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Multicellular development requires coordinated cell polar-
ization relative to body axes, and translation to oriented cell 
division1–3. In plants, it is unknown how cell polarities are con-
nected to organismal axes and translated to division. Here, 
we identify Arabidopsis SOSEKI proteins that integrate api-
cal–basal and radial organismal axes to localize to polar 
cell edges. Localization does not depend on tissue context, 
requires cell wall integrity and is defined by a transferrable, 
protein-specific motif. A Domain of Unknown Function in 
SOSEKI proteins resembles the DIX oligomerization domain 
in the animal Dishevelled polarity regulator. The DIX-like 
domain self-interacts and is required for edge localization and 
for influencing division orientation, together with a second 
domain that defines the polar membrane domain. Our work 
shows that SOSEKI proteins locally interpret global polarity 
cues and can influence cell division orientation. Furthermore, 
this work reveals that, despite fundamental differences, cell 
polarity mechanisms in plants and animals converge on a sim-
ilar protein domain.

Development of multicellular organisms relies on the ability to 
organize cell differentiation and division relative to body axes and 
to other cells in the same tissue. Individual cells are polarized, and 
polarity information is relayed to trigger local outgrowth1,2 or steer 
division orientation1,3. Mechanisms underlying polarization and 
division orientation are relatively well-understood in yeast and 
animals4,5. In plants, oriented division is critical for normal devel-
opment6,7, and several polarly localized proteins have been identi-
fied8–15. However, yeast and animal polarity regulators seem to be 
missing from plant genomes, and it is thought that polarity compo-
nents and mechanisms are distinct in plant and animal kingdoms16. 
Components of such mechanisms are elusive. The plant signalling 
molecule auxin regulates pattern formation, and defects in auxin 
response often manifest as changes in growth direction or cell 
division plane6,17. Mutations in the Arabidopsis MONOPTEROS/
AUXIN RESPONSE FACTOR5 transcription factor18 cause altera-
tions in division planes in the early embryo19. We argued that 
mediators of MONOPTEROS function in controlling cell division 
orientation should be among its transcriptional targets. Starting 
from a set of MONOPTEROS-dependent genes20, we here identify 
a family of unique, polarly localized proteins that link organismal 
axes to cell polarity and division orientation.

We previously performed transcriptome analysis on globu-
lar-stage embryos in which MONOPTEROS activity was locally 
inhibited20, and identified TMO7 21 as the most strongly down-
regulated gene20. The second most strongly down-regulated gene 
(7.5-fold) is a gene of unknown function, containing a Domain 
of Unknown Function 966 (DUF966) and named SOSEKI1 
(explained below; SOK1; At1g05577). SOK1 has four paralogues in 
the Arabidopsis genome: SOSEKI2 (SOK2; At5g10150), SOSEKI3 
(SOK3; At2g28150), SOSEKI4 (SOK4; At3g46110) and SOSEKI5 
(SOK5; At5g59790) (Fig. 1a and Supplementary Fig. 1) of which 
SOK5 was also 2.4-fold down-regulated in embryos with reduced 
MONOPTEROS function.

To determine gene expression domains, nuclear-localized triple 
green fluorescent protein (GFP) (n3GFP) was driven by each SOK 
promoter, and this revealed that all SOK genes are expressed during 
embryogenesis and in primary/lateral roots (Supplementary Fig. 2).  
To observe protein localization, C-terminal YFP translational 
fusions were generated. All SOK-YFP patterns mirror pSOK-n3GFP 
patterns (Figs. 1 and 2 and Supplementary Fig. 2). Each SOK protein 
marked novel cellular domains. SOK1-YFP marks the outer/apical 
edge of young vascular cells, including the pericycle, and the colu-
mella root cap in the primary root (Fig. 1b,c,h). During embryogen-
esis, SOK1-YFP is first detected in the apical side of lower tier inner 
cells at the early globular stage (Fig. 2a). Subsequently, SOK1 local-
izes to the outer apical corner or outer lateral side of vascular cells and 
outer corners of the hypophysis at transition to heart stage (Fig. 2f,  
Supplementary Video 1 and Supplementary Fig. 3). This pattern 
is maintained in the post-embryonic root (Fig. 1) and the lateral 
root (Fig. 2k and Supplementary Fig. 4). The same localization pat-
tern was observed for SOK1-tdTomato (Supplementary Fig. 2), and 
is hence independent of the protein tag. The protein was named 
SOSEKI1 (Japanese for ‘cornerstone’) for this unique corner localiza-
tion pattern. The SOK1 protein is highly unstable: SOK1-YFP signal 
disappears during cell division but is afterwards quickly re-estab-
lished in lateral root primordia (Fig. 2p and Supplementary Video 2) 
and primary root (Fig. 2q and Supplementary Video 3). Treatment 
of SOK1-YFP roots with the translation inhibitor Cycloheximide 
(CHX) confirmed protein instability (Supplementary Fig. 6).

All other SOK proteins were localized to different subcellular 
edges. SOK2-YFP localized to the inner basal edge of endoder-
mal cells in the primary (Fig. 1d,i) and lateral root (Fig. 2l and 
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Supplementary Fig. 4), starting in the globular embryo (Fig. 2b and 
Supplementary Fig. 3). SOK3-YFP accumulated at the basal side and 
all corners of most cells in the primary root (Fig. 1e,j), lateral roots 
(Fig. 2m and Supplementary Fig. 4) and embryos (Supplementary 
Fig. 3). Only faint SOK4-YFP accumulation was observed few vas-
cular cells in the primary root (Fig. 1f,k), while it was expressed in 
lateral root (Fig. 2n and Supplementary Fig. 4) and embryo (Fig. 2d,i 
and Supplementary Fig. 3). SOK5-YFP resembles SOK2 localization 
in endodermis, QC and lateral root cap in primary root (Fig. 1g,l), 
yet SOK2 and SOK5 patterns differ during embryogenesis (Fig. 2e,j 
and Supplementary Fig. 3). Thus, all SOK proteins are expressed in 
specific tissues during root initiation, growth and branching, and 
mark unique polar subcellular domains.

To test whether differences in polar localization among SOK 
proteins are caused by cell types or protein determinants, we mis-
expressed SOK1-YFP or SOK2-YFP from the RPS5A promoter that 
drives broad expression in meristems22. Apical SOK1 polarity was 
found in all cell types, but mis-expressed SOK1 localizes to inner 
rather than outer edges in cortex and epidermis (Fig. 3a–c). Ectopic 
SOK2-YFP localizes to inner basal edges of all cells (Fig. 3e). Thus api-
cal/basal polarity is maintained in mis-expression lines and appears 
intrinsic to SOK1 and SOK2 proteins. In these lines, polar localiza-
tion was found across the embryonic shoot/root axis (Fig. 3d,f),  
suggesting the existence of a common polarity reference in the 
entire body. During lateral root initiation, however, localization  

followed the new organ axis (Fig. 2k,l and Supplementary Fig. 4), 
suggesting that the SOK-based coordinate system is autonomous 
to lateral organs. In contrast to apical/basal polarity, inner/outer 
polarity of SOK1 depended on position relative to the endodermis 
(Fig. 3a); SOK1 always localized pointing towards the endodermis. 
Localization in the shortroot (shr) and scarecrow (scr) mutants with 
impaired endodermal identity23,24 caused loss of edge localization and 
led to apical accumulation in the mutant cell file (Fig. 3k,l). This sug-
gests that edge localization integrates genetically separable apical–
basal and outer–inner axes. The cortex–endodermis junction serves 
as a potent cue for SOK1 localization, which is confirmed by ground 
tissue-specific expression of SOK1-YFP using the N9135 GAL4 
driver line25. In the shared initial for cortex/endodermis, SOK1-YFP 
is apical, while the protein localized at both opposing edges toward 
the junction after the periclinal division separating separates endo-
dermis and cortex (Fig. 3m,n). These observations revealed that 
plant cells and tissues possess a universal coordinate system with 
an internal reference that is read and integrated by SOK proteins. 
While other proteins, such as BOR1 can use this internal reference 
system26,27, it is unclear if other proteins can likewise integrate axes.

Polar localization of plant proteins generally depends on 
dynamic processes such as membrane trafficking, cytoskeletal 
dynamics or protein degradation8–10,12,14. In stark contrast, none of 
20 tested hormone or drugs affecting these processes, or changes in 
light, temperature or gravity angle affected the edge localization of 
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Fig. 1 | the SOSEKI family of polarly localized proteins. a, Phylogenetic tree of the Arabidopsis DUF966/SOSEKI protein family. Values in brackets indicate 
fold-change (down-regulation) in Q0990»bdl embryos20. b, SOK1-YFP protein localization in a root tip. Fluorescence values are shown in false colour 
(red = maximum; blue = zero) on segmented cell surfaces. From left to right: cross-section of vascular cylinder, surface view of vascular cylinder, single cell 
file and three different views of a single segmented cell. c–l, Localization of SOK1-YFP (c,h), SOK2-YFP (d,i), SOK3-YFP (e,j), SOK4-YFP (f,k) and  
SOK5-YFP (g,l) in longitudinal cross-sections (c–g) and transverse cross-sections (h–l) of primary root meristems counterstained with propidium iodide 
(red). Insets in c,d,e,g schematically show subcellular SOK protein localization (top), and magnification of localisation in a single cell (bottom).  
Scale bars, 10 µm. All sample and observation numbers are listed in Supplementary Table 3.
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SOK1, SOK2 or SOK3 (Supplementary Fig. 6 and Supplementary 
Table 1). This suggests that polar localization follows a pathway that 
is different from well-known polar proteins such as PINs, BOR1, 
NIP5 and PEN38–10,12,14. We next tested whether the cell wall or 
mechanical properties influence SOK localization and found that a 
brief (<20 min) treatment with cell wall-degrading enzymes or high 
osmotic mannitol solution led to internalization and mis-localiza-
tion of SOK proteins (Fig. 3o–q and Supplementary Fig. 5). This 
indicates that cell-wall integrity is critical for edge localization and 
membrane association of SOK proteins.

SOK1-YFP mis-expression induced frequent alterations in cell 
division orientation; in embryos, such divisions were found in all 
cell types (Fig. 3i,j and Supplementary Fig. 7), while in roots, defects 
were strongest in the cortex and epidermis (Fig. 3a,g,h). While root 
cells normally divide anticlinal to the growth axis (Fig. 3g), mis-
expression lines showed either oblique or periclinal divisions gen-
erating additional cell layers (Fig. 3h). The same defect was induced 
by mis-expressing non-tagged SOK1, and was accompanied by 
slightly inhibited root growth (Supplementary Fig. 7). We used 

this activity in redirecting cell division planes to determine protein 
determinants and properties required for activity. SOK proteins 
do not have a signal peptide or predicted transmembrane helices 
(Supplementary Fig. 1) and are probably peripherally membrane-
associated. To target SOK1 uniformly to the plasma membrane, we 
fused an N-terminal Myristoylation (Myr) motif28 to SOK1-YFP. 
Both polarity and activity (as judged by oblique cell divisions) were 
strongly diminished in Myr-SOK1-YFP roots (Fig. 3r). In contrast, 
when the same Myr motif was fused to the C-terminus of SOK1-
YFP as a negative control, neither polarity nor activity was affected 
(Fig. 3s). Thus, insertion in the plasma membrane prevents polar 
localization, which is in turn required for SOK1 function.

To locate polarity determinants, we generated a series of N- or 
C-terminal deletions (Fig. 4a–e and Supplementary Fig. 8) and mis-
expressed each as a YFP fusion. Deletions ΔA, ΔB, ΔC and ΔD 
caused SOK1 to be localized in the cytosol. ΔE localized to the apical 
edge and induced oblique divisions (Fig. 4c), suggesting that the frag-
ment contained in the ΔD-ΔE segment is sufficient for polar local-
ization and for altering division orientation. Deletions ΔF, ΔG, ΔH  
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Fig. 2 | Diverse polar patterns of SOSEKI proteins. a–o, Localization of SOK1-YFP (a,f,k), SOK2-YFP (b,g,l), SOK3-YFP (c,h,m), SOK4-YFP (d,i,n) 
and SOK5-YFP (e,j,o) in globular-stage embryos (a–e), heart-stage embryos (f–j) and emerged lateral root primordia (k–o). p,q, Stills of a time-lapse 
imaging series of SOK1-YFP fluorescence in an initiating lateral root (p) and in the primary root tip (q). In p, the left panel corresponds to the start of the 
observation, and subsequent images were taken 1, 2, 3 and 4 hours later. Dividing cell lineages are marked with asterisks. In q, time (in hours) from the 
start of the experiment is given in each panel. In q, a dividing cell is magnified from the region indicated by a dashed box, and SOK1-YFP signal is indicated 
by arrowheads. Embryos in a–j are counterstained with Renaissance RS2200 (white), and roots (k–q) with propidium iodide (red). Scale bars, 10 µm.  
All sample and observation numbers are listed in Supplementary Table 3.
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and ΔI are broadly localized to plasma membrane, suggesting that 
the N-terminus is not required for localized membrane association 
per se, but rather for focusing to the edge. Deletions ΔJ, ΔK and ΔL 
were all localized to the cytosol, suggesting that the ΔD-ΔE segment 
can only direct edge localization if the N-terminus is present. Thus, 
SOK1 carries two function domains: one for membrane association 
(middle), and another (N-terminal) for focused polar localization. 
Both are required for activity in changing division orientation.

To test whether different SOK proteins use similar domains 
for localization, we replaced successive 50–70 amino acids of the 
basally localized SOK2-YFP by the corresponding region of SOK1 
(Named S2S1A-F; Fig. 4f–j and Supplementary Fig. 8). While most 
chimaeras localized to the basal edge (Fig. 4g,j and Supplementary 
Fig. 8), S2S1D shifted to the apical edge (Fig. 4h and Supplementary 
Fig. 8), similar to SOK1-YFP. The S1S2E showed a mixture of SOK1 
and SOK2 localization, at the inner lateral membrane (Fig. 4i and 
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corresponding to the area in dashed box. Scale bars, 10 µm. All sample and observation numbers are listed in Supplementary Table 3.
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Supplementary Fig. 8). Thus, polar localization can be transferred 
between SOK1 and SOK2 using a discrete domain that overlaps 
with the ΔD–ΔE ‘polarity domain’ defined by deletions. SOK1 mis-
expression induces oblique divisions (Fig. 3a), while SOK2 mis-
expression does not (Fig. 3e). Even when relocated to the SOK1 
polarity domain, SOK2 can not alter division orientation (Fig. 4h). 
Thus, SOK proteins differ from one another not only in their polar 
localizations, but also in their ability to modify cell division orienta-
tion. We finally confirmed that the same domain conferred polarity 
changes in swaps between SOK1 and SOK5 (Supplementary Fig. 9).  
This identifies a minimal domain for polar targeting of multiple 
SOK members. This minimal polarity domain acts in conjunction 
with the conserved N-terminal domain to direct focused, polar 
membrane localization to specific cell edges.

SOK proteins are plant-specific, and the function of DUF966 
domain is unknown. We used structural homology modelling to 
identify potential homologues and found that, despite very low 
sequence conservation, a part of the DUF966 domain resembles 
the DIX (Dishevelled/Axin) domain (Fig. 4k) that is found in a 
number of animal proteins29,30. The DIX domain mediates head-to-
tail oligomerization31 and is required for clustering of the polarity 
regulator Dishevelled in Drosophila30,31. Strikingly, the DIX domain 
is found only in a small number of metazoan proteins, each of 
which is involved in Wnt signalling and/or planar cell polarity29,30, 
which suggests a convergence of polarity mechanisms across king-
doms. We tested the ability of the DIX-like domain in SOK1 to self-
associate. Indeed, bimolecular fluorescence complementation in 
tobacco leaves (Fig. 4l–n) and a Förster resonance energy transfer 
(FRET) assay in Arabidopsis protoplasts (Fig. 4o–q) showed that 
the predicted DIX domain homodimerizes. The DIX-like domain 
corresponds to the N-terminal region that is required for edge local-
ization and biological activity (Fig. 4a,d and Supplementary Fig. 1). 
Thus, the animal cell polarity protein Dishevelled and SOSEKI1 
may use a homologous protein domain for their asymmetric local-
ization and polarity-related function.

Our study identified a novel plant-specific family of polar, 
edge-localized proteins. Localization to previously unidentified 
polar domains is important for the activity of SOK1 in influencing 
the cell division axis. Whether SOK1 and other family members 
mediate this function during normal development, and what cel-
lular mechanism underlies such activity is yet to be determined, in 
part through analysing loss-of-function mutants. Single mutants 
in individual SOK genes did not so far reveal phenotypes (not 
shown), but redundancy is probable. Thus, current efforts are 
aimed at generating complete knockout of all family members. 
Nevertheless, our analysis of SOK localization identified a universal  
coordinate system in plants that extends well beyond the global 
polarity field in the leaf32 and encompasses the entire body axis. 
SOK proteins that can locally interpret and integrate the global 
coordinates. Consistent with being the output of a coordinate 
system, SOK localization is robust, yet seems to rely on cell wall 
integrity and/or mechanical properties. Further exploration of the 
mechanisms of SOK localization and function may help reveal-
ing the fundamental principles of cell and organismal polarity in 
plants. This may herald surprising analogies to animal polarity 
mechanisms, given the adoption of a homologous protein domain 
in polar proteins across kingdoms.

Methods
Plant material. Arabidopsis ecotype Columbia-0 was used in all experiments 
except when noted otherwise. The N9135-GAL4 enhancer trap line25 was 
generated by Jim Haseloff (University of Cambridge) and obtained through the 
Arabidopsis Biological Resource Centre (ABRC). shr-2 and scr-4 mutants were 
previously described33,34.

All seeds were sterilized, sown on Murashige and Skoog medium with 1% 
sucrose and 0.8% Daishin agar (Duchefa) and vernalized for one day. Plants were 
grown on soil at 22 °C under the long-day condition.

Molecular cloning. All cloning was performed using previously described 
ligation-independent cloning methods and vectors35. For promoter-GFP lines, 
1.2-5 kilobase (kb) fragments upstream of the ATG of SOK genes were amplified 
and introduced into upstream of SV40-n3eGFP in pPLV04. For C-terminal 
translational fusion lines, genomic fragments, including 1.2-5 kb upstream  
of SOK genes, were introduced into pPLV16 (sYPF2) or pPLV22 (tdTomato).  
For mis-expression lines, SOK complimentary DNAs were amplified, fused with 
sYFP2 and introduced into pPLV28 downstream of the RPS5A promoter.  
For gene swap experiments, cDNA fragments of SOK1, SOK2, SOK5 and YFP 
were amplified, fused by overlap extension PCR and introduced downstream of 
the RPS5A promoter in pPLV28. For deletion experiments, cDNA fragments from 
SOK1-YFP were amplified and introduced downstream of the RPS5A promoter 
in pPLV28. For myristoylated SOK1 constructs, sequences for myristoylation 
(GGCFSKK)28 was added to either the C- or N-terminus of SOK1 cDNA 
sequences, and introduced downstream of the RPS5A promoter in pPLV28. 
The UAS::SOK1-YFP construct was generated by amplifying SOK1-YFP from 
the pRPS5A::SOK1-YFP plasmid and introducing it downstream of the GAL4-
dependent UAS promoter36 in pPLV32. The construct was transformed directly 
into the N9135 enhancer trap line25. For BiFC, the DIX cDNA sequence was 
amplified from the pRPS5A::SOK1-YFP plasmid and cloned into a modified 
pGreenII vector containing p35S::LIC-n/cYFP. Fluorescence lifetime imaging 
(FLIM) vectors were generated by cloning the DIX cDNA into pMON 35S::LIC-
sYFP or pMON 35S::LIC-sCFP3a.

All constructs were sequenced, and transformed into wild-type Columbia  
or N9135 GAL4 by floral dip using Agrobacterium strain GV3101(pSoup).  
All primers used for cloning are listed in the Supplementary Table 2.

Microscopic analysis. Roots were stained by propidium iodide (Sigma-Aldrich) 
at final concentration of 10 µg ml−1. Embryos were fixed and stained by 2.2% 
Renaissance RS2200 (Renaissance Chemicals) in PBS buffer at pH 6.9 containing 
4% paraformaldehyde, 5% glycerol, 4.2% dimethyl sulfoxide (DMSO) or stained by 
propidium iodide after fixation as previously described6,37.

Confocal imaging was performed with Zeiss LSM700/800 (observation 
of lateral root) or Leica SP5/II (observation of primary root and embryo) as 
previously described37. Live imaging was performed with LSM700 as described 
before38,39. For the 3D imaging of pSOK1-SOK1-YFP and pSOK1-GFP root, Zeiss 
LSM780 with two-photon laser (960–990 nm) and 500–550 nm/575–610 nm  
band-pass filter were used. Analysis of confocal images (3D reconstruction,  
3D segmentation) was performed by MorphoGraphX40.

Chemical treatments. All chemicals used to treat SOK-YFP roots are shown 
in Supplementary Table 1. Concentration for each chemical was obtained from 
literature. Seedlings were placed on Murashige and Skoog plates containing 
each chemicals for the durations mentioned in the text and were subsequently 
imaged by confocal microscopy. As controls for the chemical treatments, the same 
percentage of DMSO or ethanol used for each chemical treatment were used and 
no effect was observed. For most of the chemical treatments, final concentrations 
of DMSO were <0.5% (v/v) and ethanol were <0.1% (v/v).

Plasmolysis was performed either on Murashige and Skoog medium with 
mannitol (Sigma, M9546) at final concentration 0.4 M or by dipping roots in 
0.4 M mannitol solution in milliQ water, and stained by FM4-64 at least for 2 min. 
For cell wall digestion, either 1% Cellulose R10 (Yakult Honsha) and/or 0.2% 
Macerozyme (Duchefa) were used. Cellulose and/or Macerozyme was dissolved 
in a solution containing 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl and 20 mM 
MES (pH 5.7).

BiFC and FRET-FLIM. BiFC was performed as follows: Agrobacterium containing 
BiFC plasmids were grown overnight in 5 ml LB + 20 mg l−1 Gentamycin, 50 mg l−1 
kanamycin, 25 mg l−1 rifampicin and 2 mg l−1 tetracyclin. Cultures were spun down 
at 4,000 r.p.m. for 10 minutes and the bacterial pellet was resuspended in 1 ml 
MMAi (5 g l−1 Murashige and Skoog salts without vitamins, 2 g l−1 MES, 20 g l−1 
sucrose, pH 5.6 and 0.2 mM Acetosyringone). The OD600 was measured with a 
spectrophotometer. The infiltration samples were mixed 1/1 at a total OD600 of 
0.8. Samples were incubated at room temperature for 2 h and infiltrated into the 
underside of Nicotiana benthamiana leaves with a 1 ml syringe. After 2 days, leaf 
samples were cut out with a razor blade and imaged with a confocal microscope.

Protoplast transfection and FLIM measurements were performed on a Leica 
SP8 as described41.

Structural homology modelling. SwissModel (https://swissmodel.expasy.org/) was 
used to model the structure of DIX-LIKE. To this end, the conserved N-terminal 
part of SOK1 was entered into the program and the software itself selected the best 
matching crystal structure, which was human Dvl2 (PBD: 4WIP).

Statistics and image editing. For all experiments involving transgenic lines, care 
was taken to analyse multiple independent transgenics, where lines were selected 
on the basis of whether they represented non-extreme characteristics. Only results 
representing most observations are shown. All sample and observation numbers 
are listed in Supplementary Table 3.
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Raw microscopy images were collected, and brightness was uniformly modified 
across the entire image. When images were to be directly compared, brightness 
modifications were performed in an identical manner.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.
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