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The genetic basis of quantitative disease resistance has been studied in crops for several
decades as an alternative to R gene mediated resistance. The most important disease
in the potato crop is late blight, caused by the oomycete Phytophthora infestans.
Quantitative disease resistance (QDR), as any other quantitative trait in plants, can
be genetically mapped to understand the genetic architecture. Association mapping
using DNA-based markers has been implemented in many crops to dissect quantitative
traits. We used an association mapping approach with candidate genes to identify the
first genes associated with quantitative resistance to late blight in Solanum tuberosum
Group Phureja. Twenty-nine candidate genes were selected from a set of genes that
were differentially expressed during the resistance response to late blight in tetraploid
European potato cultivars. The 29 genes were amplified and sequenced in 104
accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs
in the selected genes and tested them for association with resistance to late blight. The
phenotypic data were obtained under field conditions by determining the area under
disease progress curve (AUDPC) in two seasons and in two locations. Two genes were
associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein
(StTL15A) and a stem 28 kDa glycoprotein (StGP28).
Key message: A first association mapping experiment was conducted in Solanum
tuberosum Group Phureja germplasm, which identified among 29 candidates two genes
associated with quantitative resistance to late blight.

Keywords: association mapping, quantitative disease resistance, SNP, late blight, candidate genes

INTRODUCTION

Potato is the most important non-cereal crop consumed worldwide. The main production is
centered in Asia with 47.6% of the worldwide production (FAOSTAT, 2015). The most important
biotic threat for potato production is the oomycete P. infestans causing late blight, a disease that
affects potato yield worldwide (Kamoun and Smart, 2005). Usually the pathogen is controlled
by frequent applications of pesticides and fungicides that are not environmentally friendly.
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Research on resistance to late blight has been focused mainly
on R genes, which confer qualitative resistance. This type of
resistance is race-specific, has been overcome in most cases by
the pathogen (Bradshaw and Mackay, 1994; Park and Jones,
2009; Yogendra et al., 2014) and is therefore considered not
durable for late blight. The alternative to R genes is quantitative
or polygenic resistance. Many efforts have been undertaken
to find quantitative trait loci (QTL) that explain this type of
resistance (St. Clair, 2010). In order to be able to take advantage
from the QDR via marker assisted selection, it is necessary the
identification of genes involved in this type of resistance and their
allelic variants (Gebhardt et al., 2007). Since 2002, association
mapping was proposed as an option to find genetic variants
correlated with traits in a cost-efficient way (Mackay and Powell,
2006).

Diploid potatoes are of economic importance in Andean
countries. They are especially cultivated by small farmers. Phureja
potatoes also have a high nutritional content (Peña et al., 2015).
The diploid S. tuberosum Group Phureja had been also used
as a source of resistance to late blight (Sliwka et al., 2006,
2010; Tomczyńska et al., 2014; Yogendra et al., 2014). One
major resistance gene was found on chromosome IX in Group
Phureja germplasm (Sliwka et al., 2006). Quantitative resistance
to P. infestans segregated in a progeny of a cross between
S. phureja and S. stenotomum. In this progeny, three QTL
explained up to 23% of the phenotypic variation, which mapped
on chromosomes III, V, and XI (Costanzo et al., 2005). Trognitz
et al. (2002) reported a major QTL on chromosome III in a cross
S. phureja × dihaploid S. tuberosum hybrid (Costanzo et al.,
2005). These findings confirm that Phureja potatoes are a source
of resistance against late blight from both R genes and QDR.

The candidate gene approach studies DNA variation in genes
known or suspected to play a functional role in a phenotypic trait
of interest (Pflieger et al., 2001). Genes identified by differential
expression studies are considered as candidate genes (Aghnoum
et al., 2009). Known functional candidate genes for disease
resistance are genes involved in different steps of the pathogen
recognition and signal transduction process. In the pathogen
recognition process, one of the most important and broadly
studied protein families is characterized by a nucleotide binding
and a leucine reach repeat (NB-LRR) domain.R genes responsible
for the hypersensitive response (HR) against pathogen attack are
usually encoded by members of this family (Dodds and Rathjen,
2010). NB-LRR type genes can be found by the NBS-profiling
methodology (Linden et al., 2004) or by searching the genome
sequence for NB-LRR type genes using bioinformatics tools (Jupe
et al., 2012).

Other candidates are genes that are functional in resistance
and co-localize with reported resistance QTL, or genes reported
to be differentially expressed in resistant versus susceptible
plants. QTL mapping for resistance to late blight in various
potato genetic backgrounds resulted in approximately 20 QTL
distributed on all 12 chromosomes (Gebhardt and Valkonen,
2001; Wang et al., 2009; Danan et al., 2011; Gebhardt, 2013).
Within the 20 QTL lay several candidate genes that co-localize.
Genes that are differentially expressed in a resistant versus a
susceptible interaction might have a direct or indirect role in

phenotypic expression of resistance or susceptibility. Interaction
of P. infestans with potato leaves and tubers has been studied by
serial analysis of gene expression (SAGE) or RNAseq (Gyetvai
et al., 2012; Draffehn et al., 2013; Gao et al., 2013; Mosquera
et al., 2016). Hundreds of genes were found to be differentially
expressed. These types of studies are a source for novel candidate
genes involved in hypersensitive as well as quantitative resistance
to late blight.

Association mapping allows the evaluation of multiple alleles
distributed in a germplasm collection for their effects on complex
traits that show phenotypic variation in a population. The
information of genomes and different technologies of high
throughput genotyping opened a gate to association mapping
studies in the past 15 years (Abdukarimov and Abdukarimov,
2008). Association mapping is a valid method for working with
quantitative traits in plants (Thornsberry et al., 2001; Kraakman
et al., 2004; Comadran et al., 2009; Pajerowska-Mukhtar et al.,
2009; Simko et al., 2009; Yan et al., 2009; Huang et al., 2010;
Neumann et al., 2010; Tian et al., 2011). Association mapping can
be performed following two strategies concerning genotyping:
(1) selective genotyping at candidate loci and (2) genome-wide
association studies (GWAS) (Álvarez et al., 2015). The candidate
gene approach for association mapping has been successfully
used in potato for several complex traits like resistance to
late blight (Pajerowska-Mukhtar et al., 2009), cold sweetening
(Fischer et al., 2013), chip color, tuber starch content (Li et al.,
2008; Berdugo-Cely et al., 2017), and tuber bruising or enzymatic
browning (Urbany et al., 2011). The use of allelic DNA variation
at candidate loci for association mapping studies is a strategy to
evaluate different alleles in a diverse panel of genotypes. In this
research, we used a collection of S. tuberosum Group Phureja
genotypes in an association mapping study for quantitative
resistance to late blight. A set of novel candidate genes was
selected based on differential transcript levels in quantitative
resistant versus susceptible potato plants (Mosquera et al., 2016).
Single nucleotide polymorphisms (SNPs) in the candidate genes
were tested for association with late blight resistance.

MATERIALS AND METHODS

Plant Material
We used 104 diploid accessions of the S. tuberosum Group
Phureja Colombian Central Collection (CCC) that constitutes
the Working Collection of the Breeding Program at the National
University of Colombia. The genotypes were collected in different
potato growing areas of Colombia and were maintained in vitro
and under field conditions, where they were propagated by
tubers.

Evaluation of Resistance to Late Blight
The 104 genotypes were evaluated for late blight resistance
under field conditions, in two growing seasons at two locations
in Colombia. The first location was Subachoque in the
Cundinamarca department, located at 2,670 meters over sea level
(m.o.s.l), the second location was La Union in the Antioquia
department at 2,594 m.o.s.l. Crop cycles were carried out
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during 2010 and 2011. The two seasons and two environments
were considered as four environments, divided as follows: (i)
Environment one was planted from May to August 2010 at
La Union, (ii) Environment two was planted from May to
August 2010 in Subachoque, (iii) Environment three was planted
from November 2010 to February 2011 in La Union, and (iv)
Environment four was planted from December 2010 to April
2011 at Subachoque. The cultivars Capiro and Única were
used as susceptible and resistant controls, respectively. The
experimental design was random blocks with two plants per
block and four repetitions per genotype. The susceptible cultivar
Capiro was planted every two rows of evaluated genotypes and
in the edges of the plot to increase the inoculum pressure.
Weather conditions were registered with meteorological stations.
Temperatures ranged from 11 to 16◦C and humidity from
81 to 95% at both locations. The infection was natural, as
both locations have a high incidence of late blight. The first
evaluation was taken 1 month after planting. Disease progression
was evaluated weekly during 6–8 weeks, using the percentage
of direct visual estimation (PDVE) (Yuen and Forbes, 2009).
The area under disease progress curve (AUDPC) was calculated
from the PVDE values (Campbell and Madden, 1990). AUDPC
values for each location and growing season were calculated, to
obtain AUDPC values for four environments (Supplementary
Table 1). The virulence spectrum of infecting P. infestans
was characterized using the reaction of the differentials for
eight R genes, obtained from the International Potato Center,
Lima, Peru1. The different isolates were classified as complex
because they were virulent for more than three of the eight
differentials. The test of virulence was done with the detached
leaves test.

Phenotypic Data Analysis
Statistical analyses were conducted with GenStat 16th, supplied
by VNS international. The four field trials were considered
as four environments. The rank correlation coefficients matrix
between the four environments was calculated and represented
graphically, and a principal component analysis (PCA) was
performed. Adjusted entry means were calculated using a linear
model, considering the four environments as factors in the model:

Yi = Xi â + Zibi + åi

bi ∼ Nq(0, 9), åi ∼ Nni (0, σ 2 3i)

Where: (i) Y i is the ni× 1 response vector for observations in the
ith group. (ii) Xi is the ni× p model matrix for the fixed effects for
observations in group i, (iii) β is the p × 1 vector of fixed-effect
coefficients, (iv) Zi is the ni × q model matrix for the random
effects for observations in group i. (v) bi is the q × 1 vector of
random-effect coefficients for group i. (vi) εi is the ni× 1 vector of
errors for observations in group i. (vii) 9 is the q× q covariance
matrix for the random effects. (viii) σ23i is the ni× ni covariance
matrix for the errors in group i (Fox, 2002).

1https://cipotato.org

Genotype Molecular Characterization
Selection of Candidate Genes
Candidate genes for association analysis were selected from
42,688 differential SNPs, which resulted from a comparative
RNAseq experiment between S. tuberosum genotype pools with
high and low quantitative resistance to late blight (Mosquera
et al., 2016). The 42,688 SNPs were distributed in 9,855 genes and
showed significantly different allele frequencies between resistant
and susceptible genotype pools. Candidate genes were selected
using the following criteria in order of relevance: the level of
significance for the differential expression between resistance and
susceptible pools, using the p-value for differential frequency of
the SNP allele, the number of differential SNPs per gene and
the gene’s position on the Solanaceae function map for pathogen
resistance in the GABI (Genome Analysis of the Plant Biological
System) Primary Database2 (Meyer et al., 2005; Riaño-Pachón
et al., 2009).

The genomic positions of the selected genes were compared to
QTL for late blight resistance by mapping in silico the sequences
of markers genetically linked to reported QTL to the potato
genome sequence (PGSC v4.03)3. Fifty-three genes distributed on
all 12 chromosomes were selected, because they contained more
than one differential SNP with the Bonferroni corrected p-value
lower than 0.0001, or/and because they co-localized with a QTL
for resistance to late blight (Mosquera et al., 2016). Primers were
designed based on the potato genome sequence (PGSC 2011)
for the selected genes, considering conserved regions flanking
the gene fragment with the highest number of differential SNPs
in the comparative transcriptome study (Mosquera et al., 2016)
(Supplementary Table 2).

To generate an amplicon from the gene fragment, a PCR
reaction was performed in a final volume of 25 µl containing 1X
PCR buffer (Fermentas, cat. #B16), 0.2 mM dNTPs (Fermentas,
cat. #R0182), 1.5 mM MgCl2 (Fermentas, #R0971), 1 unit Tag
polymerase (Invitrogen, cat 18038-42), primers 25 mM, 5 ng of
DNA. The amplification was done in a thermocycler following
the program: 3 min at 94◦C, then 30 cycles of 3 min at 94◦C,
45 s at the annealing temperature for each primer pair and 1 min
at 72◦C, final extension at 72◦C for 5 min. Amplicons were
visualized in 1% agarose gels with ethidium bromide staining
prior to sequencing.

Collection of SNP Data
Twenty-nine genes distributed on all chromosomes except
chromosome IX (Table 1) were successfully amplified from
genomic DNA of the 104 genotypes. Amplicons were custom
sequenced at the Max-Planck-Genome-Center Cologne using
the dideoxy chain-termination sequencing method, an ABI
PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit
and an ABI PRISM 3730 automated DNA Sequencer (Applied
Biosystems, Weiterstadt, Germany). Sets of 10 sequences were
edited and aligned with DNASTAR software (Burland, 2000), and
sequences flanking the SNPs in the 10 genotypes were called.
The sequences flanking the selected SNPs were used to call the

2http://www.gabipd.org/database/maps.shtml
3http://solanaceae.plantbiology.msu.edu
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SNPs with Data Acquisition and Analysis Software DAx (Van
Mierlo Software Consultancy, Eindhoven, Netherlands) in the
104 genotypes. Data from DAx software were exported to EXCEL
(Excel Office, 2007).

Association Assessment
Association analysis was conducted with Tassel 5 software
(Bradbury et al., 2007). Three analyses were done with the general
linear model (GLM) and three more with the mixed linear model
(MLM). The first GLM included no additional parameters, the
second included the population structure (GLMQ), and the third
included the PCA population estimation as parameter (GLMPC).
The association analysis with the MLM was performed including
either kinship alone, kinship and PCA or kinship and population
structure. The mixed model used was as follows:

Yi = µ + Sα + Qv + e

Yi = phenotypic data (adjusted means), Sα = marker matrix,
Qv= population structure matrix, e= residuals.

Population structure was analyzed with Simple Sequence
Repeats (SSR) markers as described by Juyó et al. (2015).
Association tests were performed with or without inclusion of
population structure linkage groups. The genomic position of
each SNP was determined based on the physical chromosome
maps according to the PGSC V4.03. The threshold for
considering an association significant was fixed at 2.0 –log (P).
The minor allele frequency (MAF) was tested for two different
thresholds values 0.01 and 0.05. With MAF = 0.01 the model
could include low frequency alleles in the association test.

QQ plots for each association test with GLM and MLM were
compared for goodness of fit. The best fit in the QQ plot was
selected for association.

Gene Co-location with Potato QTL
Physical Positions
The position in the potato genome of an associated gene was
compared with QTL reported for the chromosome where the
associated gene was located. Sequences of markers flanking the
reported QTL on the chromosomes III and VI (Danan et al.,
2011) were compared trough the BLAST algorithm against the

TABLE 1 | Genes selected for amplicon sequencing and SNP calling.

Chr. Start position End position Locus ID Gene annotation

I 558.383 565.761 PGSC0003DMG400019975 Ankyrin repeat-containing protein

I 1.651.485 1.653.969 PGSC0003DMG400032190 Acidic ribosomal protein P1a

I 73.015.925 73.019.833 PGSC0003DMG400000204 Thylakoid membrane phosphoprotein 14 kDa, chloroplastic

I 3.694.969 3.698.957 PGSC0003DMG400016369 Equilibrative nucleoside transporter 1

II 33.873.164 33.877.790 PGSC0003DMG400029694 Eukaryotic translation initiation factor 3 subunit

III 253.765 257.985 PGSC0003DMG400013431 PQ-loop repeat family protein

III 44.499.154 44.501.806 PGSC0003DMG400019959 24 kDa seed maturation protein

III 34.073.643 34.074.711 PGSC0003DMG400016749 TMV-induced protein I

III 61.793.584 61.797.545 PGSC0003DMG400009178 Pectin esterase

IV 2.625.518 2.628.817 PGSC0003DMG400029517 Desacetoxyvindoline 4-hydroxylase

V 5.067.835 5.069.682 PGSC0003DMG400031271 AAA ATPase

V 1.981.074 1.983.124 PGSC0003DMG400000827 Glycosyltransferase, CAZy family GT8

V 2.134.566 2.140.290 PGSC0003DMG400000829 Transmembrane protein TPARL

VI 49.100.842 49.102.333 PGSC0003DMG402016495 Stem 28 kDa glycoprotein

VI 50.409.855 50.412.254 PGSC0003DMG401028933 Ribosomal protein S27

VI 54.345.177 54.347.242 PGSC0003DMG402005942 Endo-alpha-1,4-glucanase

VI 56.859.456 56.860.115 PGSC0003DMG400034939 Thylakoid lumenal 15 kDa protein 1, chloroplastic

VI 50.573.707 50.578.577 PGSC0003DMG401028788 Inducer of CBF expression

VII 53.733.816 53.735.139 PGSC0003DMG400019248 Chlorophyll a-b binding protein 13, chloroplastic

VII 56.364.098 56.365.820 PGSC0003DMG400022241 Photosystem II 10 kDa polypeptide, chloroplastic

VII 54.327.915 54.330.135 PGSC0003DMG400019257 Chloroplast thiazole biosynthetic protein

VIII 46.878.953 46.881.259 PGSC0003DMG400020809 Cytochrome P450 71D11

VIII 5.482.187 5.483.150 PGSC0003DMG400005805 Photosystem I reaction center subunit

X 59.616.753 59.619.226 PGSC0003DMG400007205 Calmodulin

X 56.090.820 56.091.798 PGSC0003DMG400028151 VAMP protein SEC22

XI 41.838.907 41.844.146 PGSC0003DMG400001148 Rubisco subunit binding-protein alpha subunit

XI 43.821.639 43.826.372 PGSC0003DMG400027384 Calmodulin

XI 41.609.684 41.614.152 PGSC0003DMG400008080 CASP∗

XII 54.981.145 54.982.086 PGSC0003DMG400016959 ATP synthase delta chain, chloroplastic

Chromosome (Chr.), start position and end position (bp), locus ID (identification in the potato genome sequence) and functional annotation are shown. ∗CASP, are proteins
discovered in the CASP (critical assessment of protein structure prediction) project, a world-wide experiment for protein structure prediction.
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potato genome sequence. Marker sequences were retrieved from
the GABI Primary Database4 and compared to the potato genome
resource website in the blast-n option, with default parameters,
against the Potato Genome Sequence Consortium (PGSC)
S. tuberosum Group Phureja DM1-3 516R44 pseudomolecules
(v4.03) (Xu et al., 2011; Supplementary Table 3).

RESULTS

Resistance Evaluation
All the genotypes under study were affected in different levels
by the pathogen as AUDPC values demonstrate (Supplementary
Table 2); no HRs were detected in any genotype. The
adjusted means of the AUDPC, calculated from the four
environments with the MLM were not normally distributed
(Figure 1), whereas the residuals of the model were normally
distributed (Supplementary Figure 1). The PCA as well as the
correlation between AUDPC values from the four environments
(Supplementary Table 2) showed that the phenotypic data in
all four environments were correlated. The first two principal
components of the PCA explained ∼95% of the variation, the
third explained 3.06% and fourth 1.364% (Figure 2). The first
four principal components were sufficient to explain 100% of the
variation. Correlation in the PCA graph is determined by the
position of each number (environment 1 to 4): the closer they
are to each other, the better they are correlated. The grouping of
environments 1 to 4 in the PCA plot showed high correlation
among environments except for environment 4, which was
the least correlated. The resistance or susceptibility levels of
the genotypes were similar in all environments, as reflected in
the high level of clustering of the genotypes (Figure 2). The
variation observed in some genotypes that are not grouped such
as CCC101 or CCC002 was due to environmental conditions. The
genotype× environment interaction was evident by the variation
over the different environments of the phenotypic values. For
association analysis, we used adjusted means across the four
environments (Figure 1) considering environmental effects as
fixed in the linear model.

Candidate Gene Selection
From a list of 1,869 transcripts containing 4,462 SNPs with
differential allele frequency between two pools of potato
(S. tuberosum Group Tuberosum) genotypes with high and
low quantitative resistance to late blight, we selected 53 genes,
distributed on the 12 potato chromosomes). PCR primers were
designed for the 53 genes, PCR conditions were optimized and
amplicon quality was evaluated on agarose gels (Supplementary
Table 3). Finally, amplicons of 29 genes (Table 1) were sequenced
and 238 SNPs were called in these genes in the 104 accessions.
The putative functions of the selected genes were involved in
different cellular processes such as transport, photosynthesis, and
protein biosynthesis. The largest group of candidates was related
to photosynthesis, especially to photosystems. The 238 SNPs
were distributed in 11 of the 12 chromosomes (Supplementary

4http://www.gabipd.org/database/maps.shtml

Table 2). Genes on chromosome IX could not be amplified. This
chromosome is therefore not represented in the analysis.

Association Analysis
The 238 SNPs were analyzed for association with quantitative
resistance to late blight, using the six models described in
“Materials and Methods.” The association model with the best
fit was the GLM with the principal components (GLMPC) using
population structure with principal component as parameter,
it was selected by comparing the Q-Q plots of the five of the
association models (Figure 3). The values for the mixed lineal
model with population structure (Q) and kinship (K), MLMKQ,
were not possible to fit into Figure 3, because its values were out
of the range, showing an over estimation of the model due to the
interaction of the kinship and population structure.

Two SNPs in two genes were associated with quantitative
resistance to late blight (Table 2). The SNPs were identified
using the name of the locus and their position on the potato
pseudomolecules (version 4.03). One SNP of the associated
SNP’s was identical with SNPs that had shown differential
allele frequencies between resistant and susceptible plants in
the RNAseq experiment, based on which candidates were
selected.

The first gene was annotated as Stem 28 kDa glycoprotein
(StGP28) on chromosome VI (Figure 4) and corresponded
to the locus PGSC0003DMG402016495. The associated SNP
explained 11% of the phenotypic variation (Table 2). The box
plot shows that the heterozygous genotype StGP2849101958
AT was associated with increased resistance compared with
the homozygous genotype StGP2849101958 TT, which was
associated with susceptibility (Figure 5). The SNP lead to a non-
conservative amino acid change from tyrosine to phenylalanine
in the deduced protein.

The second gene was annotated as Thylakoid luminal
15 kDa protein (StTL15A) on chromosome VI (Figure 4) and
corresponded to the locus PGSC0003DMG400034939. The SNP
explained 7% of the phenotypic variation (Table 2). The box plot
shows that the homozygous genotype StTL15A56859831 TT was
associated with increased resistance compared to the alternative
homozygous genotype StTL15A56859831 CC (Figure 6). The
SNP lead to a non-conservative amino acid change from proline
to serine.

The effect of the SNP allele dosage was inferred from the box
plots (Figures 5, 6). For the gene StGP28, the allele dosage effect
could not be tested due to the absence of the genotype AA. In
the gene StTL15A, the resistance to late blight increased with the
allele dosage (Figure 6), showing an additive effect for the marker
in StTL15A.

Restriction fragment length polymorphism (RFLP)
and SSR markers reported to be linked with QTL for
late blight resistance on potato and tomato chromosome
VI (Leonards-Schippers et al., 1994; Collins et al., 1999;
Oberhagemann et al., 1999; Ewing et al., 2000; Bormann
et al., 2004; Brouwer et al., 2004; Costanzo et al., 2005; Simko
et al., 2006) were mapped in silico to the genome sequence
(Figure 5 and Supplementary Table 3). The markers anchored
QTL Pin6a to the short arm, QTL lb6a to a 10 Mbp proximal
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FIGURE 1 | Evaluation of quantitative resistance to late blight in four environments and 104 accessions of S. tuberosum Group Phureja. The histogram is based on
the adjusted means for area under disease progress curve (AUDPC) values. Shapiro–Wilk normality test, p-value = 0.003263.

FIGURE 2 | Correlation between areas under disease progress curve (AUDPC) for late blight disease in S. tuberosum Group Phureja accessions from the CCC
evaluated in four environments. (A) Heat map of the correlations between AUDPC values for the environments 1, 2, 3, and 4. The higher the correlation coefficient,
the darker the red color. (B) The PCA (principal component analysis) for accessions and environment scores, in green, AUDPC values for the accessions and in blue
the four environments.

region between 36 and 46 Mbp and QTL Pin6b and lb6b to the
9 Mbp distal regions from 51 to 60 Mbp on the long arm. The
StTL15A locus was located distal at 56.8 Mbp right within potato
QTL Pin6b and tomato QTL lb6b and the StGP28 locus was
located at 49.1 Mbp between the two QTL in the distal arm of
chromosome VI.

DISCUSSION

Here, we report two novel associations between SNPs in two
candidate loci and quantitative resistance to late blight in
S. tuberosum Group Phureja. Both SNP’s are located in expressed
genes, one in StGP28 (Stem 28 kDa glycoprotein) and the other in
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FIGURE 3 | Comparative Q-Q plots for –log10 p-values for five association models. Three GLM, general linear models: GLM without any other correction parameter,
GLMQ (use population structure as parameter K = 2), GLMPC (use PCA as a parameter in the model) and two mixed linear models (MLM), MLMK use kinship as a
parameter, MLMKPC, use kinship plus PCA The best fit was obtained with the GLM with PCA (GLMPC).

StTL15A (Thylakoid lumenal 15 kDa protein 1). Both genes are
located on chromosome VI. The SNPs accounted for 7–11% of
the phenotypic variance. Resistance increased or decreased with
the allele dosage in StTL15A, showing additive allelic effects.

Quantitative resistance is mediated by multiple genes that
could influence the level of resistance differentially. It was
possible to find additive effects due to the presence of two or
more resistance alleles at different loci in a segregating population
(Caromel et al., 2005). In our study, additive effects between
StGP28 and StTL15A could not be analyzed, since individuals
with a combination of the StGP28 and StTL15A resistance alleles
were not present in the population. Marker-assisted selection can
now be used to obtain genotypes having both alleles and to study
their combined effects.

For StGP28 as well as StTL15A the minor frequency haplotype
was associated with greater resistance. The most resistant
individuals in the population were homozygous for the genotype
StTL15A TT. The association value for StTL15A gene was 237, the
highest value found in the association test. This demonstrates that
the SNP in StTL15A is a promising marker to select for increased
resistance in progeny derived from the most resistant genotypes
in Working Collection of S. tuberosum Group Phureja.

The 29 genes evaluated for association with late blight
resistance in a collection of diploid S. tuberosum Group Phureja
accessions of Colombia were selected based on a comparative
RNAseq experiment performed with a set of tetraploid, European
S. tuberosum Group Tuberosum genotypes (Mosquera et al.,
2016). All selected genes contained SNPs with highly differential
allele frequencies between groups of plants with contrasting levels
of late blight resistance. Even though the list of candidate genes
resulted from European tetraploid potatoes it was a suitable
tool to discover novel associations with late blight resistance in
diploid South American germplasm. Indeed, a different SNP in
the StGP28 gene was associated with late blight resistance in
European tetraploid potatoes (Mosquera et al., 2016). This shows
that it is possible to use information concerning quantitative
resistance of one type of germplasm and environment for
another, suggesting that the mechanisms underlying quantitative
resistance could be similar in different germplasm and ploidy
levels.

Quantitative resistance has been studied in many crops
due to the value of quantitative resistance loci (QRL) for
breeding applications. Several QRL have been reported in potato
on all chromosomes (Gebhardt, 2013). Here, we report two

TABLE 2 | Results of association analysis of 238 SNPs in 29 genes for quantitative resistance to late blight in S. tuberosum Group Phureja measured as area under
disease progress curve.

Chr. Gene annotation Primer name SNP name SNP identification in
the amplicon

SNP position on
pseudomolecule

(v4.03)

−log10 (P) Effect%

VI Stem 28 kDa glycoprotein MF12 StGP2849101958 ACAT(T/A)TAGT 49.101.958 2.2 11.03

VI Thylakoid lumenal 15 kDa protein TM18 StTL15A56859831 CCTT(T/C)CCT 56.859.831 2.37 7.0
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FIGURE 4 | Physical map of potato chromosome VI. Positions of RFLP and
SSR markers (see Supplementary Table 3 for details) linked with QTL for
resistance to late blight according to the literature are shown on the left.
Numbers in parenthesis code for the corresponding references: (1)
Leonards-Schippers et al. (1994), (2) Collins et al. (1999), (3) Oberhagemann
et al. (1999), (7) Simko et al. (2006), and (8) Brouwer et al. (2004). Black bars
highlight the physical segments tagged by QTL linked markers. The
approximate positions of potato QRL, Pin6a and Pin6b according to the SOL
function map for pathogen resistance
(http://www.gabipd.org/database/maps.shtml), of tomato QRL lb6a and lb6b
(Brouwer et al., 2004) and the position of the Rpi-blb2 late blight resistance
gene (NCBI accession DQ122125, van der Vossen et al., 2005) are shown on
the right along with the positions of the candidate loci St GP28 and StTL15A.

genes associated with quantitative resistance to late blight in
chromosome VI.

Three QTL for resistance to late blight have been mapped to
the short and long arms of chromosome VI (Leonards-Schippers
et al., 1994; Collins et al., 1999; Oberhagemann et al., 1999;
Brouwer et al., 2004; Simko et al., 2009). The short arm is a
hot spot for qualitative and quantitative resistance to various
pathogens in tomato as well as potato (Gebhardt and Valkonen,

FIGURE 5 | Box plot for the distribution of AUDPC in the genotype classes AT
and TT of SNP StSGP28G49101958 (locus PGSC0003DMG402016495 on
chromosome VI) in S. tuberosum Group Phureja from the Working Collection.
The y-axis shows AUDPC values and the x-axis the two genotype classes.
The third genotype class AA was absent in the collection.

FIGURE 6 | Box plot for the distribution of AUDPC in the genotype classes
CC, TC, and TT of SNP StTL15A56859831 (locus
PGSC0003DMG400034939 on chromosome VI) in S. tuberosum Group
Phureja from the Working Collection. The y-axis shows AUDPC values and the
x-axis the three genotype classes.

2001). It includes Rpi-blb2, a functionally characterized R gene
for resistance to late blight (van der Vossen et al., 2005). The
StGP28 gene maps to position 49.1 Mbp, between two QTL (Ib6a
and Pin6b – lb6b) reported for late blight resistance. The StTL5A
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gene maps to position 56.88 Mbp, within the most distal genome
segment from 51 to 60 Mbp on the long arm, which corresponds
to potato and tomato late blight QTL Pin6b and lb6b, respectively
(Figure 4).

The stem 28 kDa glycoprotein was identified as a vegetative
somatic storage protein and is closely related to glycoproteins
(Mason et al., 1988). Its specific function in unknown, but it
contains domains related to vegetative storage/acid phosphatase.

The thylakoid lumenal 15 kDa protein is one of at least
25 proteins found in the thylakoid lumen compartment of the
chloroplast (Kieselbach et al., 1998). Its specific function is
unknown. It is a member of the tetratricopeptide repeat (TPR)
superfamily, which is highly conserved in cyanobacteria and
higher plants. The description of the homologous Arabidopsis
gene At2g44920 (TAIR5) suggests that it functions in carotenoid,
chlorophyll, or unsaturated fatty acid biosynthesis, in defense
responses, or in response to cold temperature.

StTL15A and StGP28 are expressed in most tissues according
to the expression data in the potato genome browser6.
In a transcript profiling experiment, in which transcript
levels of S. tuberosum genotype pools with contrasting
quantitative resistance to late blight were compared (Draffehn
et al., 2013), StTL15A (PGSC0003DMG400034939), and
StGP28 were not up- or down-regulated upon infection.
However, both genes were found among the 107 transcripts
that were differentially expressed in genotype pools with
contrasting levels of resistance to late blight. Like several
other chloroplasts located proteins, StTL15A and StGP28
were expressed at higher level in genotype pools with higher
quantitative resistance compared with susceptible genotype
pools, prior to infection with P. infestans as well as 1-day
post infection (Supplemental Table S10 from Draffehn et al.,
2013).

Quantitative resistance is controlled by multiple genes with
mostly unknown identity. Here, we report two candidate
genes for quantitative resistance to late blight in S. tuberosum
Group Phureja. To the best of our knowledge this is the first
report of association mapping in Group Phureja germplasm.
Information generated in previous QTL mapping experiments
was valuable to find allelic variations for resistance responses.
Mechanisms by which quantitative resistance is controlled might
be similar in different potato species, facilitating the transfer
of information on genes involved in quantitative resistance
between different types of germplasm. The effect of such genes
on resistance might vary between different potato germplasm
pools, depending on the relative importance of the gene in
the resistance response, the distribution and frequency of
resistance and susceptibility alleles and genotype× environment
interactions.

CONCLUSION

Association mapping using candidate genes as markers is a
valuable approach to identify genes involved in responses to
pathogens under field conditions. Genomic, transcriptomic, and
traditional QTL mapping information are useful to find and
validate genes associated with late blight resistance. The results
generated in this research enable the design of molecular markers
that can be evaluated in potato breeding programs.
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