Recent press releases

Scientists provide evidence for new theory of genetic recombination<br /> 
New findings from researchers at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, suggest an explanation for the century-old mystery of how chromosome recombination is regulated during sexual reproduction. Their findings are published in the journal Nature Communications.
  [more]
Structure of wheat immune protein resolved – important tool in the battle for food security
Scientists from the Max Planck Institute for Plant Breeding Research and the University of Cologne in Germany together with colleagues from China have unravelled how wheat protects itself from a deadly pathogen. Their findings, published in the journal Nature, could be harnessed to make important crop species more resistant to disease. [more]
Resolving target-gene specificity via protein–protein interactions<br /> 
A fundamental topic in plant development is how proteins function together in regulatory networks to coregulate the activity of specific target genes. A collaboration between researchers in the groups of George Coupland and Jijie Chai from the Max-Planck Institute for Plant Breeding Research and the University of Cologne has elucidated an elegant mechanism for how a particular protein–protein interaction cooperatively targets genes in Arabidopsis by affecting DNA conformation. The findings, published in Nature Plants, has wider implications for how transcription factors can achieve regulatory specificity in other developmental contexts.
  [more]
Speeding up evolution at genome-level by alternative chromosome configuration<br /> 
A research team led by André Marques at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, has uncovered the profound effects of an atypical mode of chromosome arrangement on genome organization and evolution. Their findings are published in the journal Cell. [more]
Molecules boosting plant immunity identified<br /> 
Two studies published in the journal Science by researchers at the Max Planck Institute for Plant Breeding Research in Cologne, Germany in collaboration with colleagues in China have discovered natural cellular molecules that drive critical plant immune responses. These compounds have all the hallmarks of being small messengers tailored by plants to turn on key defense-control hubs. Harnessing these insights may allow scientists and plant breeders to design molecules that make plants, including many important crop species, more resistant to disease. [more]
A stiff polymer called lignin (stained red) is deposited in a precise pattern in the cell walls of exploding seed pods. Researchers identified three laccase enzymes required to form this lignin. No lignin forms in the cell wall when all three genes are knocked out by CRISPR/Cas9 gene editing
Researchers identify the genes controlling the mechanical structure of exploding seed pods [more]
A two-step adaptive walk in the wild<br /> 
New research in plants that colonized the base of an active stratovolcano reveals that two simple molecular steps rewired nutrient transport, enabling adaptation.
  [more]
Roots stiffen up to stop growth
The plant hormone cytokinin inhibits root cell growth [more]
barley floret
The study, published in Current Biology, shows a direct link of auxin to pollen fertility. [more]
An island model - uncovering adaption
Wild populations of the model plant Arabidopsis thaliana from the Cape Verde Islands reveal the mechanisms of adaptation after abrupt environmental change.
  [more]
Potato genome decoded

Potato genome decoded

March 03, 2022
The complete sequencing of the genetic material facilitates the breeding of new varieties [more]
Show more
Go to Editor View