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Introduction

In bacteria, it is common that chromosomal gene expression is modulated
by plasmid or phage genes present at a high copy number. Some extrachro-
mosomally encoded functions are particularly important for genetic exchange
between bacteria. Using homologous, site-specific or illegitimate recombina-
tion, plasmids or phages can induce DNA transfer to related or unrelated
species by conjugation or transduction, respectively. Conjugational transfer
of DNA is one of the major forms of horizontal transfer of genetic informa-
tion between lower prokaryotic and eukaryotic organisms (Davies 1990;
Heinemann 1991; Smith 1991).

Agrobacterium: A Relict with Ancient DNA Transfer Mechanism?

Agrobacterium is a soil microorganism that lives in association with the plant
rhizosphere. Agrobacteria are hosts for diverse plasmids and phages. Ti and
Ri plasmids unique to Agrobacterium encode several functions that enable
the bacterium to live in close association with plants. These functions are
potentially pathogenic because, with their help, the bacterium can alter signal
perception, metabolic and developmental pathways of plant cells. Whereas
modification of bacterial functions is achieved by plasmid-encoded regula-
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tory proteins, genetic colonization of plants requires the transfer of
Agrobacterium plasmid genes into the plant genome. This interkingdom DNA
transfer is meaningful because Ti and Ri plasmid genes transferred to plants
are recognized by the plant transcription system (for review, see Binns &
Thomashow 1988; Hooykaas 1989; Kado 1991; Zambryski 1988; Zambryski
et al. 1989). The capability of interkingdom DNA transfer is not unique to
Ti and Ri plasmids of Agrobacterium, but can also be demonstrated between
other organisms (e.g. between E. coli and yeast), when means for detecting the
transfer, maintenance and expression of plasmid genes in foreign hosts are
available (Buchanan-Wollaston et al. 1987; Heinemann & Sprague 1989). It
is remarkable that, among extrachromosomal DNAs persisting in known bac-
terial species, only Agrobacterium plasmids harbor genes with eukaryotic
transcription signals. Whether these genes represent a selective conservation
of an ancient genetic exchange system, a recent retrotransfer of genetic infor-
mation from plants to agrobacteria, or a unique evolution of DNA sequences
that provide selective advantage in plant-bacterial interaction is an intriguing
question (Zambryski et al. 1989; Otten et al. 1992).

Ti and Ri Plasmid Functions for Genetic Engineering of Plants

Regulation of agrobacterial functions resulting in plant pathogenicity is
achieved by a limited number of genes located partly in the virulence (vir)
region of Ti and Ri plasmids. A chief function affecting bacterial signal
perception is defined by the virA gene that encodes a membrane-associated
chemoreceptor. VirA specifically activates a transcription factor, the product
of gene virG, by phosphorylation. VirA belongs to a large family of bacte-
rial chemosensors including PhoB, OmpR and NtrC, that coordinately regulate
bacterial responses to environmental stimuli (Mekalanos 1992; Stock et al.
1989; Winans 1991). Certain environmental changes, such as pH, directly affect
the conformation, and thereby the activity of the transmembrane VirA receptor
(Jin et al. 1990a; Turk et al. 1991). In addition, a binding affinity to different
carrier proteins involved in chemical signalling enables the VirA chemo-
receptor to modulate the expression of virulence genes in response to various
chemicals, such as sugars or amino acids. Whereas transport proteins recog-
nizing these compounds are accessory modulators of VirA activity, carrier
proteins binding plant phenolics are specific regulators of the VirA chemore-
ceptor (Ankenbauer et al. 1991; Cangelosi et al. 1990; Chang and Winans 1992;
Huang et al. 1990, Lee et al. 1992; Shimoda et al. 1990; Pazour et al. 1991).
Phenolics show species-dependent and developmental stage dependent patterns
of synthesis and perform different metabolic, structural and defense func-
tions in plants (Dixon & Lamb 1990). Activation or repression of VirA activity
is dependent on the type of phenolic compound (Fortin et al. 1992; Spencer
& Towers 1988).

Perception of phenolic signals results in VirA-mediated activation of VirG,
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a LysR-type transcription activator. VirG binds to vir-box DNA sequences
representing conserved cis-regulatory elements found in the promoters of Ti
and Ri plasmid virulence genes/operons virB, C, D, E, F and H (Close et al.
1987; Han et al. 1992; Jin et al. 1990b, 1990c; Mantis & Winans 1992;
Pazour et al. 1992; Powell & Kado 1990; Rogowsky et al. 1987). Function and
regulation of these vir genes have extensively been reviewed (Binns &
Thomashow 1988; Hooykaas 1989; Kado 1991; Zambryski 1988).

VirG is similar to a wide family of chromosomally encoded transcription
factors that regulate metabolic pathways of bacterial cells (Henikoff et al. 1988;
Wipar}s et al. 1986). By partial complementarity between LysR-type tran-
scription activators, metabolic pathways affect the expression of virulence
genes and conversely, VirG can modulate the activity of different chromosomal
and plasmid genes (Aoyama et al. 1991; Winans 1990).

The start of plant colonization is marked by significant changes in bacte-
rial functions. Agrobacteria become immobilized on plant cell walls by the
synthesis of cellulose fibrils, and initiate the copying and single-stranded
transfer of Ti or Ri plasmid DNA segments into plant cells (for review see
Binns & Thomashow 1988; Kado 1991; Zambryski 1988). The boundaries
of the transferred DNA, the T-DNA, are defined by specific 25-bp direct
repeats. These repeats are homologous to the oriT region of conjugative
bacterial plasmids and to vegetative replication origins of single-stranded DNA
phages (Cook & Farrand 1992; Waters & Guiney 1993; Waters et al. 1991).
The 25-bp repeats and neighboring DNA sequences interact with a protein
complex (i.e. T-DNA relaxation complex), known subunits of which are
encoded by the vir C and D operons (De Vos & Zambryski 1989; Mozo &
Hooykaas 1992; Shurvinton & Ream 1991; Toro et al. 1989; Zambryski 1992).
Functionally essential components of the T-DNA relaxation complex are the
VirD1 topoisomerase and VirD2 endonuclease that produce a nick at the third
base-pair of 25-bp T-DNA border repeats (Albright et al. 1987; Diirrenberger
et al. 1989; Yanofsky et al. 1986; Wang et al. 1987). A nick at the right 25-
bp border probably provides a free 3’-end for priming and determines the
polarity of strand-replacement DNA synthesis which is terminated by a nick
in the left T-DNA border (Albright et al. 1987; Stachel et al. 1986, 1987).
Copying the T-DNA with right-border to left-border polarity requires a number
of chromosomally encoded proteins (e.g. DNA polymerase) and is facilitated
by a single-stranded DNA binding protein encoded by a Ti plasmid viru-
lence gene, virE2. It is remarkable that unlike other single-stranded
DNA-binding proteins, VirE2 can strongly bind and completely cover the
T-strand, the single-stranded DNA product of this segmental conjugative DNA
synthesis (Christie et al. 1988; Citovsky et al. 1989; Gietl et al. 1987; Sen
et al. 1989).

In addition to VirE2, the VirD2 protein of the relaxation complex remains
bpund to the T-strand, probably by covalent interaction with the 5-end of
single-stranded DNA (De Vos & Zambryski 1989; Diirrenberger et al. 1989;
Herrera-Estrella et al. 1988; Howard et al. 1989). Functional analysis of the
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virB operon indicates that VirD2 and VirE2 may play an important role in
interactions with VirB proteins that constitute membrane pores mediating active
transfer of the T-strand into plant cells (for review see Ward et al. 1991;
Zambryski 1992). Interestingly, during conjugative transfer of the T-strand into
plants, the conjugation of whole Ti or Ri plasmids is suppressed. This is
explained by a “cross-talk” between regulation of virulence genes and other
genes controlling bacterial conjugation of Ti and Ri plasmids, as well as by
the absence of compounds required for induction of Ti and Ri plasmid con-
jugation. In case of Ti plasmids, the synthesis of such compounds (e.g. octopine
and agrocinopines) is encoded by T-DNA genes which are silent in
Agrobacterium, but expressed in plants (for review see Beck von Bodman et
al. 1992; Gelvin & Habeck 1990; Habeeb et al. 1991; Lintig et al. 1991;
Steck & Kado 1990; Zambryski et al. 1989).

Transfer and Expression of T-DNA in Plants

Little is known about how the T-strand-VirD2-E2 DNA-protein complex is
transported through plant membranes. The recent finding of functionally active
nuclear localization signals (NLS) in both VirD2 and VirE2 proteins suggests
that they can interact with NLS-binding proteins of nuclear pores and mediate
uptake of the T-strand into plant cell nuclei (Citovsky et al. 1992; Herrera-
Estrella et al. 1990; Howard et al. 1992; Newmeyer 1993; Shurvinton et
al. 1992; Tinland et al. 1992; Zambryski 1992). Integration of the T-DNA
predictably requires an interaction between T-strand associated and chromatin-
bound proteins, as well as with enzymes involved in DNA synthesis, recom-
bination and repair. DNA replication and repair in eukaryotes are regulated
by cell cycle control and signalling pathways of different growth factors
(Murray 1992). Therefore, it is intriguing that genes located in the T-DNAs
of Ti and Ri plasmids encode proteins involved in the synthesis and modifi-
cation of major plant growth factors, auxin and cytokinin (for review see
Zambryski et al. 1989). It is not known whether T-DNA genes are transcribed
before conversion of the T-strand to double-stranded form during integration
into plant nuclear DNA. If T-DNA genes are expressed only after integra-
tion, the induction of DNA synthesis should be independent of T-DNA encoded
functions. In fact, the transfer and integration of the T-DNA is not affected
by inactivation of T-DNA genes (Joos et al. 1983; Zambryski et al. 1983).
Thus, any DNA fragment carrying 25-bp T-DNA border repeats can be trans-
formed with the help of virulence gene functions from Agrobacterium into
plants (Hoekema et al. 1983). Nonetheless, T-DNA genes regulating cell
division by plant growth factors are required for the proliferation of trans-
formed cells. This function of T-DNA genes can be replaced by exogeneously
provided growth factors in vitro when artificial T-DNAs are used for plant
transformation (for review see Zambryski et al. 1989).

In planta transformation experiments with a T-DNA vector carrying an
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intron-containing uidA gene revealed expression of the B-glucuronidase reporter
enzyme in differentiated tissues, suggesting that T-DNA transfer can occur into
non-dividing cells (Vancanneyt et al. 1990). Thus, the induction of DNA
synthesis during T-DNA integration is either not necessarily linked to the onset
of cell division or T-DNA genes can be expressed before integration into
plant chromosomes. Genetic analysis of virulence properties of different
Agrobacterium strains indicate that bacterial synthesis of plant growth factors
(e.g. gene tzs encoded cytokinin production) increases the efficiency of T-DNA
transformation in various plant hosts (Alt-Moerbe et al. 1988). It is conceiv-
able, therefore, that bacterial production of plant growth factors may trigger
DNA synthesis during T-DNA transfer. Alternatively, the T-DNA transfer itself
may incite a plant cell response, activating DNA synthesis, repair or recom-
bination. The success of meristem and seed transformation experiments shows
that T-DNA transfer can also occur into dividing cells which may give rise
to cell lineages producing reproductive cells recovered in transgenic seed
progeny (Feldmann 1992; Feldmann & Marks 1987).

Genomic Targets of T-DNA Integration

Although T-DNA genes are typical eukaryotic genes, no significant homology
has been found between T-DNA coding regions and plant nuclear genes.
Therefore, it appears unlikely that homologous recombination is involved in
the T-DNA integration process. Cytological and DNA hybridization studies
of T-DNA inserts in various plants have shown that insertions occur at random
chromosomal positions and, usually, conservatively maintain T-DNA sequence
elements located between the left- and right-border repeats (Ambros et al. 1986;
Chyi et al. 1986; Wallroth et al. 1986). Nevertheless, T-DNAs different from
intact single-copy insertions are frequently found. Complex inserts may consist
of direct or inverted repeats of two or more T-DNAs integrated into the same
genomic loci, and it is not unusual that some of these repeats are truncated
at their ends (De Block & Debrouwer 1991; Gheysen et al. 1990; Jorgensen
et al. 1987; Kwok et al. 1985; Simpson et al. 1982). In the few cases avail-
able, nucleotide sequence data indicate that plant DNA sequences flanking
T-DNA insertions can suffer deletions, rearrangements and may be dupli-
cated to yield perfect or imperfect, direct or inverted repeats (Gheysen et al.
1987; Matsumoto et al. 1990).

To gain more insight into the integration mechanism at both chromosomal
and DNA sequence levels, two approaches were developed. In a genetic
approach, promoterless reporter genes, such as kanamycin phosphotransferase
(aph(3")II), B-glucuronidase (uidA) and luciferase (luxAB and luxF) genes,
were inserted in close proximity to T-DNA borders. Integration of the T-
DNA into transcribed plant genomic loci could thus be detected by selecting
or screening for active plant gene-reporter gene fusions in diverse tissues of
T-DNA transformed plants (André et al. 1986; Fobert et al. 1991; Herman et
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al. 1990; Kertbundit et al. 1991; Koncz et al. 1989; Topping et al. 1991; Walden
et al. 1990). A screening for aph(3")II expression in three plant species showed
that T-DNA insertions induce transcriptional gene fusions, on average, in
30% of transgenic plants. The frequency of gene fusions normalized for the
copy number of T-DNA insertions was found to be similar in both Nicotiana
and Arabidopsis. These plant species differ strikingly in the complexity and
organization of their nuclear genome. Therefore, the data suggests that
transcriptionally active chromatin is a major target for T-DNA integration
(Koncz et al. 1989). Transformation with “enhancer search” T-DNAs carrying
a “core” TATA-box promoter-driven reporter gene at their borders resulted
in similar data and showed that T-DNA insertions frequently occur in the
vicinity of transcription regulatory DNA sequences (Goldsbrough & Bevan
1991; Topping et al. 1991). Moreover, T-DNA inserts carrying multiple copies
of upstream regulatory elements of the Cauliflower Mosaic Virus (CaMV) 35S
RNA promoter at their ends were successfully used for activation of the
expression of regulatory genes flanking T-DNA integration sites in tobacco
(Hayashi et al. 1992). These data are consistent with the hypothesis that DNA
synthesis, recombination and repair are coordinately regulated with tran-
scription in plants and other eukaryotes (for review see Andrews & Herskowitz
1990; Heintz et al. 1992; Merill et al. 1992).

T-DNA Integration Involves Illegitimate Recombination

A second approach to explore the mechanism of T-DNA integration aims at
the characterization of T-DNA insertion sites in plant chromosomes. Nucleotide
sequence analysis of target sites before and after T-DNA integration is expected
to unravel the mode of interaction between T-strand and target plant DNA
sequences, and to suggest a possible role for proteins participating in the
integration process. So far, 16 target sites and corresponding T-DNA-plant
DNA insert junctions were isolated from Nicotiana and Arabidopsis (Gheysen
et al. 1991; Matsumoto et al. 1990; Mayerhofer et al. 1991). Based on
nucleotide sequence comparison between target sites and insert junctions, T-
DNA insert structures can be classified as a) simple unique inserts or b)
complex inserts with one or more copies of T-DNA, showing rearrangements
of T-DNA or plant DNA sequences at the insert junctions.

Analysis of border sequences of simple unique inserts showed that junction
formation with plant DNA may lead to short deletions at both ends of the T-
strand. These deletions usually remove only a few nucleotides from the T-strand
termini, including the processed nic-sites. Terminal sequences of truncated
T-DNA ends were found to show homology with short segments of target plant
DNA that mark the breakpoints of a deletion formed in the target DNA during
T-DNA integration. Truncated ends of the T-DNA are precisely joined to break-
points of target site deletions, indicating that T-strand termini can anneal by
partial homology to free ends of target DNA during integration. Such free DNA
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ends may derive from a single nick in the target that is extended to a gap
following T-strand invasion. The position of base-paired segments between
T-strand and target DNAs seems to define the position of nicks in the target
DNA. These nicks correspond to junction-points between T-DNA and plant
DNA, as well as to breakpoints of the target deletion formed during integra-
tion. Thus, once stabilization of the T-strand occurs by pairing, processing
and ligation of interacting DNA ends, nicking in the second strand of the target
DNA mediate repair synthesis of the second strand of the T-DNA. Examples
of T-DNA inserts carrying truncated ends and terminal homologies with plant
DNA targets are shown in Figure 1, together with a simplified model displaying
putative events of the integration process.

It is important to note that the temporal order of recombination events shown
by this single-stranded gap repair model is tentative. Nicking of both target
DNA strands may occur before interaction with the T-DNA. Thus, termini
of the T-strand may interact with a double-stranded break in the target. Growing
strands (i.e. leading and lagging strands, or Okazaki-fragments) of replicating
forks can provide alternative insertional targets for T-DNA integration.
Therefore, the single-stranded gap repair model is convertible to a double-
strand break repair model that equivalently explains T-DNA integration events
(see Mayerhofer et al. 1991).

The mechanism by which terminally truncated T-DNAs integrate into plant
chromosomomes is probably identical to the process of illegitimate recombi-
nation that mediates the integration of double-stranded DNAs into nuclear
and replicating viral genomes of animal cells (Anderson et al. 1984; Marvo
et al. 1983; Subramani & Berg 1983). As outlined by general models of homol-
ogous and non-homologous (illegitimate) recombination, the same recom-
bination mechanisms are equally effective with single- and double-stranded
DNAs (Bollag et al. 1989; Cox & Lehman 1987; Dressler & Potter 1982;
Lin et al. 1984; Roth et al. 1985, 1986; Seidman 1987; Wilson et al. 1982).
Observation of high-frequency transformation (and recombination) with single-
stranded DNAs in mammals and plants suggests that integration of the T-DNA
probably uses those mechanisms that mediate the integration of any DNA
into chromosomes of plants or mammals (Bilang et al. 1992; Lin et al. 1987;
Furner et al. 1989; Rauth et al. 1986; Rodenburg et al. 1989).

A basic difference between homologous and nonconservative recombina-
tion processes is that for stabilization of initial synapsis between non-
homologous recombinational substrates, an initial pairing and processing of
single-stranded DNA ends is absolutely required (Anderson & Eliason 1986;
Brenner et al. 1985; Runitz & Subramani 1984). Pairing of 5 to 7 bp between
DNA ends was found to be sufficient to trigger illegitimate recombination
in animal cells. A recombination assay based on self-ligation of T-DNAs
carrying a CaMV replicon resulted in similar data. As observed for truncated
ends of stable chromosomal T-DNA inserts, few complementary base-pairs
at the joining ends of linear T-DNAs is sufficient for formation of illegiti-
mate junctions yielding circular DNA molecules in plants (Bakkeren et al.
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1989). Interactions between the DNA ends during illegitimate recombination
are not substantially different from the mode of interactions between DNA
strands during homologous recombination, because homologous recombina-
tion ultimately leads to double-stranded breaks and repair at the newly joined
ends (Craig 1988; Sancar & Sancar 1988; Sugawara & Haber 1992; Szostak
et al. 1983; Takahashi et al. 1992; Wake et al. 1985). Therefore, integration
of the T-DNA and other single-stranded DNAs may well be described by
any scheme which is compatible with the double-strand break model of general
recombination.

Possible Role of VirD2 and VirE2 Proteins in Illegitimate
Recombination of the T-DNA

In the majority of simple T-DNA inserts, homologous segments with the target
DNA and deletions are found only at the 3’-end of the T-strand. Plant DNA
junctions with the 5”-end of the T-strand usually contain three nucleotides from
the 25-bp T-DNA border repeat. These 5’-end junctions are thus precisely
formed at the position of the nic-site as shown by examples in Figure 2.

It is well documented that the last nucleotide of the nic-site is tightly
associated with the VirD2 protein. Nuclear localization signals of VirD2
probably aid the entry of the T-strand to plant cell nuclei (for review see
Herrera-Estrella et al. 1990; Howard et al. 1992; Shurvinton et al. 1992; Tinland
et al. 1992; Zambryski 1992). VirD2 is a site-specific, single-stranded DNA
endonuclease that in Agrobacterium interacts with the VirD1 subunit of the
border processing relaxation complex. Frequent preservation of the nic-site
in 5’-end T-strand junctions suggests that VirD2 may actively participate in the
integration process. VirD2 may lead the T-strand to nicks in the target, possibly
via interaction with chromatin-bound proteins, such as topoisomerases. Based

Figure 1. Simple unique T-DNA inserts with terminal deletions. Upper section, sequence
alignment: 5’ (above) and 3" (below) sequences of the T-strand found at T-DNA-plant DNA insert
junctions are aligned with the sequence of corresponding plant target DNA (middle). At the
5’-end an ACAAT sequence and at the 3"-end a CCCgGA sequence (printed in black) of the
T-strand show homology with the target DNA. These sequences were found to be precisely joined
to breakpoints (marked by small vertical black arrows) of a deletion (boxed sequences) formed
by the integration process in the target DNA. During integration 33 bp (-33 bp, marked to the
left below the target site sequence) were deleted from the 5’-end of the T-strand, whereas the
3’-end suffered a deletion of 9 bp (-9 bp, marked to the right below the target DNA sequence).
Other nucleotides matching between DNA sequences of target site and T-strand termini are
also printed in black. Note a near-equal distribution of homology with the target DNA in both
T-strand termini. A schematic model below the DNA sequence alignment shows the most likely
version of integration events. According to this scheme, the T-strand (marked by an interrupted
thin black line) invades a nick in the target DNA (marked by thick black bars) that is being
extended to a gap during the integration. (Flush ends of plant DNA, (bars), and of the T-strand
(lines) mark 5* DNA ends, whereas half arrow-head at their other ends label 3 DNA ends.)

The ends of the T-strand invade the gap and anneal with target DNA sequences by finding
partial homology (marked by vertical lines between the T-strand and target plant DNA). At
the position of base-paired segments between T-strand and target DNAs, nicks are formed (marked
by large black triangles) that remove the overhangs from both T-strand and plant DNA termini.
Alternatively, the ends may be removed by exonucleolitic activities, as indicated by an arrow
representing a 5° to 3’ exonuclease activity at the 5'-end of displaced target DNA strand. A
nick in the second (lower) strand of the target, formed at the position of homologous segment
between the 3’-end of the T-strand and the target DNA, provides a free 3’-end that is used as
primer for DNA repair synthesis of the second strand of the T-DNA (marked by a scattered
line with arrow head). Lower section, sequence alignment: At the 5'-end of the T-strand a deletion
of 4 bp was found. The alignment indicates that the 5’-end probably formed a heteroduplex
with an AAACATA target sequence which was removed during integration. The 3’-end of the
T-strand annealed with a target segment at an AAAATT sequence that is localized 78 bp upstream
of the left 25-bp border sequence. Integration scheme: The process is identical with the one
described above, except for putative heteroduplex repair at the 5’-end. Due to annealing of an
internal T-strand sequence with the target, a segment of 78 bp is removed from the 3’-end of
the T-strand.
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on analogies between DNA gyrases, topoisomerases and VirD1-VirD2 subunits
of the T-DNA relaxation complex, it is tempting to speculate that covalent
binding to DNA results in an activated VirD2 protein that can even mediate
the ligation of the T-strand to free 3’-ends within plant DNA targets. In fact,
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Figure 2. Simple unique T-DNA inserts retaining the 5" nic-site. Symbols are listed in Figure
1 legend. Nucleotide sequences representing portions of 25-bp T-DNA border repeats retained
in the T-strand after processing are printed in lower case below the target DNA sequence in
the middle. Upper sequence alignment: A plant DNA junction with the 5’-end of the T-strand
contains a single base-pair from the 25-bp repeat that represents a secondary nic-site used occa-
sionally during T-strand processing in Agrobacterium. The 5’-end does not show terminal
homology with the target. The 3’-end of the T-strand carries a DNA segment homologous with
an AATTgAATA sequence in the target DNA. This segment of homology is located precisely
at the right breakpoint of a deletion in the target. The other breakpoint of target deletion was
found to be identical with the position of junction-point between the 5’-end of the T-strand
and plant DNA. Lower sequence alignment: The 5’-end of the T-strand is joined to plant DNA
at the canonical nic-site that retains three nucleotides (TCA) from the 25-bp T-DNA border repeat.
The 3’-end of the T-strand carries a terminal homology to an ATCCTG segment of target DNA
that is located exactly at the breakpoint of target site deletion. Integration scheme: As described
in the text, the integration process is identical to that shown in Figure 1, except a VirD2-mediated
ligation event at the 5’-end of the T-strand (marked by a circle with X). In this simplified
scheme the T-strand invades a nick in the target. The 5-end of the T-strand is ligated to the
3’-end within the nick. The 3’-end of the T-strand invades the nick and slides along the target
by displacing a target DNA strand. Exonucleolitic processing of displaced target DNA strand
extends the nick to a gap. Movement of the 3’-end of the T-strand is terminated by base-pairing
with complementary DNA sequences in the target DNA. At the position of base-paired segment
between T-strand and target DNA sequences, a nick is introduced into the second strand of
target DNA. This nick provides a primer for synthesis of the second strand of T-DNA.
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in vitro experiments with purified VirD1 and VirD2 proteins indicate that VirD2
is active as a nicking-closing (endonuclease-ligase) enzyme on single-stranded
DNA substrates (Vogel & Das 1992; F. Jasper personal communication).

VirD2-enhanced ligation of the T-strand to 3’-ends of nicks in the target may
greatly enhance the illegitimate recombination process described above.
Interaction of the 3’-end of T-strand with the target may be facilitated at the
same time by the VirE2 protein that is probably co-transferred with the T-strand
into plant cell nuclei.

The invasive 3’-end of the T-strand appears to function analogously to a
recombinational “breathing” strand. The movement of the invading T-strand
in the target may be triggered by a RecA-like protein that is able to “slide over”
longer mismatches (Bianchi & Radding 1983; Dressler & Potter 1982; Smith
1987; Pang et al. 1992). The T-strand donated VirE2 protein may induce
unwinding the target by binding to the displaced target DNA strand. The
resulting structure, carrying a free 3"-end of the T-strand and an open loop/gap
in the target, is similar to a replication fork. The essential function of single-
stranded DNA binding proteins in DNA replication (Chase & Williams 1986)
suggests that VirE2 can even function as a subunit of a DNA polymerase
complex binding to T-strand-formed replication forks.

Further events of the integration are greatly dependent on the fate of the
3’-end of the T-strand. Movement of the 3’-end of the T-strand in the target
DNA loop/gap is stopped by finding short, complementary sequences within
the target. If the displaced target DNA strand and the unpaired 3’-end segment
of the T-strand are exonucleolitically processed and ligated, the integration
process will lead to a heteroduplex with a looped out T-strand. Heteroduplex
resolution is expected to yield a nick in the second target DNA strand at the
position of the base-paired segment between the T-strand and target DNAs.
This leads to a relaxed gap structure with a free 3’ target DNA end that may
serve as primer for DNA repair synthesis of the second strand of the T-DNA.
From this model, it is possible to predict that the integration process ultimately
results in a deletion of target DNA sequences. In fact, such deletions were
identified and localized between nick sites corresponding to junction-points
between T-DNA and plant DNA (Figure 2). The integration mechanism of
simple unique inserts with intact 5 nic-sites thus likely involves well-known
events of general recombination, DNA repair and replication, except the step
of VirD2-mediated ligation at the 5"-end of integrating T-strand (see references
above).

Complicated Cases of T-DNA Integration: Filler Dnas and Repeats

The integration mechanism of complex T-DNA inserts is probably not different
from that of simple unique inserts, but may differ in the timing of events
occurring at the joining DNA ends. Complex inserts may carry single-copy
T-DNA, the ends of which are either intact or deleted. Junction-points between



178

5 BIRCACTRARACTR TABACCEEEACEAACACANICECATICA TOTGR A TGENCAETEAT —

— AAGTCTGATGTTGATTCCACCATTAARAGGAGCTTCCTCT. ACGACAAGAAGTCGGGTACTTGTGTCGTGTCAGAGCTGAACGTAGTA—

= f
tca ----T-DNA~--= atATTAAATTA
plsa '
— ECTCARMOCTGATCCATCTAGRRE TeCCERCATOAA R 3

ABGCAGETTCTCRGGCCGCTT—
5 «AcAcﬂonm‘rﬂrcccarccacccmccrﬂccrrccﬂrrﬂﬁcucﬁ}scnﬂsc BGCAGET ¢ o
1

-TTGGTTCTTCECACCGTTTACAGAGTAGAAAAAGTTAAAGAAAAATGATCACAGAATCGAATCTCCTATTCAGCTGAAAATQIFGGCGAA—

— \
o‘;lncnnztgnulatatcctgAATCATCATACTCAC
p———————
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Figure 3. Complex T-DNA inserts: formation of ﬁller [?NA§ by DNA polymerase ten;;l)ilaf
switch and slipping at the junctions. Symbols are listed in Fx_gure 1. Upp.er seq.uen.ctz (TéA
ment: The 5’-end of the T-strand is joined to plant DNA via the ca_nomcal mc-s:B S
nucleotides). The 3’-end of the T-strand shows scatt‘ered homolggy with the Larlge.t. e i
the 3’ terminus of the T-strand and the corresponding bref'tkpomt of target deletion afound
DNA sequence, ATTAAATTA, was identified. A part of this filler DNA sequence »;/as o
complementary 1o a TAATTT sequence of target DNA, wherc:,as the reverse coglps .enl i
remaining nucleotides was identified at the junction site with the 5’-end of the "l'-st;anf':h 1r’1r1_mand
of a template switch at the position of junction between plant DNA and the 5' -en oA ~ele -
adds exactly the filler DNA sequence to the 3’-end of t'he T-‘strand, as primer. Tkr: in .gZNde_
scheme drawn in section a) shows putative events following this templatc switch. ]:e)sb? A:nsuand'
ligation of the 3’-end of the T-strand with the processed 5’-end of the dlsplaced target ot ot mé
nicking the second target DNA strand at the position of template switch, f'and syn. {:;15 o
second strand of the T-DNA using this nick as primer. Lower sequence alzgnment._ ef ,
of the T-strand carries a canonical nic-site and is precisely joined to the breakpomF 0 larf;
deletion. The 3’-end of the T-strand is separated by a filler DNA from the corresponding bre. ;
point of target DNA deletion. As above, this filler DNA consists of tlwo segmems. One ;esm;{n)
is a direct repeat of a T-strand sequence located upstream of the 3’ terminus (1ab_ellq . y teci
The other segment is represented by nucleotides AAT, the reverse complement of which is loca
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the left or right T-DNA ends and plant DNA in complex inserts differ from
the breakpoints of target deletions produced by the integration. Gaps between
the T-DNA ends and breakpoints of target deletions are filled with DNA of
apparently unknown origin. A careful analysis of these “filler” DNA sequences,
however, always reveals homologies to DNA segments located within the T-
DNA or target DNA at various distances upstream or downstream of insert
junctions. Mechanisms generating such filler DNA repeats are known from the
analysis of recombinational junctions in E. coli, yeast, plant and animal cells
(Albertini et al. 1982; Bakkeren et al. 1989; Brenner et al. 1984, 1985; Lin
et al. 1984, 1987; Roth et al. 1989; Whoriskey et al. 1987; Wilson et al.
1982). A common feature of these mechanisms is the action of DNA poly-
merase and repair enzymes on the DNA ends (provided by integrating DNA
and nicks, gaps, breaks or replication loops in the target) before the junc-
tions are formed. These events can be classified according to whether
—~ modification of DNA ends of the target or
~ of the integrating DNA occurs before integration, and
~ whether the ends of target and integrating DNAs interact with each other
during these modifications.
An independent class of rearrangements takes place after integration and
usually involves recombination between repeats that generate further deletions,
inversions, translocations and amplifications (for review see Lichtenstein et al.
this volume, chapter 00; Albertini et al. 1982; Das et al. 1990; Edlund &
Normark 1981; Gloor et al. 1991; Liskay et al. 1984; McArthur et al. 1991;
Selker 1990; Tovar & Lichtenstein 1992; Whoriskey et al. 1987).
Pre-insertional modifications may occur in the target DNA before T-strand
integration and may be caused by the repair of nicks, gaps or breaks in the
target DNA, or by “mistakes” during DNA replication. The majority of aberrant
junctions arise, however, by interaction of the 3’-end of the T-strand with
the target before the end-ligation reaction. Thus, filler DNAs are frequently
formed when DNA polymerase uses the 3’-end of the T-strand as primer and
initiates a “run off” DNA synthesis by copying the displaced target DNA
strand. This template switch copying results in the formation of short inverted
repeat of a target sequence at the 3’-end of the T-strand (see Figure 3a).
The template switch reaction leads to a blocked structure with a short
double-stranded “pin” (see Figure 3b) that is usually resolved by nicking the
target DNA strand at the position of base-paired segment between T-strand and

in the target DNA exactly at the position where the 3’-end of the T-strand can be positioned
by sequence alignement. At this position, the 3’-end shows terminal homology to an ATaTCCTg
sequence of the target DNA. As depicted in section b), this arrangement suggests that after
base-pairing with the target, the 3’-end of the T-strand primed an abortive template switch by
copying the displaced target DNA strand. This resulted in AAT nucleotides of filler DNA. At
the same time, nicking the second strand of target DNA at the position of template switch provided
a 3’ DNA end for copying a segment from the T-strand. Relaxation of the replication fork to a
double-strand break led to repairing the staggered DNA ends which filled the gap X providing
the filler DNA, and resulted in the synthesis of the second strand of the T-DNA.
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b 5 B0 AACACTEABAGIIEC GOATCCOBCCAAGCTRGCTTAGATHBAACAAG —
a \ ) RS-
—TTCGTACTTTATCTCTAATGTGTTCTATETCTTGGTGGTAAGTTGCGATTGTTGTGAGGTTTTGTTTIGTTTTGTTTTATGATAGGGTCATGCTOTTT—
e — T-DNA =====-~ attrac
b a l

g .
—-ncﬂcrﬂcrﬁrﬂrcrccuﬁ«ﬁjmccu\R;-\B«cn:aarccﬁmchnmsnﬁccccmcmsuccc-sm: 3

T-DNA
L invasion

Figure 4. A complex T-DNA insert indicates a pre-insertional target site rearrange.mem. Symt?ols
are described in Figure 1. Sequence alignment: The 5’-end of the T-stram_i carries a canon.xcal
nic-site which is separated by a filler DNA from the corresponding breakpoint of target deletion.
This filler DNA contains two segments which represent overlapping target DNA sequences,
“a” and “b”, located upstream of the junction with the 5’-end of the T-strand. The 3’-end of
the T-strand carries only three base-pairs terminal homology with the target. No}e, howevgr,
that the target contains a GTTTT motif, repeated four times, which may weakly }nteract with
GATTT and CATTT motifs in the T-strand. The length of “b” filler DNA repeat is lp bp. “b”
sequence in the target overlaps by a single base-pair with sequence “a” of 9 bp, and 1s-localed
downstream of “a”. In contrast, “b” is located upstream of “a” in the filler DNA., w1tho_ut a
single base-pair overlap. A possible explanation for these sequence arrangements 1§ proyxded
in the scheme below. Reverse repetition of “a” and “b” sequences in the filler DNA indicates
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target DNAs. DNA synthesis primed by this nick results in initiation of DNA
synthesis on the T-strand as template, which may be interrupted by relax-
ation of the double-stranded break structure, yielding DNA polymerase
slipping. These sequential events generate filler DNAs in the junctions that
may contain short, direct or inverted repeats of T-strand and/or plant DNA
sequences flanking the insertion sites. A unique case shown in Figure 4
indicates that similar events in a double-strand break or replication fork struc-
ture may modify the ends of target plant DNA before integration of the
T-strand. Several other examples for formation of aberrant T-DNA insert
junctions have been described by Gheysen et al. (1991).

Future Prospects: Studies of Repeats and Post-Insertional
Rearrangements

An important conclusion drawn from the analysis of simple and complex T-
DNA integration events is that the ends of invading T-strand are usually located
sterically close to each other. This explains why, in spite of the large size of
T-DNA inserts (6 to 40 kb), the integration mechanism usually results, if at
all (Németh unpublished), in small target site deletions. Based on the mech-
anisms of DNA replication and recombination referred to above, it can be
deduced that copying of the T-strand may lead to generation of direct or
inverted T-DNA repeats, if ligation of the 5’-end of the T-strand did not occur
early enough during the integration process. However, little information is
available so far about DNA sequence junctions between T-DNA repeats, and
it is also unclear whether such repeats can be formed in Agrobacterium during
T-DNA transfer. Further study of possible VirD2-mediated single-stranded

a two-step copying event. Disappearance of the single base-pair overlap between “a” and “b”
suggests that staggered DNA ends, with a single-base overhang, primed DNA copying in a double-
strand break (marked by small black arrows at the 5 breakpoint in the sequence alignment). A
false alignment between GTTTT repeats of target DNA would place a nick in the lower strand
exactly in the position of sequence “a”. (Invasion of the target by the 3’-end of the T-DNA
may provide a reason for false annealing, i.e. looping the target may display gradual movement
of the 3"-end). Copying “a” is interrupted by a correction of annealing between GTTTT repeats
(or by further movement of the T-strand in the target). Thus, after elongation on “a”, the free
3" DNA end is shifted and starts copying “b”. Once “b” is copied, a heteroduplex is generated
and resolved by nicking (labelled by a black vertical triangle in the second step of the scheme).
This leads to a double-strand break, the ends of which are repaired. T-strand invasion occurs
at this time-point by ligation of the 5’-end. At the same time the 3’-end of the T-strand reaches
its final position by overlapping with the last GTTTT repeat, where a nick is formed. Finally,
the 3’-end of the T-strand is ligated with the recessed displaced strand of the target and the second
strand of the T-DNA is synthesized by DNA repair. Although apparently much phantasy is
required to simulate such an integration event, analogous examples found in E. coli and mammals
indicate that such complex events are common during DNA integration. As in our case, these
examples suggest that integration events may interfere with DNA repair or replication by causing
mistakes that may lead to generation of multiple repeats in filler DNAs (Wilson et al. 1982;
Albertini et al. 1982; Brenner et al. 1984; Lin et al. 1984).
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