24 annotated genes (Supplementary Fig. 1). We then developed two BC₅F₃ near-isogenic lines, NIL-Col-0 and NIL-Bu-5, which carried different sized small chromosomal segments from Bu-5 containing the ACQOS region in the genetic background of Col-0. Retention of acquired osmotolerance in NIL-Bu-5 but not NIL-Col-0 narrowed down the ACQOS locus to a 67 kb region (Fig. 1b and Supplementary Fig. 2a). To investigate whether the ACQOS locus accounts for species-wide variation in acquired osmotolerance, we performed a genome-wide association study (GWAS) using 179 accessions (Supplementary Table 1). This revealed a significant ~200-kb-wide peak on chromosome 5 that coincided with large linkage disequilibrium patterns within ± 500 kb of the ACQOS locus, consistent with the fine mapping data (Fig. 1c). To identify polymorphisms in the region, we constructed a bacterial artificial chromosome (BAC) library derived from Bu-5 genomic DNA and sequenced a BAC clone containing the region. Sequencing revealed a 17 kb deletion in Bu-5. In the corresponding region, Col-0 has a tandem repeat of four Toll and interleukin1 receptor-nucleotide binding leucine-rich repeat (TIR-NLR) genes (NLR1-NLR4; NLR2 encodes a truncated, apparently non-functional protein), whereas Bu-5 has one TIR-NLR gene (Fig. 1b and Supplementary Fig. 3). We tested whether this single NLR^{Bu-5} confers osmotolerance in Bu-5 or one or more of the four Col-0 NLRs impairs acquired osmotolerance, by introducing different NLRs into Col-0 and NIL-Bu-5. In these complementation assays, NLR^{Bu-5} did not confer acquired osmotolerance in the Col-0 background (Supplementary Fig. 4). By contrast, Col-0 NLR4, but not NLR3, abolished osmotolerance in the NIL-Bu-5 background (Fig. 1d and Supplementary Fig. 4). Also, disruption of NLR4 but not NLR2 or NLR3 in Col-0 by T-DNA insertion conferred acquired osmotolerance equivalent to that of NIL-Bu-5 (Fig. 1e and Supplementary Fig. 5). Therefore, Col-0 NLR4 suppresses the acquired osmotolerance of Bu-5. These results suggest that NLR4 is the ACQOS locus underlying variation in acquired osmotolerance.

Col-0 ACQOS was described previously as VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), which mediates root growth arrest induced by the small molecule

¹Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan. ²Department of Biology, Chiba University, Chiba 263-8522, Japan. ³Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan. ⁴Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany. ⁵Department of Plant Biology, University of Barcelona, 08028 Barcelona, Spain. ⁶Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research D-50829 Cologne, Germany. ⁷United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, 14853 New York, USA. ⁸United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Maricopa, Arizona 85138, USA. ⁹Plant Productivity Systems Research Group, RIKEN Centre for Sustainable Resource Science, Kanagawa 230-0045, Japan. ¹⁰RIKEN BioResource Center, Ibaraki, 305-0074 Japan. ¹¹Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan. ¹²JST PRESTO, Ikoma 630-0192, Japan. ¹Present addresses: Division of Plant Sciences, Institute of Agrobiological Science, NARO, Ibaraki 305-8602, Japan (H.A.); Cayuga Genetics Consulting Group LLC, Ithaca, New York 14850, USA (O.H.); Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA (A.E.L); Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA (M.A.G.); Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan (Y.K.). ^{*}These authors contributed equally to this work. *e-mail: t3teruak@nodai.ac.jp

NATURE PLANTS

Figure 1 | Identification of the ACQOS locus. a, Acquired osmotolerance of A. thaliana accessions. A flow chart of the acquired osmotolerance assay (top). Salt tolerance when grown on soil (middle). Three-week-old plants grown in pots were exposed to 500 mM NaCl in water for 49 days. Acquired osmotolerance (bottom). Salt-acclimated 2-week-old seedlings were mesh-transferred to MS agar plates containing 750 mM sorbitol for 21 days. b, High-resolution mapping of the ACQOS locus using NILs. Acquired osmotolerance of Col-0, Bu-5, NIL-Col-0 and NIL-Bu-5 (top). Graphical genotypes of NILs (bottom). Chromosomal segments of Col-0, off-white; Bu-5, green. Numbers above the genes are the last three digits of their Arabidopsis Genome Initiative (AGI) numbers (At5q46XXX). c, Genome-wide association study for acquired osmotolerance. Manhattan plot of GWAS results for acquired osmotolerance (top; colours distinguish chromosomes 1-5). Close-up of the major GWAS peak in the vicinity of the ACQOS locus on chromosome 5 (middle). The position of the ACQOS gene is indicated by a red line. Linkage disequilibrium patterns within ±500 kb upstream and downstream of the ACQOS locus (bottom). d, Complementation test performed by transforming NIL-Bu-5 with NLR4 (ACQOS). T₂ homozygous plants transformed with native promoter: NLR4 (ACQOS) derived from Col-O was used. e, Acquired osmotolerance of nlr2, nlr3-1 and nlr4-1 (acqos-1) mutants. f, Expression of ACQOS in Col-O plants under normal, salt acclimated and subsequent osmotic stress conditions; gene expression was determined by qRT-PCR (mean ± s.e.m., n = 3). g, Histochemical analysis of the expression pattern of the ACQOS promoter: GUS in Col-0 seedlings grown under normal or osmotic stress conditions. GUS activities in two independent transgenic lines were measured using 4-MUG fluorometric assay. Differences between normal (white bars) and osmotic stress (black bars) conditions were analysed using Student's t-test. (mean ± s.e.m., n = 7, ***P < 0.001) After salt acclimation, seedlings were grown in the presence of 750 mM sorbitol for 21 (b), 15 (d) or 20 (e) days. Similar results were obtained in three independent experiments; representative data are shown. All error bars are S.E.M.

[5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) in Col-03. ACOOS/VICTR protein associated with and required the TIR-NLR immunity regulators Enhanced Disease Susceptibility1 (EDS1) and Phytoalexin-Deficient4 (PAD4) for DFPM-induced immunity and antagonism of certain osmotic stress responses mediated by the hormone abscisic acid (ABA)^{3,6}. In plants and animals, NLR proteins are typically immune sensors for pathogen molecules or pathogen-induced modifications of host cell components⁷. There are 104 annotated TIR-NLRs in the genome of A. thaliana Col-0. The closest homologue of ACQOS in Col-0 is NLR3, which is also missing in Bu-5 (Supplementary Fig. 6). In Col-0, ACQOS gene expression was induced predominantly in roots in response to osmotic stress (Fig. 1f,g). To investigate whether ACQOS expression levels influence the extent of acquired osmotolerance, we exploited an osmotic stress-inducible ACQOS overexpression line identified among the ACOOS transgenic lines in the NIL-Bu-5 background (see Fig. 1d). Osmotic stress-inducible overexpression of ACOOS (line 3), without a significant increase in basal expression, rendered the seedlings more sensitive to osmotic stress than other less strongly inducible lines or Col-0 plants (Supplementary Fig. 7). In addition, F1 progeny of Col-0 × NIL-Bu-5 showed a partial breakdown of acquired osmotolerance (Supplementary Fig. 8). These results show that ACQOS suppresses the acquisition of osmotolerance in a dose-dependent manner.

To explore nucleotide variation at the ACQOS locus, we performed PCR-based cloning and Sanger sequencing of a ~23 kb genomic region encompassing the ACQOS gene in 79 A. thaliana accessions. We chose Sanger sequencing because standard Illumina short-read sequencing is often unreliable if there are large deletions, insertions or tandem repeats, as found in the ACQOS region. Based on the pattern of indels and tandem repeats, we classified the tested accessions into five ACQOS haplogroups (groups 1-5) (Fig. 2a and Supplementary Fig. 9a). Group 1, which includes Col-0, was rare (10%), whereas group 4 including Bu-5 and group 5 were most frequent (72%; Fig. 2b). As expected from the prominent GWAS peak around the ACQOS locus (Fig. 1c), we found a strong correlation between the haplogroup and acquired osmotolerance: groups 2-5 displayed osmotolerance, whereas group 1 did not (Fig. 2c and Supplementary Fig. 2b). Notably, group 2 carrying polymorphisms in the ACQOS gene (Fig. 2d) had acquired osmotolerance (Fig. 2c and Supplementary Fig. 2b). This suggests that nucleotide substitutions between the group 1 and 2 ACQOS genes explain the presence or absence of acquired osmotolerance. To test this possibility, we introduced the corresponding ACQOS genes from Col-0 (group 1) or Rou-0 (group 2) into ACQOS knockout mutants. In these complementation experiments, group 1 but not group 2 ACQOS strongly reduced acquired osmotolerance (Fig. 2e and Supplementary Fig. 2c), indicating that the nucleotide substitutions render group 2 ACQOS non-functional in osmotolerance suppression.

To explore haplotype and allelic diversity at the ACQOS locus, we conducted a phylogenetic analysis of the tandemly duplicated ACQOS homologues, including those from Arabidopsis lyrata as an outgroup⁸ (Fig. 2f). The corresponding region of A. lyrata contains three TIR–NLR genes which differ from A. thaliana, suggesting that this locus has evolved independently after species divergence (Supplementary Fig. 9b). The phylogeny revealed that NLR genes within the ACQOS locus fall into two major clades, one containing group 4 NLR and an A. lyrata homologue (named haplogroup A) and the other containing group 5 NLR (named haplogroup B) (Fig. 2f). NLR1 in groups 1–3 appears to be closest to the NLR^{group 4}, whereas NLR3 of groups 1–3 and ACQOS belong to the same clade as NLR^{group 5}. These results suggest that two divergent single-copy NLR haplogroups (A and B) evolved initially, and that NLR3 and ACQOS originated through tandem

duplication in the haplogroup A. Nucleotide diversity at ACOOS, especially in the LRR domain, is higher than the genome-wide average9 and that of NLR1-NLR3 in the ACQOS locus, and is associated with an excess of non-synonymous over synonymous substitutions between group 1 and group 2 ACOOS genes, suggesting diversifying selection (Fig. 2d; Supplementary Fig. 10). In one of three ACQOS high-diversity regions, polymorphisms were shared between ACQOS and NLR^{group 5}, suggesting that heterologous recombination because of to unequal crossing over or gene conversion between NLR^{group 5} and ACQOS may have contributed to the high level of variation in the ACQOS gene (Supplementary Figs 11 and 12). Also, because A. thaliana group 3 accessions showed acquired osmotolerance, we reasoned that this trait is due to a non-functional ACQOS gene. The 3' portion of group 3 NLR3 is more closely related to that of group 1 ACQOS than to group 1 or 2 NLR3. It seems that deleting the majority of ACQOS 5' region by gene fusion with NLR3 suppressed ACQOS function in group 3 (Supplementary Fig. 13). Our data suggest that acquired osmotolerance was impaired when ACQOS originated, and was then restored in A. thaliana after repeated rearrangements, recombination and/or mutations at the ACQOS locus, giving rise to the haplotype groups 2, 3 and 5.

In pathogen-triggered TIR-NLR immunity and autoimmunity, EDS1/PAD4 nuclear complexes transcriptionally reprogram cells for pathogen resistance via salicylic acid (SA) and SA-independent pathways^{10,11}. When exposed to osmotic stress, SA accumulation and the defence marker genes PR1 and EDS1 (SA dependent) and PR2 (SA independent¹²) were strongly induced in Col-0 but not in NIL-Bu-5 plants (Fig. 3a,b). These results suggest that immune responses are de-repressed under osmotic stress in the presence of ACOOS. Given that SA antagonizes ABA signalling in A. thaliana¹³, we tested for roles of EDS1, PAD4 and SA in the impaired Col-0 acquired osmotolerance. Notably, Col-0 plants displayed acquired osmotolerance when EDS1 or PAD4 were mutated (Fig. 3c,d). Consistent with this, group 1 ACQOS failed to suppress acquired osmotolerance at 28 °C, at which TIR-NLR and EDS1/PAD4 immune responses are compromised in several A. thaliana accessions¹⁴ (Supplementary Fig. 14). By contrast, acquired osmotolerance remained suppressed in mutants of EDS5, SID2 or NPR1, encoding an SA transporter, an SA biosynthetic enzyme (Isochorismate Synthase 1) and a SA signalling regulator, respectively (Fig. 3c,d), pointing to SA independence of ACQOS suppression of osmotolerance. We further tested whether ACOOS relies on RAR1 and SGT1, which facilitate stable NLR accumulation and function¹⁵. Acquired osmotolerance was observed in rar1 and sgt1b plants, albeit to a lesser extent in the latter compared with rar1, eds1 and pad4 plants, possibly because of retention of SGT1a (Fig. 3c,d). None of these four genes was associated with acquired osmotolerance in our GWAS (Fig. 1c). Our findings suggest that under osmotic stress, de-repression of TIR-NLR ACQOS-mediated defences via EDS1/PAD4 leads to a loss of acquired osmotolerance. Misactivated immunity often results in stunted growth and necrotic lesioning¹⁴ and NLR genes have been reported to influence plant development, growth and cold tolerance in A. thaliana^{16,17}. Under our conditions, plant growth was largely indistinguishable between Col-0, Bu-5, NIL-Bu-5 and acqos knockout plants when transferred to 4 °C after 100 mM NaCl treatment. These results suggest that ACQOS de-repression connects to auto-immunity specifically under osmotic stress conditions. Osmotic tolerance often depends on ABA, which increases with osmotic stress. Induced ABA accumulation and expression of the ABA-responsive genes RAB18, RS6 and NCED3 was higher in NIL-Bu-5 than Col-0 when plants were exposed to high osmotic stress, although their induction was not detectable during initial salt stress (Supplementary Fig. 15a,b). To assess the role of ABA in acquired osmotolerance, we introduced mutations into the NIL-Bu-5 background, aba2-1 (ref. 18) (aba2-

NATURE PLANTS

Figure 2 | Haplotype diversity and functional evolution of the ACQOS locus. a, Schematic representation of five haplogroups at the ACQOS locus, which differ by *NLR* tandem copy numbers and by nucleotide substitutions. Arrowheads below group 2 ACQOS show non-synonymous substitution compared with group 1 ACQOS. **b**, Relative frequencies of the five haplogroups among the 79 surveyed natural accessions. **c**, Acquired osmotolerance of the five haplogroups. Salt-acclimated seedlings were grown in the presence of 750 mM sorbitol for 21 days. **d**, Nucleotide diversity at all sites across the ACQOS locus (groups 1 and 2). A dotted horizontal line indicates the average genome-wide nucleotide diversity of *A. thaliana*⁹. **e**, Complementation test for acquired osmotolerance using group 1 ACQOS (top) and group 2 ACQOS (bottom). Salt-acclimated seedlings were grown in the presence of 750 mM sorbitol for 21 days. **d**, Attaliana⁹. **e**, Complementation test for acquired osmotolerance using group 1 ACQOS (top) and group 2 ACQOS (bottom). Salt-acclimated seedlings were grown in the presence of 750 mM sorbitol for 15 days. Arrowheads indicate T₂ seedlings with introduced group 1 ACQOS. **f**, Maximum-likelihood based phylogenetic tree of *NLR* genes in the ACQOS locus with three homologues from *Arabidopsis lyrata* as an outgroup. The values on the branches indicate the percentage of 1,000 bootstrap replicates. Similar results for **c** and **e** were obtained in at least three independent experiments; representative data are shown.

*1*_NIL-Bu-5) and *nced3-2* (ref. 19) (*nced3-2*_NIL-Bu-5), which are defective in ABA biosynthesis, or *abi1-1* (refs 20,21) (*abi1-1*_NIL-Bu-5), which is ABA-insensitive. Unexpectedly, acquired osmotolerance in NIL-Bu-5 was unaffected by these mutations (Supplementary Fig. 15c), indicating that the osmotolerance suppressed by *ACQOS* is independent of ABA.

The observed species-wide variation in acquired osmotolerance, in particular retention of the *ACQOS* allele that disables this trait, might be explained if ACQOS has fitness benefits under certain conditions. As a trade-off often occurs between biotic and abiotic stress adaptation²², we tested whether group 1 ACQOS influences plant immunity. In A. thaliana, acquired osmotolerance and pathogen resistance are not necessarily correlated at the level of accessions²³, and are likely to reflect complex genetic interactions in the control and/or coordination of the two traits. We therefore compared Col-0 and NIL-Bu-5 plants to assess directly a role for group 1

Figure 3 | **Contribution of ACQOS to immune responses and pathogen resistance after MAMP treatment. a,b**, Salicylic acid (SA) contents (**a**) and expression of *PR1*, *PR2* and *EDS1* (**b**) in Col-0 and NIL-Bu-5 plants under normal, salt stress and subsequent osmotic stress conditions (mean \pm s.e.m., *n* = 3). Differences between Col-0 and NIL-Bu-5 were analysed using Student's *t*-test. **P* < 0.05; ****P* < 0.001. **c**, Acquired osmotolerance of the immune signalling mutants *eds1-2*, *pad4-1* and *npr1-1* (ref. 29), R protein accumulation and hence function mutants *rar1-21* and *sgt1b* (ref. 15), an SA-depleted *35S:nahG* transgenic plant30 and the SA-deficient mutants *eds5-1* (ref. 31) (mutation in an SA transporter) and *sid2-2* (ref. 32) (mutation in isochorismate synthase). All the mutants were in the Col-0 background. Similar results were obtained in three independent experiments; representative data are shown. **d**, Chlorophyll content of immune deficient mutants as described in **c**. Within each line, bars with different letters are significantly different (*P* < 0.01, one-way ANOVA with post hoc Tukey HSD test, mean \pm s.e.m., *n* = 3). **f**, Growth of syringe-infiltrated *Pst* DC3000 in rosette leaves of 4-week-old Col-0, NIL-Bu-5 and *efr fls2* plants pretreated with water (mock) or 1 μ M flg22 for 24 h (mean \pm s.e.m., *n* = 5). **e,f**, Differences between pretreatment with Mock and flg22 were analysed using Student's *t*-test. **P* < 0.05; ****P* < 0.01; ****P* < 0.001.

NATURE PLANTS

LETTERS

ACQOS in defence responses. Recognition of bacterial flagellin (flg22 epitope), a pathogen-associated molecular pattern (PAMP), and subsequent defence activation is critical in bacterial resistance and largely conserved in higher plants²⁴, with a degree of specieswide variation in A. thaliana²⁵. We tested flg22-triggered induction of the defence markers PROPEP3 and NHL10 in Col-0 and NIL-Bu-5 plants, and in efr fls2 plants that lack the flg22 receptor FLAGELLIN-SENSITIVE 2 (FLS2) and are insensitive to flg22 (ref. 26). Induction of these two markers in response to flg22 was lower in NIL-Bu-5 plants than in Col-0 plants, suggesting that flg22-triggered defences are lowered in the absence of ACQOS (Fig. 3e). As accumulation of FLS2 and its coreceptor BAK1 (ref. 27) was intact in NIL-Bu-5 plants (Supplementary Fig. 16), this implies a role for ACQOS in defence signalling downstream of PAMP perception. To assess the biological significance of this finding, we tested whether loss of ACQOS influences bacterial resistance. NIL-Bu-5 and Col-0 plants were indistinguishable in basal resistance (without flg22 pretreatment) to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) (Fig. 3f). Following flg22 pretreatment, however, NIL-Bu-5 plants exhibited lower suppression of bacterial growth than Col-0 plants, which strongly reduced bacterial growth, as described previously²⁸ (Fig. 3f). These data suggest that group 1 ACQOS is required for full activation of FLS2-mediated bacterial resistance, and that a contribution to this key branch of PAMP-triggered immunity might present an advantage for retaining functional ACQOS.

Polymorphism associated with rearrangements and mutations in the single ACQOS locus implies that acquired osmotolerance has evolved independently several times by ACQOS disruption, despite its potential for compromising immunity effectiveness. This might reflect a need to manage ACQOS-mediated autoimmunity, which becomes significant under severe osmotic stress and dominates in stress acclimation conferred by pre-exposure to mild salinity. Our findings suggest that the genetic variability of certain NLR genes in A. thaliana populations is not only shaped by coevolution between plants and pathogens but also the need to balance responsiveness to biotic and abiotic stresses in the environment.

Methods

Plant material and growth conditions. Arabidopsis seeds were sown on agar (0.8%, w/v) plates containing full-strength Murashige and Skoog (MS) salts with a vitamin mixture (10 mg l⁻¹ myoinositol, 200 μ g l⁻¹ glycine, 50 μ g l⁻¹ nicotinic acid, 50 μ g l⁻¹ pyridoxine hydrochloride, 10 μ g l⁻¹ thiamine hydrochloride, pH 5.7) and 1% sucrose. Plates were sealed with surgical tape; the seeds were stratified at 4 °C for 4–7 days and then transferred to a growth chamber (80 μ mol photons m² s⁻¹; 16 h/8 h light/dark cycle; 22 °C) for germination and growth.

Seeds of the following *Arabidopsis* mutants were obtained from the *Arabidopsis* Biological Resource Center (Ohio State University): *acqos* (SALK_122941, SALK_072727), *nlr2* (SALK_147652C), *nlr3* (SALK_145278, SALK_097845), *aba2-1* (CS156), *abi1-1* (CS22), *pad4-1* (CS3806), *sid2-2* (CS16438), *eds5-1* (CS3735) and *npr1-1* (CS3726). The *eds1-2* mutant²⁹ and *35S:NahG* transgenic line³⁰ were described previously. The *nced3-2* mutant¹⁹ was kindly provided by Dr. Kaoru Urano. To generate *aba2-1*_NIL-Bu-5 and *nced3-2_*NIL-Bu-5, *aba2-1* and *nced3-2* mutants were crossed with NIL-Bu-5 (see below), respectively. To identify the homozygous of each mutation and *ACQOS* locus, the F₂ seedlings were genotyped by sequencing or simple sequence length polymorphysism (SSLP) markers (Supplementary Table 2). The F₃ progeny was used in this study. To generate *abi1-1_*Col-0 and *abi1-1_*NIL-Bu-5.

Stress treatment for acquired osmotolerance assay. Seven-day-old seedlings grown on nylon mesh on an MS agar plate were mesh-transferred to a plate supplemented with 100 mM NaCl for 7 days. The 14-day-old seedlings were then mesh transferred to a plate supplemented with 750 mM sorbitol for 14 days. Mild osmotic stress (for example, 150 mM sorbitol) is able to induce the acquired osmotolerance as well as the mild NaCl stress does (Supplementary Fig. 17).

High-resolution mapping of *ACQOS.* BC₅F₂ plants were generated by backcrossing F₂ plants (derived from a cross between Bu-5 and Col-0 and showing acquired salt tolerance) to Col-0 plants five times. We screened the BC₅F₂ plants for recombination events within the mapped 100 kb region containing *ACQOS.* We also

developed two near-isogenic lines, named NIL-Col-0 and NIL-Bu-5, which carried a small chromosomal segment from Bu-5 containing the *ACQOS* region in the genetic background of Col-0. Genotyping was performed with SSLP markers and using single nucleotide polymorphism (SNP) detection by sequencing (Supplementary Table 1).

Genome-wide association study. A GWAS was performed to find loci associated with the absence or presence of acquired osmotolerance in 179 worldwide natural accessions (Supplementary Table 1). Of 350 accessions analysed in this study, the 250 k SNP dataset is available only for 173 accessions. We excluded some accessions whose phenotype is not penetrated (for example, a within line variation), and added some accessions obtained from ABRC. As for the GWAS, the osmotolerance phenotype was scored in a binary (absent or present) way because this 'all or nothing' difference of the phenotype was so clear. We used the 250 k SNP data as a genotype set³¹. To deal with the confounding effect of population structure, we employed a mixed model incorporating a genome-wide kinship matrix as a random effect³². We used the GWAPP platform³³ to perform GWAS and to generate the Manhattan and linkage disequilibrium plots.

Generation of a BAC library from the Bu-5 genome and sequencing of the

ACQOS locus. A BAC library derived from the Bu-5 genome was generated by Amplicon Express (USA). BAC clones were extracted with a NucleoBond BAC 100 kit (Macherey-Nagel) and sequenced. The *ACQOS* loci of 79 accessions (Supplementary Table 3) were amplified using a haplogroup-specific primer set (Supplementary Table 4), the PCR fragments were cloned into pCR-TOPO (Invitrogen) and sequenced.

Plasmid construction and transformation. For complementation analysis, the genomic region of each *NLR* (2.0 kb upstream of the ATG initiation codon and 1.0 kb downstream region as a terminator in the *ACQOS* locus of Col-0) were amplified by PCR with AscI linker primers and cloned into the AscI sites introduced into the binary vectors pGreen0029 and pGreen0129. The *ACQOS promoter:* β -glucuronidase (*GUS*) plasmid was constructed by amplifying a 2.0 kb DNA fragment upstream of the *ACQOS* initiation codon by PCR and cloning it into the BamHI site of pB1101.

All constructs were introduced into *Agrobacterium tumefaciens* strain GV3101 carrying pSoup, a helper plasmid necessary for pGreen replication³⁴. Agrobacteria were then used for plant transformation by the floral dip method. Primers for cloning are listed in Supplementary Table 5. Transgenic plants were selected on MS agar plates containing 200 µg ml⁻¹ claforan and 25 µg ml⁻¹ hanamycin or 20 µg ml⁻¹ hygromycin. Ten-day-old seedlings (T₁ plants) were transferred to the soil pots.

Quantitative RT-PCR. Total RNA (2 µg) was isolated with an RNeasy Plant Mini Kit (QIAGEN), treated with DNase I (Invitrogen) and used as a template to synthesize first-strand cDNA using SuperScript II Reverse Transcriptase (Invitrogen) and an oligo dT primer. qRT-PCR was performed using a LightCycler 96 (Roche Diagnostics) with FastStart Essential DNA Green Master (Roche Diagnostics) in a total volume of 12 µl under the following conditions: 95 °C for 10 min followed by 45–50 cycles of 95 °C for 20 s, 54 °C for 20 s and 72 °C for 20 s. β -*Actin* was used as an internal standard. Primers and their efficiencies are listed in Supplementary Table 6.

GUS staining and quantification

ACQOS promoter. GUS transgenic seedlings were salt-acclimated under 100 mM NaCl for 7 days and subsequently subjected to 750 mM sorbitol for 7 days. Seedlings were then washed twice with phosphate buffer and incubated in GUS buffer (10 mM phosphate buffer (pH 7), 0.5% Triton X-100, 1 mg ml⁻¹ X-Gluc, 2 mM potassium ferricyanide) for 3–5 h at 37 °C. Chlorophyll was subsequently removed by incubation in 100% ethanol. Quantification of GUS activity was performed according to 4-4-methlyumbelliferyl β -D-glucronide (MUG) fluorometric assay³⁵. Transgenic seedlings with or without osmotic stress were homogenized with GUS extraction buffer (100 mM sodium phosphate, 10 mM EDTA, 10 mM DTT, 0.1% Triton X-100, 20% methanol and 1 mM 4-MUG) and incubated at 37 °C for 60 min. After incubation, 100 µl of each samples were mixed with 4 ml of 200 mM Na₂CO₃ and 4-4-methylumbelliferone (MU) fluorescence was measured with excitation at 365 nm, emission at 455 nm on a spectrofluorimeter. Fluorescence intensity was calculated using 4-MU standards (0.001~1 mM). Then GUS activity was normalized with protein concentration quantified with Bradford (Bio-Rad).

Population genetic analysis. DnaSP v.5 was used to calculate nucleotide diversity and $\pi a/\pi s$ (ratio of nucleotide diversity $\pi a/\pi s$ between nonsynonymous (a) and synonymous (s) sites)³⁶. In the sliding window analysis, window length was 100 bp and step size was 25 bp. We generated phylogenetic trees using the maximumlikelihood method implemented in the MEGA5 software³⁷. Alignments of five *A. thaliana* ACQOS haplogroupes (Group 1-5) and *A. lyrata* ACQOS locus using Progressive MAUVE³⁸.

Analysis of plant hormone contents. About 100 mg (fresh weight) of tissues were subjected to hormone quantification. The hormone extraction and fractionation

were performed using the method described previously³⁹. Hormones were measured with an UPLC-ESI-qMS/MS (AQUITY UPLC System/Xevo-TQS; Waters) with an ODS column (AQUITY UPLC BEH C₁₈, 1.7 μ m, 2.1 × 100 mm², Waters)³⁹.

Bacterial inoculation assays. Bacterial inoculation assays were performed as described previously⁴⁰ with the following modifications. Following 1 μ M flg22 or water (mock) pretreatment for 24 h, *Pst* DC3000 suspension at 1 × 10⁵ cfu ml⁻¹ was syringe-infiltrated into three leaves of five plants per genotype per treatment. Three days after inoculation, these leaves were collected and then their fresh weight was determined before the quantification of leaf bacteria using leaf fresh weight (g) for normalization. These experiments (five replicates each) have been repeated three times with the same conclusions.

Immunoblot analysis. Ten-day-old seedlings were subjected to immunoblot analysis with the indicated antibodies, essentially as described previously⁴¹. Equal loading of protein lysates was verified by Ponceau S staining of the protein blots.

Data availability. DNA sequences that support the findings of this work have been deposited to DNA Data Bank of Japan (DDBJ) with the following accession numbers: ACQOS_Col-0 (LC214887), ACQOS_Rou-0 (LC214888), ACQOS_Zu-0 (LC214889), ACQOS_Kl-1 (LC214890), ACQOS_Van-0 (LC214891), ACQOS_Bu-5 (LC214892), ACQOS_C24 (LC214893) and ACQOS_Bs-1 (LC214894). The data are available from the National Center for Biotechnology Information (NCBI).

Received 20 September 2016; accepted 24 April 2017; published 26 May 2017

References

- Sung, D. Y., Kaplan, F., Lee, K. J. & Guy, C. L. Acquired tolerance to temperature extremes. *Trends Plant Sci.* 8, 179–187 (2003).
- Katori, T. et al. Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions. J. Exp. Bot. 61, 1125–1138 (2010).
- Kim, T. H. *et al.* Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein
- VICTR in Arabidopsis. Plant Cell 24, 5177-5192 (2012).
 Weigel, D. Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2-22 (2012).
- Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in *Arabidopsis. Nature* 441, 947–952 (2006).
- Kim, T. H. *et al.* Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. *Curr. Biol.* 21, 990–997 (2011).
- Maekawa, T., Kufer, T. A. & Schulze-Lefert, P. NLR functions in plant and animal immune systems: so far and yet so close. *Nat. Immunol.* 12, 817–826 (2011).
- Shao, Z. Q. *et al.* Large-scale analyses of angiosperm nucleotide-binding siteleucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. *Plant Physiol.* **170**, 2095–2109 (2016).
- 9. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. **3**, e196 (2005).
- Shirano, Y., Kachroo, P., Shah, J. & Klessig, D. F. A gain-of-function mutation in an *Arabidopsis* Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. *Plant Cell* 14, 3149–3162 (2002).
- Cui, H. et al. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 213, 1802–1817 (2017).
- Zhang, Y., Goritschnig, S., Dong, X. & Li, X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in *suppressor of npr1-1, constitutive 1. Plant Cell* 15, 2636–2646 (2003).
- Yasuda, M. *et al.* Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in *Arabidopsis. Plant Cell* 20, 1678–1692 (2008).
- 14. Alcázar, R. & Parker, J. E. The impact of temperature on balancing immune responsiveness and growth in *Arabidopsis. Trends Plant Sci.* 16, 666–675 (2011).
- Shirasu, K. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60, 139–164 (2009).
- Huang, X., Li, J., Bao, F., Zhang, X. & Yang, S. A gain-of-function mutation in the *Arabidopsis* disease resistance gene *RPP4* confers sensitivity to low temperature. *Plant Physiol.* **154**, 796–809 (2010).
- Yang, H. *et al.* A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in *Arabidopsis. Plant J.* 63, 283–296 (2010).
- Léon-Kloosterziel, K. M. *et al.* Isolation and characterization of abscisic aciddeficient *Arabidopsis* mutants at two new loci. *Plant J.* 10, 655–661 (1996).
- Urano, K. et al. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J. 57, 1065–1078 (2009).
- Leung, J. et al. Arabidopsis ABA response gene ABI1: features of a calciummodulated protein phosphatase. Science 264, 1448–1452 (1994).

- Meyer, K., Leube, M. P. & Grill, E. A protein phosphatase 2C involved in ABA signal transduction in *Arabidopsis thaliana*. *Science* 264, 1452–1455 (1994).
- Bostock, R. M., Pye, M. F. & Roubtsova, T. V. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. *Annu. Rev. Phytopathol.* 52, 517–549 (2014).
- Ahmad, S. *et al.* Genetic dissection of basal defence responsiveness in accessions of *Arabidopsis thaliana*. *Plant Cell Environ.* 34, 1191–1206 (2011).
- Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. *Annu. Rev. Plant Biol.* 60, 379–406 (2009).
- 25. Vetter, M. M. *et al.* Flagellin perception varies quantitatively in *Arabidopsis thaliana* and its relatives. *Mol. Biol. Evol.* **29**, 1655–1667 (2012).
- 26. Jeworutzki, E. *et al.* Early signaling through the *Arabidopsis* pattern recognition receptors FLS2 and EFR involves Ca-associated opening of plasma membrane anion channels. *Plant J.* **62**, 367–378 (2010).
- 27. Sun, Y. *et al.* Structural basis for flg22-induced activation of the *Arabidopsis* FLS2-BAK1 immune complex. *Science* **342**, 624–628 (2013).
- Zipfel, C. et al. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767 (2004).
- Bartsch, M. et al. Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18, 1038–1051 (2006).
- Reuber, T. L. et al. Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J. 16, 473–485 (1988).
- Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel. Nat. Genet. 44, 212–216 (2012).
- 32. Atwell, S. *et al.* Genome-wide association study of 107 phenotypes in *Arabidopsis thaliana* inbred lines. *Nature* **465**, 627–631 (2010).
- 33. Seren, U. et al. GWAPP: A Web application for genome-wide association mapping in *Arabidopsis*. Plant Cell 24, 4793–4805 (2012).
- 34. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. Pgreen: a versatile and flexible binary Ti vector for *Agrobacterium*-mediated plant transformation. *Plant Mol. Biol.* **42**, 819–832 (2000).
- Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. *EMBO J.* 6, 3901–3907 (1987).
- Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25, 1451–1452 (2009).
- Tamura, K. *et al.* MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 28, 2731–2739 (2011).
- Darling, A. E., Mau, B. & Perna, N. T. Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. *PLoS ONE* 5, e11147 (2010).
- Kojima, M. & Sakakibara, H. Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatographytandem mass spectrometry. *Methods Mol. Biol.* **918**, 151–164 (2012).
- Lu, X. et al. Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc. Natl Acad. Sci. USA 106, 22522–7 (2009).
- Yamada, K., Saijo, Y., Nakagami, H. & Takano, Y. Regulation of sugar transporter activity for antibacterial defense in *Arabidopsis. Science* 354, 1427–1430 (2016).
- 42. Cao, H., Bowling, S. A., Gordon, A. S. & Dong, X. Characterization of an *Arabidopsis* mutant that is nonresponsive to inducers of systemic acquired resistance. *Plant Cell* **6**, 1583–1592 (1994).
- Wildermuth, M. C., Dewdney, J., Wu, G. & Ausubel, F. M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. *Nature* 414, 562–565 (2001).
- Rogers, E. E. & Ausubel, F. M. Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in PR-1 gene expression. *Plant Cell* 9, 305–316 (1997).

Acknowledgements

We thank M. von Reth of the Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, for technical assistance. We gratefully acknowledge K. Urano of RIKEN CSRS for providing seed. The *Arabidopsis* accessions used in this study are maintained and provided by the RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan. This work was supported by JSPS KAKENHI grant numbers JP25119722 (to T. Taji), JP15K07845 (to T. Taji), JP14J07115 (to H.A.), JP26291062 and 16H01469 (to Y. Saijo), Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation of JSPS (no. S2306 to T. Taji), JST PRESTO (JPMJPR13B6 to Y. Saijo) and a Deutsche Forschungsgemeinschaft CRC 680 grant (to J.E.P and R.A.).

Author contributions

H.A. and T. Taji initiated, conceived and coordinated the project; H.A., identified ACQOS locus and characterized plants altered with the ACQOS locus; T.K., generated NIL plants; T. Tsuchimatsu performed population genetic analyses; T. Tsuchimatsu, O.H., A.E.L.,

NATURE PLANTS

Y. Kobayashi and M.A.G. performed GWAS; T. Hirase, Y.T. and Y. Saijo designed and performed defence-related assays; H.S. and M.K. determined SA and ABA contents; S.I. and M.K. provided *A. thaliana* accession seeds and their markers; J.E.P., R.A., M.K., K.S., T. Hayashi, Y. Sakata and Y. Saijo supervised the project; T. Taji and Y. Saijo wrote the manuscript with assistance from T. Tsuchimatsu, J.E.P., R.A., M.K., K.S. and Y. Sakata.

Additional information

Supplementary information is available for this paper.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to T.T.

How to cite this article: Ariga, H. et al. NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis Nat. Plants **3**, 17072 (2017)

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Competing interests

The authors declare no competing financial interests.